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Abstract—We consider distributed estimation of a source in
additive Gaussian noise, observed by sensors that are connected to
a fusion center with unknown orthogonal (parallel) flat Rayleigh
fading channels. We adopt a two-phase approach of i) channel
estimation with training and ii) source estimation given the
channel estimates and transmitted sensor observations, where
the total power is fixed. In the second phase we consider both an
equal power scheduling among sensors and an optimized choice
of powers. We also optimize the percentage of total power that
should be allotted for training. We prove that 50% training is
optimal for equal power scheduling and at least 50 % is needed for
optimized power scheduling. For both equal and optimized cases,
a power penalty of at least 6 dB is incurred compared to the perfect
channel case to get the same mean squared error performance
for the source estimator. However, the diversity order is shown
to be unchanged in the presence of channel estimation error. In
addition, we show that, unlike the perfect channel case, increasing
the number of sensors will lead to an eventual degradation in
performance. We approximate the optimum number of sensors
as a function of the total power and noise statistics. Simulations
corroborate our analytical findings.

Index Terms—Channel estimation, convex optimization, dis-
tributed estimation, estimation diversity, parallel (orthogonal)
multiple access, sensor networks.

I. INTRODUCTION

wireless sensor network (WSN) consists of spatially dis-

A tributed sensors that are capable of monitoring physical
phenomena. Sensors typically have limited processing and com-
munication capability because of their limited battery power. In
most WSNs, a fusion center (FC) that has fewer limitations in
terms of processing and communication receives transmissions
from the sensors over the wireless channels so as to combine the
received signals to make inferences on the observed phenomenon.
Especially over the past few years, research on distributed es-
timation has been evolving very rapidly [1]. Universal decen-
tralized estimators of a source observed in additive noise have

Manuscript received October 19, 2007; revised July 17, 2008. Current version
published November 19, 2008. The associate editor coordinating the review of
this manuscript and approving it for publication was Dr. Danilo P. Mandic. The
work of H. Senol was supported by The Scientific and Technological Research
Council of Turkey (TUBITAK) between February and September 2007. The
work of C. Tepedelenlioglu was supported by the National Science Foundation
under CAREER grant CCR-0133841.

H. Senol is with the Department of Computer Engineering, School of
Engineering, Kadir Has University, Cibali 34083, Istanbul, Turkey (e-mail:
hsenol @khas.edu.tr).

C. Tepedelenlioglu is with the Department of Electrical Engineering, Fulton
School of Engineering, Arizona State University, Tempe, AZ 85287 USA
(e-mail: cihan@asu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2008.2005090

been considered in [2] and [3]. Much of the literature has fo-
cused on finite-rate transmissions of quantized sensor observa-
tions [4]-[10]. The observations of the sensors can be deliv-
ered to the FC by analog or digital transmission methods. Am-
plify-and-forward is one analog option, whereas in digital trans-
mission, observations are quantized, encoded, and transmitted
via digital modulation. The optimality of amplify-and-forward
is described in [11]-[14]. A type-based approach to estimating
the histogram of the sensor observations is considered in [15]
and [16], and the sensitivity of this approach to system nonide-
alities is addressed in [17]. In [14], an amplify-and-forward ap-
proach is employed with an orthogonal multiple-access channel
(MAC) and perfect channel knowledge at the sensor side. In
[14], itis argued that increasing the number of sensors improves
the performance, and the concept of estimation diversity is in-
troduced and shown to be given by the number of sensors.

To the best of our knowledge, there is not much work in the
literature on distributed estimation over unknown fading chan-
nels. In this paper, we assume amplify-and forward transmis-
sion over unknown parallel (orthogonal MAC) fading channels.
We follow a two-phase procedure where, in the first phase, sen-
sors transmit pilots and the FC estimates the fading channels.
In the second phase, sensors transmit amplified noisy observa-
tions of the source, and the FC estimates the source using the
channel estimates. We characterize the effect of channel esti-
mation error (CEE) on mean square error (MSE) performance
for an equal power scheduling scenario that requires no channel
status information at the sensor (CSIS). We also consider the
case of CSIS where the sensors use the estimated channel in-
formation to optimize their transmission power. We show that
when the total power is fixed, increasing the number of sensors
will eventually lead to a degradation in performance, which is
due to the increased CEE. We find an approximate expression
for the optimum number of sensors to achieve minimum MSE
performance. We also characterize the power penalty for not
knowing the channel to be a factor of four (6 dB) or more for
both equal and optimized power strategies.

