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Abstract

In every reflectance-based application like broadband matching, circuit modeling, etc., a nonlinear equation following from
energy conservation, the Feldtkeller equation, must be solved, in order to obtain real networks. In the literature, however,
there is no analytic solution available but only numerical solutions. Consequently, the resulting error depends on the accuracy
of the numerical tools. In this paper, an analytic solution is proposed, which is based on the modified ABCD-parameters of a
lossless reciprocal two-port network. An algorithm is presented and examples are included to illustrate the implementation
of the analytical method.
� 2008 Elsevier GmbH. All rights reserved.
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1. Introduction

A significant and practical simplification of the charac-
terization of lossless two-port networks was achieved by
Belevitch showed that the scattering coefficients can be ex-
pressed using only three polynomials {g, h and f } and a
unimodular constant {� = ±1} [1]. These polynomials are
related by gg∗ =hh∗ + ff∗, an equation known as Feldtkeller
equation (see also Eq. (4) below), where “*” denotes para-
conjugation (sometimes also termed Hurwitz conjugation).
In every passive lossless two-port network design

approach based on scattering coefficients expressed in
Belevitch form, the Feldtkeller equation must be satisfied.
For example, in the design process of a broadband matching
network based on the simplified real frequency technique
[2], the polynomial f is constructed from the transmis-
sion zeros, h is selected as optimization parameter and g,
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eventually, is formed by using the left half-plane (LHP)
roots of gg∗. Also in reflectance-based modeling approaches
[3–7], the Feldtkeller equation is used to obtain g from LHP
roots.
In all these techniques, a numerical root-search algorithm

is necessary. So the accuracy of the synthesized polynomial
g depends on the accuracy of the search algorithm. In litera-
ture, there is no analytic solution of the Feldtkeller equation.
In this paper, an analytic method based on modified ABCD-
parameters of the passive lossless two-port is presented to
solve the equation.

2. Formulation of the problem

Let us first briefly describe ABCD- and S-parameters of a
two-port network. The ABCD-matrix is defined in terms of
the total voltages Vi and currents Ii at port i , for a two-port
network like the one depicted in Fig. 1 [8]:[
V1
I1

]
=

[
A B
C D

] [
V2
I2

]
. (1)

http://www.elsevier.de/aeue
mailto:msengul@khas.edu.tr


M. Sengül / Int. J. Electron. Commun. (AEÜ) 63 (2009) 632–637 633

Fig. 1. A two-port network with ABCD-matrix.

Fig. 2. A two-port network with scattering matrix.

If the two-port includes only lumped elements, the ele-
ments of the ABCD-matrix are rational functions in the com-
plex frequency p = � + j�:

ABCD =
[
A(p) B(p)
C(p) D(p)

]
. (2)

The scattering parameters of a lossless two-port (c.f.,
Fig. 2) consisting of lumped elements only can be described
by [9]

S(p) =
[
S11(p) S12(p)
S21(p) S22(p)

]
= 1

g(p)

[
h(p) � f (−p)
f (p) −�h(−p)

]
.

(3)

Here � = f (−p)/ f (p) is a constant. If the two-port is re-
ciprocal, the polynomial f (p) must be either even or odd,
so that � = +1 if f (p) is even and � = −1 if f (p) is odd.
The functions f (p), g(p) and h(p) are real polynomials
with coefficients fr , gr and hr for r�0. Hence, if f (p) is
even or odd, all odd or even coefficients fr vanish, respec-
tively. The degrees of the three polynomials m f , mg , and
mh meet the requirement mh �mg and m f �mg [9]. The
difference mg −m f defines the number of transmission ze-
ros at infinity. The degree mg of the polynomial g(p) is re-
ferred to as the degree of the two-port; mathematically g(p)
is a strictly Hurwitz polynomial. The losslessness of the
two-port leads to an important additional condition, which
links the functions f (p), g(p) and h(p): the Feldtkeller
equation:

g(p)g(−p) = h(p)h(−p) + f (p) f (−p). (4)

In every reflectance-based application, Eq. (4) must
be solved in order to obtain real networks [2–4]. Hence,
we can distinguish two cases. Case 1: If f (p) and h(p)

are known, e.g., f is constructed from the transmission
zeros of the two-port and h is selected as a free opti-
mization parameter defined by the designer, g(p) has to
be constructed on the basis of Eq. (4). Case 2: If f (p)
and g(p) are known, h(p) has to be found. In the liter-
ature, only numerical approaches are available for case
1 [2–4]; for case 2, not even numerical solutions are
found.
In this paper, we derive analytic solutions for both cases.

