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Abstract—The connectivity of the autonomous mobile robots is
considered in this paper. The group navigation is provided using
simple local steering rules and without any explicit communica-
tion. Sub-optimal solutions are invoked to avoid computational
cost. We show that the connectivity of the group is preserved
during the whole motion, in spite of bounded measurement errors
on angles and distances. Some special cases of group topology
are also discussed.

I. INTRODUCTION

A group of robots, rather than a single robot, are expected

to be successful in performing some tasks that require cooper-

ation. Indeed, there are several species in nature which exhibit

very beautiful examples of collective working. Schooling fish,

flocking birds, ant and bee colonies are quite well-known for

their collective working behaviors.

Several works are available in the literature which utilize the

cooperation of autonomous agents. One of the first efforts to

model species which work collectively was given for flocking

birds in 1987 [1]. In that work, it is asserted that large group

behaviors arise as a result of simple principles about the

motion of each member of the group. An important application

of this idea in discrete-time was given in 1995 [2]. Since then,

the concept of cooperative motion has greatly evolved. The

formation of robot groups [3],[4] as well as the utilization of

potential functions and artificial forces to accomplish a group

behavior [5]-[7] has been widely studied. Some methodologies

rely on limited communication between robots for desired

group task [8],[9]. A more general discussion of the initial

studies conducted in this area and concept development can

be found in [10] and the references therein.

In this paper, we develop a methodology for the navigation

of autonomous robots groups, preserving the group connec-

tivity. We begin by defining the connectivity of robot groups.

Then, a local steering strategy is built, which guarantees the

connectivity of the group for the whole time of interest. We

assume that the robots have no communication capability

and their position sensors are of limited range with bounded

measurement errors. These assumptions make our work more

realistic, as we form an analogy between the mobile robots

and aggregating organisms in nature. There are other works

in the literature too, which make use of graph theory and

connected group definitions, such as [11]-[13], and especially

in [14] where Hamiltonian graphs and potential fields are used.

However, as far as we know, no work is available yet that

guarantees the connectivity of the robot group without using

communication. In [11] and [12], it is assumed that a state

vector consisting of position and velocity is measurable and

every robot can sense any other robot in the group without

any restrictions. These works and also the study in [15] assume

group connectivity during the motion as a pre-requisite for the

success of their methods. However, the methodology proposed

in [16] results in the navigation of a robot group having

dynamic topology using only limited-range position sensors

with guaranteed connectivity. Here we extend the work in [16]

by including measurement errors and providing solution to a

possible deadlock problem.

II. PROBLEM FORMULATION

The robots in this study are assumed to be identical in

all physical properties. Each robot, represented by R, has

the capability to move in all directions (i.e. the robots are

omni-directional), and is equipped with limited-range position

sensors. In this work, the position sensors are considered

to be such sensors that measure both the distances and the

angles between the measuring robot and the robots within

its measurement range. The working space can be either 2D

or 3D. These sensors have a known degree of accuracy. We

assume that the sensing capability is continuous and available

equally in all directions, but the sensor results bear both

angular and longitudinal measurement errors. These errors

are bounded by positive scalars ∆θ and ∆r, respectively.

This is depicted in Fig. 1 for a 2D case. It is important that

sensing other robots means obtaining the position information

of the robots in the neighborhood via its position sensors. This

establishes a link between the sensing robot and each robot in

its sensing range. Hence, the robots can stay connected with

their neigbours without using explicit communication. Also

note that sensing other robots does not imply recognizing a

specific robot. The robots have no ID’s. Moreover, each robot

does not even know its own label.

A number of such mobile robots constitute a group. First,

we state some basic terms from the graph theory.

Definition 1: A group G is a set of autonomous mobile

robots {Ri, i = 1, . . . , N}, that can be connected by links.
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Fig. 1. Illustration of sensing errors on angle and distance in R
2

Definition 2: The group G is connected if there is a path

from any robot to any other robot in the group through links.

A group which has at least one pair of robots having no path

inbetween is disconnected.

Since we assume that the position sensing range of the

robots is limited and the total number of robots in the group

can be large, a robot may not sense all other robots in the

group. Based on this, we define subgroups as follows.

Definition 3: A subgroup Si is a group of robots sensed

by the robot Ri.