This paper is organized as follows. Section II gives the system
model. In Sections III and IV, channel estimation and source
estimation are considered, respectively. In Section V, the MSE
performance of the equal power allocation case is analyzed in
the presence of channel estimation errors and compared with the
perfectchannel case. The MSE performance of the optimal power
allocation case is analyzed in Section VI. Numerical results are
discussed in Section VII. Section VIII concludes this paper.

II. SYSTEM MODEL

We assume the WSN has K sensors and the kth sensor ob-
serves an unknown zero-mean complex random source signal
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Fig. 1.

Wireless sensor network with orthogonal MAC scheme.

f with zero mean and variance Jg, corrupted by a zero-mean
additive complex Gaussian noise nj, ~ CA(0,02 ), as shown
in Fig. 1. Since we assume the amplify-forward analog trans-
mission scheme, the kth sensor amplifies its incoming analog
signal § 4+ n;, by a factor of o, and transmits it on the kth flat
fading orthogonal channel to the FC. InFig. 1, g, ~ CN(0,07, )
and v, ~ CN(0,07,) are the flat fading gain and the noise on
the kth channel path, respectively. The observation noise sam-
ples {nk}szl and the channel noise samples {vk}szl are as-
sumed spatially uncorrelated. The amplification factor v, might
or might not depend on the fading coefficient g, depending
on whether channel state information (CSI) is available at the
sensor side. The data sample received at the FC over the kth
channel is given by

Yk = grox (0 +ng) +og, k=1,... K. (1

Based on this receive model, we will estimate the
source signal #. Even though it is possible to estimate
the source signal without knowing the parallel channels
{gk}szl by using the maximum likelihood (ML) estimator
6 = max p(Y1,--.,yx|d), it is rather complex analytically and

computationally. Potentially tractable expectation maximiza-
tion (EM) formulations are possible, but they are not guaranteed
to converge to the true ML solution. Moreover, we would like
to have an analytically tractable formulation to derive the MSE
in closed form and optimize power. Therefore, instead of using
an EM algorithm, we adopt a two-phase strategy to first esti-
mate the parallel channels and then estimate the source signal
given the channel estimates of the first (training) phase and the
received signal of the second (data) phase. Assuming that the
channels remain time-invariant over the course of estimation,
we will use a linear minimum mean squared error (LMMSE)
approach [18] for both phases.

In the first phase, the sensors send training symbols of total
power P, to estimate the parallel channels { gk}szl. In the
second phase, the sensors transmit their amplified data that bear
information about f. The total power in this second phase is
P;ot — Pip- The fusion center uses the received signal in the
second phase and the channel estimates from the first phase to
estimate the source signal . The amplification factor used in the
second phase might or might not be a function of the channel es-
timates, depending on if one is pursuing equal power allocation
(Section V) or optimized power allocation (Section VI).
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III. FADING CHANNEL ESTIMATION

To estimate the parallel fading channels {gk}i{:l in the
training phase, we consider pilot-based channel estimation,
where each sensor sends a pilot symbol to the FC over its own
fading channel. The model for a pilot s transmitted over the
kth channel is

Tk = gkSk + Uk 2)

where x, is the received signal and v, ~ CN(0,02,) is the
noise in the training phase. According to our observation model
in (2), the LMMSE estimate g; of the channel gj, is given as
follows [18]:

~ E{gk Tk} [Qkxi] ol sk
gk = : —T = Tk 3)
By llzk]?] o2, + 02 sk l?

where (-)* denotes the complex conjugate and the channel esti-
mation error variance &} is given as
9 1 |sk|? -t o2 o?
Op =var(gr — gr) = | — + =k Gk
k (9k = 9r) o2 o2 02 + 02 k2