The solution strategy is explained in the next section. Later
on, an algorithm is presented and applied to selected ex-
amples to illustrate the implementation of the proposed
method.

3. Analytic solution

In order to construct either g(p) or h(p) (Cases 1 or 2,
respectively), Eq. (4) is converted into a set of nonlinear
equations in terms of the S- and ABCD-parameters, which
are subsequently solved.
Let us start by noting that the ABCD-parameters can be

expressed by S-parameters and vice versa, as described in
many textbooks (e.g., [8]). In detail, we find

[
S11 S12
S21 S22

]
= 1

A + B + C + D

·
[
A + B − C − D 2(AD − BC)

2 −A + B − C + D

]
(5)

and[
A B
C D

]
= 1

2S21
·
[
(1 + S11)(1 − S22) + S12S21 (1 + S11)(1 + S22) − S12S21
(1 − S11)(1 − S22) − S12S21 (1 − S11)(1 + S22) − S12S21

]
. (6)

Substituting Eq. (3) into Eq. (6), the ABCD-parameters
can be expressed in terms of the polynomials f , g,
and h:

A(p) = 1

2

g(p)g(p) + h(p)g(p) + �h(−p)g(p)

g(p) f (p)

+ 1

2

�h(p)h(−p) + � f (p) f (−p)

g(p) f (p)
, (7a)

B(p) = 1

2

g(p)g(p) + h(p)g(p) − �h(−p)g(p)

g(p) f (p)

+ 1

2

−�h(p)h(−p) − � f (p) f (−p)

g(p) f (p)
, (7b)

C(p) = 1

2

g(p)g(p) − h(p)g(p) + �h(−p)g(p)

g(p) f (p)

+ 1

2

−�h(p)h(−p) − � f (p) f (−p)

g(p) f (p)
, (7c)
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Table 1. Definition of indices i and j in Eq. (12) for all possible cases

� = +1 � = +1 � = −1 � = −1
mg even mg odd mg even mg odd

i= 0, 2, . . . ,mg 0, 2, . . . ,mg − 1 1, 3, . . . ,mg − 1 1, 3, . . . ,mg
j= 1, 3, . . . ,mg − 1 1, 3, . . . ,mg 0, 2, . . . ,mg 0, 2, . . . ,mg − 1

D(p) = 1

2

g(p)g(p) − h(p)g(p) − �h(−p)g(p)

g(p) f (p)

+ 1

2

�h(p)h(−p) + � f (p) f (−p)

g(p) f (p)
. (7d)

Substituting Eq. (4) into Eq. (7), we arrive at the following
equations:

A(p) = 1

2

g(p) + h(p) + �(h(−p) + g(−p))

f (p)
, (8a)

B(p) = 1

2

g(p) + h(p) − �(h(−p) + g(−p))

f (p)
, (8b)

C(p) = 1

2

g(p) − h(p) + �(h(−p) − g(−p))

f (p)
, (8c)

D(p) = 1

2

g(p) − h(p) − �(h(−p) − g(−p))

f (p)
. (8d)

At this point, if ABCD-matrix is multiplied by f (p)/2,
a modified matrix, called ABCDm-matrix with polynomial
elements, is obtained,

ABCDm = f (p)

2
ABCD =

[
Am(p) Bm(p)

Cm(p) Dm(p)

]
. (9)

Let the qth coefficients of Am(p), Bm(p), Cm(p) and
Dm(p) be designated as aq , bq , cq and dq , and let the de-
grees of the four polynomials be denoted by na , nb, nc and
nd , so that, for example,

Am(p) = a0 + a1 p + a2 p
2 + a3 p

3 + · · · + ana p
na (10)

and so on.
On the other hand, from Eqs. (8) and (9) and keeping

in mind that � = ±1 is a unimodular constant, it can be
concluded that if � = +1, the polynomials Am and Dm are
even, while Bm and Cm are odd. In the opposite case, �=−1,
Am and Dm are odd, while Bm and Cm are even. Also the
following relations can be written from Eqs. (8) and (9):

g(p) = Am(p) + Bm(p) + Cm(p) + Dm(p) (11a)

and

h(p) = Am(p) + Bm(p) − Cm(p) − Dm(p). (11b)