Since there are N robots in the group, by definition, there

are N subgroups, i.e. one for each robot. Si has a spherical

shape with Ri lying at its center. We will denote the radius

of Si as dmax. In other words, dmax is the maximum sensing

distance for each robot. If Ri cannot sense any other robots

in the group, then Si is an empty set. On the other hand,

letting the largest distance between the robots in G be denoted

as Dmax, G will be connected according to Definition 2,

if dmax ≥ Dmax. However, one faces nontrivial and more

interesting cases whenever dmax ≪ Dmax, which corresponds

to robot groups of a relatively large number of individuals

having limited sensing ranges.

Fig. 2 depicts a group consisting of three robots. It is seen

that R2 ∈ S1, and R1 ∈ S2. This establishes the links C12 and

C21, respectively. The links between R2 and R3 are formed

likewise. Note that the robot R2 has the position information

of both R1 and R3, but R1 and R3 cannot sense each other,

as the distance between R2 and R3 is larger than dmax.

The group is required to navigate from a starting location to

a target location. We assume that the location of the target is

unknown to all group members except one robot. This robot is

assigned as the leader of the group and denoted as RN . The

leader has the same physical properties and capabilities as the

other robots. The only difference is that the direction of the

target is given to RN so that it can determine its movement

using this target information. However, in this study, the

leadership is hidden. None of the robots recognize the leader

as a distinguished group member. In other words, if RN is

sensed by a robot Rj , i.e. RN ∈ Sj , Rj can only see it as

one of its neighbors and the leadership of RN does not affect

the local steering strategy of Rj . In the remaining part of the

paper, we will consider the group of N robots as one leader,

RN , and N − 1 as followers, Rj , where j = 1, . . . , N − 1.

Fig. 2. Illustration of a robot group with three robots and subgroups

Note that the indexing of the robots is totally irrelevant as far

as the problem we discuss here and the solution we propose.

Yet we shall consider the number of the robots as above for

the sake of notational simplicity.

Using these definitions and assuming that a set of robots

initially form a connected group; our objective now is to de-

velop a decentralized steering methodology that yields efficient

navigation of the group while preserving its connectivity in the

sense of Definition 2.

III. AUTONOMOUS MOTION

Our goal is to develop a methodology for simple au-

tonomous agents, such that, a large group of such simple

agents could navigate as a whole connected group, similar

to those of some animal species in the nature. At any time t,
let t + ∆t be the next sampling time, where ∆t > 0 is the

interval at which a robot senses the positions of other robots

in its range. To take measurement errors on the distance into

account, we define a positive scalar dm as

dm
def
= dmax − ∆r (1)

where ∆r > 0 is the bound of the distance measurement

error. We will denote the position of a robot Ri at time

t, as Xi(t), i = 1, . . . , N . Since all robots in the group

steer autonomously, we will set up local moving rules for

each robot. Here, we propose a local steering strategy that

is inspired by the preliminary study of Reynolds in [1]. At

each time t, while the leader RN aims in a given global

target direction, each follower robot Rj , j = 1, . . . , N − 1,

acquires the positions of other robots in its sensor range, i.e.

in the subgroup Sj , and determines a local target location for

itself. This is most conveniently described in terms of the local

coordinates of Rj , with Rj being at the origin. Let us denote

the position vector in local coordinates as x(t). We will use a

notation such that the superscripts in x relate the coordinate

frame to a robot, and the subscripts in x indicate which robot’s

position it is. For example, xj
k represents the position vector

of Rk in the coordinate frame of Rj . For the robots in Si,
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i = 1, . . . , N , we have

xi
k(t)

def
= Xk(t) − Xi(t), k = 1, . . . ,M (2)

where M is the number of robots in Si. Then, we propose the

following local steering strategy.

Local Steering Strategy: At each sampling time t, each robot

in the group computes a target location for the time t + ∆t
and moves towards that location, such that,

1) for each follower robot Rj , j = 1 . . . , N − 1, the target

location xj
j(t+∆t) minimizes a cost function, J(xj

j(t+
∆t)), derived from the positions of the robots in Sj ,

2) for the leader RN , the target location is always towards

the given global target,

and for both RN and the follower robots Rj , the movement

is subject to

‖xi
i(t + ∆t)‖ ≤

1

2
(dm − max

k
‖xi

k(t)‖) (3)

where i = 1, . . . , N and xi
k(t) is as defined in (2).

Note that both xi
k(t) and xi

i(t + ∆t) are positions in

coordinates of the local reference frame attached to Ri at time

t. The position that Ri is aiming at, i.e. xi
i(t+∆t), is restricted

by an upper bound in (3). This upper bound is incorporated

to guarantee the connectivity of the group.