9k Vi vk

Averaging (4) across sensors, we have

1 K 1 o o?
_ 5]3 — Uk 9k 3)
Kg K;05k+a§k|sk|2

It is possible to optimize the pilot symbols by minimizing (5)

with respect to the pilot symbol powers tj, := |sg|?
: 'UI\ gk
t1171-1--1,Ith K Z (J’2 +02 Ty
s.t. Ztk < Pin
k=1
t >0, Vk. 6)

The Lagrangian function of the problem in (6) is obtained as

L(ty,...,tx
(1, ’ K Z + O'2 Tk
K K
o (z - P> Y et
k=1 k=1
With a straightforward application of the following

Karush—Kuhn-Tucker (KKT) conditions [19] for this convex
problem, we arrive at the following solution:

D) K 2 2
a. g,. g
2 Vi vj Vi
s = 2 Pt Y S | = )

> ﬁ j=1"9i gk
, i

Note that optimal power of the pilot symbols will be equal
|sk|? = Pin/K VEk, for equal noise and channel variances
(ogk = o2 and ng = UZ Vk). Substituting (7) in (4), the



SENOL AND TEPEDELENLIOGLU: PERFORMANCE OF DISTRIBUTED ESTIMATION OVER UNKNOWN PARALLEL FADING CHANNELS

channel estimation error variance for the kth channel is ob-
tained as

®

Note that optimal training design requires a priori knowledge of
channel and noise statistics and might not always be available.
We will henceforth assume that the training power is uniformly
allocated among sensors to keep our exposition simple.

IV. SOURCE ESTIMATION

In this section, we describe the estimation of the source signal
6. We choose the LMMSE source estimator given the amplifi-
cation factors {a }+_,, the channel estimates {gx }1_, in (3),
and the received signal 41, .. ., yx in (1). By doing this, we ob-
tain the source estimator f in the presence of CEE. Note that
the LMMSE estimator of # when the channels { g }le are per-
fectly known is given by [18]

Pl )
HPERF( < Z |9k|2|ak|202 + 02,
Z 95O Yk
|gr|*|ak|?os, + o3,

where g := [g1,...,9x]T and (-)T denotes transpose. In what
follows, we will derive the LMMSE estimator of # when we
have only g in (3) and not the perfect CSI. We begin by ex-
pressing the received signal in (1) in terms of the estimated
channel gy

&)

Yk = growt + grokng + (9% — gr)ou (8 + ng) + vg - (10)

-~

=wy,

We will now argue that the first and second terms of wy, in (10)
are orthogonal as follows:

Eto.n,g0103 [(Groene)” (e — Ge)ar(6 + ni))]
{nk grlar} [glt(gk - gk)|ak|2|nk|2]
= Jk (E{gk\gk}[gk] ﬁk) |ak|2‘7:,‘
= 95 (gx — gu)lol?orn, =0 (11)
where in the second equality we used the fact that oy is
a function of g and the third equality follows because
gy = E'gk|_,k[gk] Egin [9x], which is because zj is a
multiple of g as seen from (3).
In order to estimate source signal # at the FC, we need to
rewrite (10) using vectors
y=hi+w (12)
)T h = [giag, .. o]t w o=
. Using (11), it is straightforward to show that

where y = [y1,..
[w17"'7wK]T
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Fig.2. MSE performance comparison of the estimators 6 and fpprr (g) under
equal power allocation.

the covariance matrix C,|4 of w given the channel estimates
g :=1[g1,-..,9x]" is diagonal with its kth diagonal element

|gk| |Oék|20' +|Oék| (00+0nk)6k+011k

(13)
Given the channel estimate vector g, the LMMSE estimate 6 of
the source 6 is given by [18]

Efw,jaey [Jonl’] =

0=E(p46)0y"] (B3 lww’]) v
—1

_ T t—1

—< —+h C’wlgh> h'Cy Ly

A RET

-1
+
( Zngl ?larl?o +|ak|2(%+0m)52+%>

JiIe T
X )
Z < g ?|ar 02, +la|? (05 +02, ) 67 +02,

(14)

The conditional (on the channel estimates) MSE, which we will
henceforth refer to simply as the MSE, is given by

-1
D= ( +h! Cw|gh>

K
_( kz|‘7k|2|ak|2

-1

|G| evr|
2 Flan?(0f+02,) o742,
(15)

where ()T denotes conjugate transpose.