Since the polynomials Am , Bm ,Cm and Dm are either even
or odd, the coefficients of g(p) and h(p) can be expressed

by the coefficients of Am(p), Bm(p), Cm(p), Dm(p)

gi = ai + di , (12a)

g j = b j + c j (12b)

and

hi = ai − di , (12c)

h j = b j − c j , (12d)

with the indices i and j as given in Table 1.
Eq. (12) defines the first part of the desired set of equa-

tions.
Now let us obtain the remaining equations. If g and h as

given by Eq. (11) are substituted into Eq. (4), we arrive at

Am(p)Dm(p) − Bm(p)Cm(p) = f (p) f (−p)

4
. (13)

Eq. (13) can be converted into corresponding equations
expressed by the coefficients of Am , Bm , Cm and Dm (see
Section 2) and arranged according to the following cases:

• if f (p) is an even polynomial and mg is even,

∑
i=0,2,. . .,mg

j=0,2,. . .,mg
i+ j=k

fi f j
4

=
∑

i=0,2,. . .,mg

j=0,2,. . .,mg
i+ j=k

ai d j

−
∑

l=1,3,. . .,mg−1

m=1,3,. . .,mg−1
l+m=k

blcm , (14a)

• if f (p) is an even polynomial and mg is odd,

∑
i=0,2,. . .,mg−1

j=0,2,. . .,mg−1
i+ j=k

fi f j
4

=
∑

i=0,2,. . .,mg−1

j=0,2,. . .,mg−1
i+ j=k

ai d j

−
∑

l=1,3,. . .,mg

m=1,3,. . .,mg
l+m=k

blcm , (14b)
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• if f (p) is an odd polynomial and mg is even,

−
∑

l=1,3,. . .,mg−1

m=1,3,. . .,mg−1
l+m=k

fl fm
4

=
∑

i=1,3,. . .,mg−1

j=1,3,. . .,mg−1
i+ j=k

ai d j

−
∑

l=0,2,. . .,mg

m=0,2,. . .,mg
l+m=k

blcm , (14c)

• if f (p) is an odd polynomial and mg is odd,

−
∑

l=1,3,. . .,mg

m=1,3,. . .,mg
l+m=k

fl fm
4

=
∑

i=1,3,. . .,mg

j=1,3,. . .,mg
i+ j=k

ai d j

−
∑

l=0,2,. . .,mg−1

m=0,2,. . .,mg−1
l+m=k

blcm , (14d)

where k = 0, 2, . . . , 2mg . Eq. (14) completes the set of non-
linear equations.
The solution follows from a sequence of two steps. First,

the coefficients of Am , Bm , Cm and Dm are derived for a
given polynomial f (p), according to Eq. (14). The polyno-
mials g(p) or h(p) can then be constructed on the basis of
Eq. (12). For case 1 [ f (p) and h(p) are given], a unique
Hurwitian solution for g(p) is reached in the following man-
ner: Since the equation set is nonlinear, there will be many
solutions, so many g(p). But either only one solution will be
a Hurwitz polynomial or all the solutions are the same Hur-
witz polynomial. Also we know that g(p) must be a Hurwitz
polynomial. As a result, the acceptable solution for g(p) is
always unique. For case 2 [ f (p) and g(p) are given], all
possible solutions for h(p) are found. In case 2, there may
be more than one solution; each solution corresponds to dif-
ferent networks with the same polynomials f (p) and g(p).
So far, we assumed that the two-port consisted of lumped

elements only. If the two-port contains only distributed-
elements instead, the formulation remains valid still. In this
case, the complex frequency p has to be replaced by the
so-called Richards variable �, where � = � + j� is associ-
ated with the equal-length transmission lines or the so-called
commensurate transmission lines [10].
Fig. 3 summarizes the algorithm for the construction of

an analytic solution of the Feldtkeller equation.
After synthesis, normalized element values are obtained.

Actual values can be calculated by de-normalization.
In this case, they are given by actual capacitance =
normalized capacitance/2� fNRN, actual inductance =
normalized inductance. RN/2� fN, actual impedance =
normalized impedance. RN, where fN and RN are normal-
ization frequency and resistance, respectively.

Fig. 3. Flowchart of the algorithm to solve Eqs. (12) and (14).

4. Examples

In this section, two examples are presented to illustrate
the implementation of the proposed method.