Several types of cost functions can be used in implementing

the local steering strategy. One example of these cost functions

may be given for each follower robot Rj as

J(xj
j(t + ∆t)) = max

k
‖xj

j(t + ∆t) − xj
k(t)‖,

which makes each robot try to decrease the distance to the

farthest robot that it senses. Another possible approach could

be to force the robots to keep their distances with the robots

in their subgroups as close to a desired distance as possible.

Let us denote the desired distance as d0 (d0 ≤ dm). Then we

can define a suitable cost function for each follower robot Rj ,

j = 1, . . . , N − 1, as

J(xj
j(t + ∆t)) =

M
∑

k=1

(

‖xj
j(t + ∆t) − xj

k(t)‖ − d0

)2

. (4)

Regarding the connectivity of the group we can state the

following theorem.

Theorem 1: Consider a group G of N autonomous mobile

robots which are connected at t = 0 as defined in Definition 2.

If the robots in the group move according to the Local Steering

Strategy defined above, the group preserves its connectivity for

t > 0.

Proof: Let Ra and Rb be any two robots within their

mutual sensing range, that is, Ra ∈ Sb and Rb ∈ Sa at time

t. Let Ma and Mb be the number of robots in Sa and Sb,

respectively. From (3), we have

2‖xa
a(t + ∆t)‖ + max

k
‖xa

k(t)‖ ≤ dm , k = 1, . . . ,Ma (5)

and

2‖xb
b(t + ∆t)‖ + max

l
‖xb

l (t)‖ ≤ dm , l = 1, . . . ,Mb. (6)

Noting that maxk ‖x
a
k(t)‖ ≥ ‖xa

b (t)‖, maxl ‖x
b
l (t)‖ ≥

‖xb
a(t)‖, and ‖xa

b (t)‖ = ‖xb
a(t)‖, it follows from (5) and (6),

‖xa
a(t + ∆t)‖ + ‖xb

b(t + ∆t)‖ + ‖xa
b (t)‖ ≤ dm. (7)

Further, by triangular inequality, we get

‖xa
a(t + ∆t) − (xa

b (t) + xb
b(t + ∆t))‖ ≤ dm. (8)

Note that the term xa
b (t)+xb

b(t+∆t) is the position of Rb at

time t+∆t as expressed in the local coordinate frame attached

to Ra at time t. Therefore, (8) shows that the distance between

the robots Raand Rb will not be larger than dm. This holds

for any robots Ra and Rb providing Ra ∈ Sb and Rb ∈ Sa.

Hence, any two robots sensing each other at time t will still

be linked when they moved to their locations at t+∆t; that is,

they will stay connected. Since group connectivity is formed

through those robots which sense each other, and the group is

connected at t = 0, it will also be connected for t > 0.

Remark 1: As long as the robots move according to the

restriction stated in Theorem 1, each subgroup Si will keep

the robots that are initially in Si. So, the number of robots in

Si will not decrease; nevertheless, it may grow as new robots

appear in the sensing range of Ri and hence, become a member

of Si.

IV. SOLUTION TO A POSSIBLE DEADLOCK PROBLEM

The upper bound for the motion given in (3) may cause,

in a very special case, all the robots in the group go into a

deadlock. An example of such a case can occur if the initial

distances between all robots are dm exactly, which is in fact

a pathological case. Note that Theorem 1 is still valid in this

case, i.e. connectivity is preserved; nevertheless, the robots

cannot move.

Considering the magnitude constraint given in (3); if one of

the robots in Sj is at a point that is as far as dm to Rj , then

the robot Rj is not allowed to move at that sampling instant.

Note that although Rj stays stationary, the other robots in Sj

keeps moving and their movements possibly resolves the lock

on the movement of Rj . But the deadlock case occurs if all

the robots in the group are as distant to one another as at least

dm. To avoid such a deadlock, we will relax the magnitude

constraint in (3) for the robots that are at the corners of the

subgroups.

Definition 4: The corner robots are the robots which are

in the set spanning the convex hull of all the robots in the

group.

Fig. 3 depicts an example of a deadlock situation in R
2,

where all the distances indicated by dotted lines are as large

as dm. In Fig. 3, the robots R1, R2, R4, R5 and R7 are the

corner robots. The movement constraint given in (3) is too

restrictive for the corner robots, as the directions obtained by

the minimization of the cost function given by (4) in fact push

them towards the other robots in their subgroups. As it is seen,

the displacements of the corner robots will not be so as to

break up the connectivity; moreover, they will get even closer

to the other members of the group. Hence, it is necessary for

a robot to determine whether it is a corner robot or not. If so,
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Fig. 3. An example of the deadlock situation in the local coordinate frame
of R4 in R

2

it will omit the constraint in (3) as long as it is at the corner

of the subgroup.