A natural alternative to (14) is obtained by substituting the
channel estimates g into (9), which is the LMMSE estimator
when the CSI is perfect. We note that the proposed estimator
in (14) is different from this approach. In other words, 6 #
Oprrr(g). Since both of these estimators are linear, and the
proposed estimator achieves the minimum MSE among linear
estimators, it is immediate that the proposed estimator g outper-
forms fpgRE (g) in the mean-squared sense. This result is also
confirmed in Fig. 2 in Section VIIL.
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We have seen that our model allows for nonidentical channel
and noise statistics. However, following [14] to simplify the ex-
position, we will henceforth assume that the measurement noise
ng, the channel noise vy, and the channels g are independent
identically distributed (i.i.d.). For convenience and future refer-
ence, we introduce the following parameters:

Observation SNR

v :=og/on
Data transmission power used by kth sensor

Py, = lag? (0f + 07) = |awPog (1 +771)
Total training power

Piyn = K |s|2
Average channel SNR
(= 02/o?
Normalized kth estimated channel power
¢law? ¢lawl?

ﬁk:::oﬂv+n = (2=8)(v+D)
Normalized kth channel power

. Clgrl?
e = 20T

Channel estimation error (CEE) variance
62 = var(gr — gr) [see (4) and (17)]

where U!% is the common variance of the channel estimate for
each k. Itis easy to see that o7 = o2 46, since gr. = gx + (g1 —
Jx), and the LMMSE channel estimate g and the estimation
error g, — gy are orthogonal [18]. From the above parameter
table, the normalized estimated and true channel powers 7, and
7y, are exponentially distributed random variables with common
mean (/(y + 1). Using the variables in the table above, we put
the MSE in the following convenient form:

2
Og

il (02 —-62) Py

D(Ptrn7P17"'7PK): K
" o) e

(16)

and we express the estimation error variance 62 using (4) and
Pin = Kls|? as

2
Kag

2= —2
K‘l‘CPtrn

(I7)
Substituting (17) into (16), it is straightforward to verify that
(16) is a convex function of { P, P, ..., Pk} by taking the
second derivative. For the purposes of optimization of the MSE
in (16) with respect to { Piyn, Pi, ..., Pk}, it suffices to work
with

3 zk: Vi (02 — 6%) Pi
= (i (0F = 82) +¢8%) P+ og

(18)

The above function is a general form of the convex objective
functions considered in the sequel. We will work with special
cases of (18) to obtain MSE expressions for the equal or optimal
power allocation cases, in both the presence and the absence of
CEE. In both cases, the power constraint is given by

K
ZPk+Ptrn:Pt0t-
k=1

19)
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V. EQUAL DATA POWER ALLOCATION

If there is no CSI feedback from the FC, the data transmission
powers can be chosen to be equal, P, = P, = --- = Py . Inthis
section, we focus on this equal data power allocation scenario.
We first begin with the perfect CSI benchmark.

A. Perfect CSI at the FC Only

In what follows, we adapt the best linear unbiased estimator
(BLUE) of # with perfect CSI at the fusion center in [14] to the
LMMSE estimator of €, since this will serve as a benchmark
to the CEE case we derive later. With perfect CSI at the FC,
the variance of the CEE is zero (62 = 0) and the normalized
estimated channel powers are equal to the normalized channel
powers 7, = 7 Vk. Moreover, in this case, we do not have
an optimization problem, because the data transmission powers
are equal P, = Piot/K VE, due to our equal data power allo-
cation consideration in this section. Therefore, by substituting
62 = 0 and 79, = 1y, in (16), the MSE expression for the equal
data transmission power—perfect CSI (EDTP-PCSI) case is ob-
tained as follows:

X 1
L’v{) ) (20)

D) (P K) = o2 (1 +
k=1 M + Piot

For a fixed K, (20) is lower bounded by

2
Ty

tim DO (P, K) = =2
v

Piot—00

1)

To see the asymptotic behavior for large K, note that the sum
in (20) can be written as K ! Zle('ynkl(/(nk + (K/Piot)))-
Since the variance of the kth term is bounded, we can use the
law of large numbers in [20, p. 277] to conclude that the sum in
(20) converges in mean square, and therefore also in probability.
Since (20) is continuous with respect to the sum and we also
have established that the sum converges in probability, we have
[21, Th. C.1]

2

POt —
- : 1 v K
i 3|
2
%6 (22)

T 14 (Proe/(L+ 770

where we also used E[f;] = ¢/(y + 1).

By differentiating or taking the finite difference of (20) with
respect to P,y and K, respectively, it is straightforward to
verify that the MSE is a monotonically decreasing function of
both of these variables in the equal-power perfect CSI case. We
will later see that when the channel is estimated, increasing the
number of sensors will not always improve performance.

1) Outage and Diversity With Perfect CSI: In [14], for the
BLUE estimator, the behavior of the outage variance

PR (Ps) = Pr{ D" (P, K) > Do} (23)

as a function of P, was studied. It was found that
log(Pg]er)(Ptot)) ~ —Klog(P;.), which shows that the
outage exhibits an “estimation diversity” order of K. The
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derivation in [14] relied on the assumption that the number of
sensors K is large.
The diversity order for a fixed K is formally defined as

log (P (Prot)

d=—
logPtot

lim
Pioy—00

(24)

The diversity order quantifies the rate with which the outage
goes to zero with increased total power. In Section V-B-4), we
will show that even when there is channel estimation error, the
diversity order remains the same as the perfect channel case.

B. Estimated CSI at the FC Only

We now consider the case where the FC has the LMMSE
estimates of the channel without feeding back the CSI to the
sensors that transmit with equal power. We call this case equal
data transmission power-estimated CSI (EDTP-ECSI).

1) Optimum Training Power: For the estimation of the
parallel channels, training power P, is allocated, and the
remaining power Pt — P;, is equally shared among the
sensors P, = (Piot — Pirn)/ K Vk. Therefore, substituting §2
in (17) into (18) and setting Py, = (Piot — Pirn)/ K, we get the
following objective function:

. § : ’YﬁkC(Ptot - Ptrn)Ptrn
min - ~ 2
Peen =1 nkC(Ptot - Ptrn)Ptrn + KCPtot + K

st. 0 S Ptrn < Ptot

(25)

which is a one-dimensional constrained optimization problem.
It is clear that if the training power is too small, the resulting un-
reliable channel estimates will increase the MSE of the source
estimates. On the other hand, if the training power P, is too
close to P;.t, then each sensor transmits with a small power
P, = (Piot — Pern)/ K and the FC does not receive much in-
formation about 6 in the training phase. In what follows, we
quantify this optimum value.

Theorem 1: The solution to (25) is P, = Piot/2.

Proof: Please see Appendix 1.

Note that the optimum total training power P, is always
half of the total power, regardless of the number of sensors, the
total power, or the noise statistics. Substituting these optimum
training and data powers Py, and P} into (16) together with
(17), we reach the following MSE expression:

-1

K ~
D k) = 143
(1+cpm)

k=1 Tk + ﬁtot
(26)
which is the imperfect CSI counterpart of the MSE in (20). The

asymptotic value of the MSE as total power goes to infinity is
%

14+ Ky

lim DY (P, K) =

Pyt —00

27)

which is the same as (21). This makes sense because, as P;o; —
00, the fading channel estimation also becomes perfect causing
the MSE to converge to the same value as the perfect channel
case. However, unlike the perfect channel case in (20), the MSE
in (26) is not monotonically decreasing with K. The sum in
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(26) converges to 0 due to the extra factor of K in the denom-
inator. More rigorously, note that the sum is upper bounded
by v¢P2,(4K) '[K! Zszl 7x], and since the term in the
brackets converges in probability due to the law of large num-
bers, the upper bound converges to zero in probability. Using
[21, Th. C.1] and the continuity of D(*Y)( P,;, K') with respect
to the sum, (26) converges to o3 in probability as the number of
sensor goes to infinity

lim D(CSt)(P JK) = 00

K—oo

(28)