4.1. Example for case 1

Let the given polynomials be f (p) = 6p and h(p) =
120p4 + 36p3 + 29p2 − 4p + 1. In this case, a unique
polynomial g(p) must be determined. Since f (p) is odd,
� = −1. Therefore, Am(p) and Dm(p) are odd, and Bm(p)
and Cm(p) are even:

ABCDm =
[
Am(p) Bm(p)

Cm(p) Dm(p)

]

=
[

a3 p3 + a1 p b4 p4 + b2 p2 + b0
c4 p4 + c2 p2 + c0 d3 p3 + d1 p

]
.

From Eqs. (12) and (14) follows that h4 = 120= b4 − c4,
h3 = 36 = a3 − d3, h2 = 29 = b2 − c2, h1 = −4 = a1 − d1,
h0 =1=b0 −c0, −b4c4 =0, a3d3 −b4c2 −b2c4 =0, a1d3 +
a3d1−b2c2 −b4c0 −b0c4 =0, a1d1−b2c0 −b0c2 =−9 and
−b0c0=0. After solving this set of equations, eighth possible
formulations for the ABCDm-parameters, are obtained:

• Solution 1

ABCDm

=
[−3.05135p3−1.01777p −2.21354p2

120p4+55.2135p2+1 87.0514p3+11.0178p

]
.

• Solution 2

ABCDm

=
[
87.0514p3+11.0178p −2.21354p2

120p4+55.2135p2+1−3.05135p3−1.01777p

]
.
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Fig. 4. Obtained network, L1 = 5, L2 = 2, C1 = 4, C2 = 3, R = 1,
(normalized values).

• Solution 3

ABCDm

=
[
54.3081p3+0.465422p 13.4376p2

120p4+39.5624p2 + 1 29.6919p3+9.53458p

]
.

• Solution 4

ABCDm

=
[
29.6919p3+9.53458p 13.4376p2

120p4+39.5624p2+1 54.3081p3+0.465422p

]
.

• Solution 5

ABCDm

=
[−3.05135p3−1.01777p 120p4+55.2135p2+1

−2.21354p2 87.0514p3+11.0178p

]
.

• Solution 6

ABCDm

=
[
87.0514p3+11.0178p 120p4+55.2135p2+1

−2.21354p2 −3.05135p3−1.01777p

]
.

• Solution 7

ABCDm

=
[
54.3081p3+0.465422p 120p4+39.5624p2+1

13.4376p2 29.6919p3+9.53458p

]
.

• Solution 8

ABCDm

=
[
29.6919p3+9.53458p 120p4+39.5624p2+1

13.4376p2 54.3081p3+0.465422p

]
.

These ABCDm-matrices are substituted in Eq. (11a), lead-
ing to the unique Hurwitian solution for the polynomial g(p),
which satisfies Eq. (4): g(p)=120p4+84p3+53p2+10p+
1.
After synthesizing S11(p)= h(p)/g(p), the two-port net-

work depicted in Fig. 4 is obtained.
If the same example is solved numerically, the following

computations must be made:
hh∗ + ff∗ = (14400p8 + 5664p6 + 1369p4 + 42p2 + 1)+

(−36p2) = gg∗. Next, the roots of the polynomial gg∗ are
−0.2348± 0.5011i, 0.2348± 0.5011i, −0.1152 ± 0.1181i,

0.1152±0.1181i (here, i is the imaginary unit). By choosing
the LHP roots, we arrive at the same g(p) that resulted from
the analytical solution.

4.2. Example for case 2

Let the given polynomials be f (p)= 1 and g(p)= 3p2 +
2.5p+ 1. In this case, there may be more than one solution,
but all of them must describe different synthesizable net-
works. Since f (p) is even, � = +1. Therefore, Am(p) and
Dm(p) are even and Bm(p) and Cm(p) are odd:

ABCDm=
[
Am(p) Bm(p)

Cm(p) Dm(p)

]
=

[
a2 p2 + a0 b1 p

c1 p d2 p2+d0

]
.

From Eqs. (12) and (14) follows that g2 = 3 = a2 + d2,
g1=2.5=b1+c1, g0=1=a0+d0, a2d2=0, a2d0+a0d2−
b1c1 = 0, a0d0 = 0.25. After solving this set of equations,
four different ABCDm-parameters and h(p) polynomials are
obtained, all of which satisfy Eq. (4):

• Solution 1[
Am(p) Bm(p)

Cm(p) Dm(p)

]
=

[
3p2 + 0.5 p

1.5p 0.5

]
⇒

h(p) = Am(p) + Bm(p) − Cm(p) − Dm(p)

= 3p2 − 0.5p.