Whether a robot is at the corner of the subgroup can be

determined most easily in polar coordinates. If the working

space is R
2, location of each robot in Sj , i.e. xj

k(t), is

described by the pair (rj
k, θj

k), k = 1, . . . ,M , where rj
k and θj

k

are the distance from the origin and the angle of the kth-robot

in Sj , respectively, in the local coordinate frame of Rj . As an

example, Fig. 3 includes the local polar coordinate frame of

R4 where the locations of the robots sensed by R4, namely

R3, R2 and R5, are indicated by the distances r4
1 , r4

2 , r4
3 , and

the angles θ4
1 , θ4

2 , θ4
3 , respectively. In R

3, xj
k(t) is given by the

triple (rj
k, φj

k, θj
k), where rj

k is the distance from the origin,

φj
k is the azimuth angle and θj

k is the zenith angle. For both

R
2 and R

3, the condition for a robot Rj to be a corner robot

is

max
k

θj
k(t) − min

k
θj

k(t) < 180◦ − ∆θ , k = 1, . . . ,M (9)

where ∆θ > 0 is the maximum angular measurement error.

Note that if there is only one robot in Sj and rj
1 = dm,

a small possibility is that θj
1 = 180◦ initially. But this does

not give rise to a difficulty since the local coordinate frame of

Rj could be rotated in such a case so that θj
1 < 180◦. More

generally, before checking the condition in (9), a rotation of

the local coordinate frame may be applied if necessary so that

θj
1 = 0◦ is satisfied always. Also note that if the position

measurements are available in Cartesian coordinates, they can

always be transformed to polar coordinates easily. We can

now revise the constraint in the second condition of the Local

Steering Strategy, such that; for both RN and the follower

robots Rj , the movement is subject to

‖xi
i(t + ∆t)‖ ≤ 1

2 (dm − maxk ri
k(t)),

if (maxk θi
k(t) − mink θi

k(t)) ≥ 180◦ − ∆θ
(10)

Next, we will propose an easily computable method for the

autonomous motion of each robot.

V. SUB-OPTIMAL SOLUTION TO LOCAL STEERING

PROBLEM

The robots in this study are supposed to be quite simple and

limited devices especially from computational point of view.

Our purpose is to provide a decentralized control methodology

which can be applied to such simple robots yet leading to a

satisfactorily good group navigation. Below, we propose an

iterative method to reduce the computational burden in the

implementation of the Local Steering Strategy.

The minimum points of the cost function given in (4) are

the locations where each follower robot Rj aims to reach at

each sampling time. The minimization of (4) requires higher

computation power as the number of the robots in Sj increases.

When there is only one robot, say Rm, in a subgroup Sj ,

the solution is a circle in R
2 or a sphere in R

3. In this case,

the solution set has infinite number of points which minimize

J , but the robot Rj selects the nearest point in the solution set.

This leads to the movement of Rj in the line which connects

Rj to Rm. The movement direction is either towards Rm if

the distance between Rj and Rm is larger than d0, or away

from Rm if the distance is smaller than d0. Obviously, no

movement is required if Rj is already lying on an optimal

point at that time.

When there are only two robots, say Rm and Rn, in Sj ,

one may consider different cases as far as the number of the

optimal points is concerned. If the distance between Rm and

Rn are larger than or equal to 2 d0, the optimal point is unique

both in R
2 and R

3, and it is at the center of the line segment

which connects Rm and Rn. Otherwise, in R
2, there are two

optimal points which lie symmetrically at each side of the line

connecting Rm and Rn. The robot Rj selects the nearest point

as the local target. In R
3, number of the optimal points are

infinite and they lie in a circle whose center is the center of

the line segment connecting Rm to Rn. This line segment is

also normal to the circle of solution points. Again, the robot

Rj aims to the point on this circle which is nearest to itself.

As it is seen, the computation task is relatively easy when

only one or two robots are sensed by each follower robot

at a time. However, whenever three or more robots are in a

subgroup Sj , the minimization of J given by (4) is relatively

more difficult. At the extremum points, we have

∂J

∂xj
j

=

M
∑

k=1

∂

∂xj
j

(

‖xj
j(t + ∆t) − xj

k(t)‖ − d0

)2

= 0 (11)

which results in a nonlinear set of equations. The solution

of the system in (11) may not be unique. After solving this

system, the solution points must then be tested for being

minimum. If more than one minimum are present, we find

the global minimum by evaluating the cost function given in

(4) at these points.