Recalling that o is the worst possible variance for g, it is clear
that increasing the number of sensors does not indefinitely im-
prove performance, but rather degrades it after a certain point.
This means that a finite optimum number of sensors minimizing
the MSE exists in this equal power-estimated CSI case.

2) Optimum Number of Sensors: In what follows, we obtain
an approximate value for the optimum number of sensors for the
equal-power case. The optimum number of sensors K* must be
obtained by minimizing the expected value of the MSE since
it is not desirable to have the number of sensors depend on in-
stantaneous channel realizations. Since this expectation is not
tractable, we follow a heuristic approach to find an approximate
value of K* by minimizing a lower bound on the MSE. We note
that the MSE in (26) is convex with respect to the sum. Using
Jensen’s inequality, we obtain

B DO (P, )|

2

= By i) K
R e
> ,fg
e |2 i
= % (29)
e B [ttt
where the last equality is because 7y, . . . , i are i.i.d. To min-

imize with respect to K, we treat it as a continuous parameter
and differentiate (29) with respect to K to get the following con-
dition:

R 2
77% flﬁ m

2
~ 4K
(’71 * 7o (1 + <Pmt>) Kk

Since the expectation above is still intractable, to find an approx-
imation, we treat the denominator as deterministic and carry out
the required expectations. The optimum number of sensors is

then approximated as
CP tot
2(v+1)

where the round(-) operator rounds the result to the nearest
integer. Treating the denominator of (30) as deterministic can

=0.

By (30)

K* =~ round ( (31
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be justified by seeing that the second term is dominant since
the first term is rarely bigger than the second term: P[r; >
(4K*/Pt)(1 + (K [CPot))] = exp(—(2+/5( + 1)),
which is an exponentially decaying function of the sensing
signal-to-noise ratio (SNR) and can easily be shown using the
fact that 777 is exponentially distributed. The expression in (31)
reflects the dependence of K* on the system parameters, as we
elaborate below.

When the total power P or the channel SNR ( are large,
the optimum number of sensors increase. This is because when
Pioy is large, Py = Pyiot/2 will also be large, leading to almost
perfect channel estimates. This is in agreement with the fact that
in the perfect channel case, the optimum number of sensors is
infinite since in this case the performance always improves with
the number of sensors. From (31), we also see that if the sensor
observation SNR + is increased, then it is better to use a smaller
number of sensors. The optimum value of K, therefore, strikes a
balance between averaging more observation noise (quantified
by the sensing SNR ) and increased channel estimation error
variance.

As a final remark on the optimum number of sensors, we note
that even though (31) is an approximation, it is quite an accu-
rate one, as shown in the simulations. Often, the MSE curve is
rather flat over a wide range of number of sensors. This espe-
cially occurs when the total power is large. In these cases, it is
sufficient to find an appropriate number of sensors that will yield
an MSE that is close to the minimum value. Also, in thinking
about the number of sensors to be deployed, one might want to
penalize larger values of K over smaller values due to cost/com-
plexity considerations even if larger K yields smaller MSEs.
Hence (31) is meant only to be a useful starting point in deter-
mining the number of sensors to be deployed.