• Solution 2[
Am(p) Bm(p)

Cm(p) Dm(p)

]
=

[
3p2 + 0.5 1.5p

p 0.5

]
⇒

h(p) = Am(p) + Bm(p) − Cm(p) − Dm(p)

= 3p2 + 0.5p.

• Solution 3[
Am(p) Bm(p)

Cm(p) Dm(p)

]
=

[
0.5 p

1.5p 3p2 + 0.5

]
⇒

h(p) = Am(p) + Bm(p) − Cm(p) − Dm(p)

= − 3p2 − 0.5p.

• Solution 4[
Am(p) Bm(p)

Cm(p) Dm(p)

]
=

[
0.5 1.5p

p 3p2 + 0.5

]
⇒

h(p) = Am(p) + Bm(p) − Cm(p) − Dm(p)

= − 3p2 + 0.5p.

After synthesizing S11(p)= h(p)/g(p), the two-port net-
works displayed in Fig. 5 are obtained.

Let us try to solve the same example via Eq. (4) numeri-
cally:
gg∗ − ff∗ = (9p4−0.25p2+1)− (1)=hh∗. Next, the roots

of the polynomial hh∗ are 0, 0, 0.1667, −0.1667. At this
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Fig. 5. Four possible networks: (a) L =2, C =3, R=1, (b) L =3,
C = 2, R = 1, (c) C = 3, L = 2, R = 1, (d) C = 2, L = 3, R = 1
(normalized values).

step, there is no root-choice procedure. But it can be seen
that there are three possibilities, since the problem is simple.
Two of them give the networks a and b found analytically.
But the last one is completely different. If this solution and f
are used to obtain the given polynomial g, it is seen that the
same polynomial cannot be obtained. Also, it is impossible
to obtain the other possible solutions, the networks c and d.
So there is no well-defined numerical method to solve the
second case.

5. Conclusions

An analytic procedure was derived to solve the nonlinear
Feldtkeller equation. Two cases were defined. Case 1: If
f (p) and h(p) were known, g(p) had to be constructed on
the basis of the Feldtkeller equation. Case 2: If f (p) and
g(p) were known, h(p) had to be formed. In the literature,
only numerical approaches are available for case 1 with the
accuracy of the used numerical tools; for case 2, not even
numerical solutions are found. We have shown that both
cases can be solved analytically without numerical error.
As a result, an analytic solution method is presented, which
is very simple to implement in a large variety of network
design problems.

Acknowledgment

Fruitful discussions with S. Yarman (Istanbul) and
M. Hein (Ilmenau) are gratefully acknowledged.

References

[1] Belevitch V. Classical network theory. San Francisco, CA:
Holden Day; 1968.

[2] Yarman BS, Carlin HJ. A simplified real frequency technique
applied to broadband multistage microwave amplifiers. IEEE
Trans Microwave Theory Tech 1982;30:2216–22.

[3] Yarman BS, Sengül M, Kılı nç A. Design of practical
matching networks with lumped elements via modeling. IEEE
Trans Circuits Syst I Reg Papers 2007;54(8):1829–37.

[4] Sengül M, Yarman BS, Volmer C, Hein M. Design of
distributed-element rf filters via reflectance data modeling,
AE Int J Electron Comm, in press, doi:10.1016/j.aeue.2007.
05.009.

[5] Sengül M, Yarman BS. Design of broadband microwave
amplifiers with mixed-elements via reflectance data modeling.
AE Int J Electron Comm 2008;62(2):132–7.

[6] Sengül M. Modeling based real frequency technique. AE Int
J Electron Comm 2008;62(2):77–80.

[7] Sengül M. Design of broadband single matching networks,
AE Int J Electron Comm, in press, doi:10.1016/j.aeue.2007.
11.010.

[8] Pozar DM. Microwave engineering. Addison-Wesley
Publishing Company; 1990.

[9] Aksen A. Design of lossless two-port with mixed, lumped and
distributed elements for broadband matching. Dissertation.
Bochum: Ruhr University; 1994.

[10] Richards PI. Resistor transmission line circuits. Proc IRE
1948; 217–20.
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