It should be noted that, the optimal points are computed for

each follower robot Rj at every sampling time. The location

of the optimal points depends on the positions of the robots

in the subgroup Sj . Since the sensed robots in Sj also move

autonomously, the location of the computed optimal points
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will change at each time. This change will very likely happen

before they are reached by Rj . Hence, the solution will provide

only a direction to the optimal points, because the solution will

change before Rj gets to that location.

This fact gives us the chance to decrease the computational

burden in the local steering strategy. Rather than solving for

the minimum points of the cost function, each robot Rj can

move in the direction of negative gradient of the cost function,

evaluated at the position of Rj for each time. That is,

xj
j(t+∆t) = xj

j(t)−γ
∂J(xj

j(t + ∆t))

∂xj
j(t + ∆t)

∣

∣

∣

∣

∣

x
j

j
(t+∆t)=x

j

j
(t)

(12)

where γ > 0 is a positive gain, and xj
j is the position vector

of Rj in its local coordinates. From (4) it follows that

∂J(xj
j(t + ∆t))

∂xj
j(t + ∆t)

= 2

M
∑

k=1

(

‖xj
j(t + ∆t) − xj

k(t)‖ − d0

)

×
xj

j(t + ∆t) − xj
k(t)

‖xj
j(t + ∆t) − xj

k(t)‖
. (13)

Further, since xj
j(t) = 0, from (12) and (13) we obtain

xj
j(t + ∆t) = 2γ

M
∑

k=1

(

‖xj
k(t)‖ − d0

) xj
k(t)

‖xj
k(t)‖

. (14)

The gain γ in (14) is adjusted to assure the constraint given

by (10). The application of (14) is much simpler than solving

the system in (11). It gives the direction of the next movement

and the movement in this direction is realized only if it satisfies

the inequality in (10). In the next section, we will test the

proposed methodology with the local steering of robots in the

direction of negative gradient, as given in (12).

VI. SIMULATION RESULTS

We verify the theoretical results of the previous sections

by computer simulations. The simulations are performed in

MATLAB and the working space is a section of xy-plane in

R
2. The sensor range (dmax) is 13 units, and desired distance

(d0) is 8.5 units. The bounds on the measurement errors

are ∆θ = 12◦ for angle and ∆r = 0.01dmax for distance

measurement. The following scenario is applied: A group of

32 robots start navigation under the Local Steering Strategy.

The local steering is achieved by the use of (14) with the gain

γ = 0.07. Total simulation length is 4633 iterations.

In Fig. 4, first part of the simulation is seen. The initial

positions are displayed in gray. Initially, we have a group

of scattered but connected robots. As soon as the simulation

starts, the Local Steering Strategy forces each robot to form a

more compact group and rapidly increases the group connec-

tivity. The remaining part of the simulation is seen in Fig. 5.

The trajectory of the leader is seen as dashed lines in these

figures. The sharp turns in the trajectory of the leader and the

reflections from the walls are important, as they perturbate

the shape of the group. However, the group preserves the

connectivity throughout the navigation.

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

x

y

 

 

leader robot

follower robots

Fig. 4. Navigation of 32 robots (the grayed markers show initial positions)

Fig. 6 displays the connectivity of the group during the

navigation. Note that for the case of 32 robots, the maximum

possible number of links in the group is 32 ·(32−1)/2 = 496.

Initially, the group starts navigation with a connectivity formed

of 167 links. The number of links increases quickly as the

navigation continues. After the 130th-iteration, the number

of total links in the group rises over 400. At the end of the

simulation, there are 433 total links in the group. It is clearly

seen that the connectivity is both preserved and increased

during the navigation with the proposed scheme.

VII. CONCLUSIONS

The methodology presented in [16] which guarantees the

connectivity of mobile robot groups has been extended in

this study. The limited-range sensor models are assumed to

have angular and longitudinal position measurement errors, in

order to be more realistic. These measurement errors were

included as extra restrictions on both angle and distance

measurements. Also, a solution to some pathological cases in

which a deadlock situation might occur has been proposed.

The fact that no communication or hierarchy among the

robots is required allows new members to be accepted to the

group very easily. Similarly, the departure of some members

from the group does not cause any problems for the rest of the

group as long as they do not break the overall connectivity. The

simulations have verified the success of the methodology. The

groups have not only preserved but also increased connectivity

during navigation.
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Fig. 5. Navigation of 32 robots (continued)
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Fig. 6. Connectivity of the group of 32 robots
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