3) Comparison of Perfect and Imperfect CSI: In order to
compare the MSE performances of the perfect and the imper-
fect CSI cases for a fixed number of sensors K, we first note
that the MSE expressions in (20) and (26) are random variables.
Hence it is appropriate to derive the conditions under which the
distributions of MSEs in (20) and (26) are identical. We will
do this by exploiting the fact that the random variables 7;, and
7, have identical distributions [both are exponential with mean
¢/(~+1)] and allow the perfect CSI case and the imperfect CSI
case to have different total transmit powers % and P{% to
see how much more power one would need in the imperfect CSI
case to get the same performance. The MSE expressions in (20)
and (26) have identical distributions if and only if the determin-
istic terms in the denominator of the sums are equal

K 4K K
(per) (est) <1 + (est)) : (32)
Ptot Ptot CPtot
Equation (32) can be re-expressed as
P(ost) K K
ey = 4 (1 + (est>) =242\ 1+ —%e G
Ptot Ptot Cptot

where the first equality is immediate from (32) and the second is
obtained by expressing the ratio in terms of P°°"). Both equa-
tions in (33) yield the condition for the distribution of MSEs to
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be the same, which also ensures that the expected MSE (aver-
aged over the channel distribution) will be the same. We can in-
terpret the ratio in (33) as a power penalty ratio for obtaining the
same performance between the Perfect and imperfect channel
cases. From (33), we see that P2 /P < 1/4, which is a
penalty of at least 6 dB for having to estimate the channel. The
inequality becomes equal to 6 dB for large total powers

plrer) 1

P(est)

tot

(34
plest)

tot

which is easily seen from (33). Recalling that half of the total
power has to be spared for training, we can conclude that an-
other 3 dB is lost due to the effect of estimation error at the
FC when the total power is large. Instead, if the total power
PP or P is small, the power loss ratio in (33) can be-
come arbitrarily large. This indicates that the power penalty for
not knowing the channel to get the same performance as the per-
fect channel case gets worse when the total power is smaller.
4) Outage and Diversity With Channel Estimation Error: In
what follows, we wish to calculate the outage in the presence
of CEE P(eSt)( PLY) analogous to (23). We have shown that
if the total powers for the perfect CSI case are related to those
of the imperfect CSI case through (32), then the distributions
of D) (PP Y and DO (P k) will be identical.
This means that the corresponding outage expressions must also

be the same. That is to say, P(I)er) P in (23) is equal to

P (PEY) if (32) holds. Since we would like to calculate
the diversity order in the presence of CEE, we define d(***) as

tog (75" (P57))

de .= —  lim
Pt log PGV
log (fp(PPr) ( t((i”)))
= — lim (35)
Pi—se  log PV

where the last equality holds because (32) ensures that
PEOPE™) = P (P, Using (34), as PG — oo,
(est)

so does Pt(opt ") Moreover, we can substitute P,
denominator of (35) using (33) to obtain

. tog (P (PE))

Pt(fte‘)_,oo 1ogPt((§’t r) + log (2 + 2‘ /1 + CR,?:”)
(36)
It is clear that the second term in the denominator has no in-
fluence asymptotically. Recalling the definition of the diver-
sity order for the perfect channel case in (24), we conclude
dt) = (. In other words, the presence of the channel esti-
mation error does not change the diversity order.

While the diversity order gives a good idea about the behavior
of the outage, it does not lead to the best way to compute it. In
fact, the outage can be expressed as

> } (37)

K - 2
P (D) = PriS 2 2 (”—“’ -
Do (P ;Uk-i-KQO v \ Do

in the

d(est) — _
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where ¢ := (4/Piot)(1 4+ (K/(Piot)). Since the upper bound
= kP
k
38
Z <k + K¢ =K Z " G

always holds, we have the following lower bound of outage
probability:

K
(est) 1 ~
PDO (Pmt)zpr{?an<c}

k=1

(39)

where ¢ := (¢/v)((03/Dy) — 1) depends on P, only through
. Keeping in mind that 7 is exponentially distributed with
mean /(v + 1), itis clear that the lower bound to the outage in
(39) can be obtained using the central x? distribution with 2K
degrees of freedom

(K c(v+1) )

1 K . w+1 K-l
Pr ?Zm<c =1—-e Z
(40)

k=1
In the simulations, we will show that this lower bound of outage
probability in (39) is remarkably very tight. This is because the
bound in (38) is very tight since 7, < K¢ with very high
probability for reasonably large values of K.

VI. OPTIMAL DATA POWER ALLOCATION

With CSI feedback from the FC to sensors, each sensor
can adjust its own data transmission power {Pk}kK:1 using
its channel estimate. Recall that in the equal power allocation
strategy, the CSI knowledge is used only for source estimation
at the FC, but in this case, the CSI knowledge is used also by
the sensors to adjust their data transmission powers. We now
consider the perfect CSI case at both the FC and the sensors.
This will be a benchmark for the estimated CSI case later.

A. Perfect CSI at the FC and Sensors

With perfect CSI, variance of the CEE 62 = 0 and the nor-
malized estimated channel powers are equal to the normalized
channel powers 7, = 7 Vk. By substituting > = 0 and
M = Mg in (18), the optimization problem for the optimal data
transmission power-perfect CSI (ODTP-PCSI) case is obtained
as follows:

_ Y1k Pr
= b+ 1

s.t. Zpk < Piot

P.>0, k=12,....K 41)

where the optimization is with respect to the transmit powers
at the sensors. This problem is considered in [14] for the BLUE
source estimator. Adapting to the LMMSE case, the optimum
powers are given by

1
- 1 1
ZLl <Ptot+ 3y —) = m>T @)
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where A := {m|n,, > 7} is the set of active sensors whose data
transmission powers are positive (i.e. P, > 0 or equivalently
N, > T), and the threshold value 7 is given by

2
meA \/777

Piot + Z

7) m

2

(43)

The sensors whose normalized channel powers are below the
threshold level are turned off in the data transmission phase.

B. Estimated CSI at the FC and Sensors

In the optimal data transmission power-estimated CSI
(ODTP-ECSI) case, we assume that parallel channels {gx }1_,
are estimated as described in Section III. The channel estimates
are fed back from the FC to sensors in order to perform the
optimal data power allocation strategy. So, after training, the
remaining power P,z — Piyy is optimally shared among the
sensors. Therefore, substituting §2 in (17) into (18), we get
the objective function of the following convex optimization

problem:
K

i Z VﬁkCPthk
min — —
Py, Pry..., Prc =1 MC Py P + K(Py + (P + K
K
8.t. Ptrn+ZPk§Ptot
k=1
Ptrn 2 0
P.>0, k=12,...,K. (44)

The solution to this problem is given in two parts in the next
theorem.
Theorem 2:
i) The Py that solves (44) is nonzero only when the corre-
sponding 7), is greater than a certain threshold 7

vV lk |+
T+ o p
P* — kT P P, o _ P m + E C trn
k Ve ( ot fe +

me
Z%:B e+ Pfi,, ZGB
1+
741’;‘ Vilk > T @
e+ B
2
(1 + gpm) %3 et
T: b 1 (46)
Ptot - Ptrn + (1 + (Ptrn)leZB ﬁ‘ﬂ+%

ii) Also, the optimum training power satisfies Py, >
P, tot / 2.
Proof: Please see Appendix II.

In what follows, we compare the perfect and imperfect CSI
cases when the transmit powers are optimized. In Section V-B3
for the equal power case, we found the relationship between
P and P2 that would ensure that the MSE in the two
cases would have the same distribution, for a finite number of
sensors and finite total power. In what follows, we will perform
a similar comparison with the assumption that the total power
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is large. More concretely, we want to determine the ratio of the
total powers of the ODTP-PCSI and the ODTP-ECSI cases for
identical distributed MSEs while total power goes to infinity.
Since Pg,, > Piot/2 from (62), when Piot — 00, the optimum
training power P, — 00, which means that channel estimation
error variance goes to zero (62 — 0) as seen from (17). Even-
tually, the normalized estimated channel powers approach the
normalized true channel powers 7, — 7 Vk since channel esti-
mates approach to true channels g, — g Vk. Additionally, with
large total powers, all the sensors become active, | B| — K, for
both perfect and imperfect CSI cases because threshold levels
in (43) and (46) go to zero as the total powers goes to infinity.
Under these conditions, we wish to make the objective functions
for perfect and imperfect channel cases in (41) and (44) equal,
which ensures that the resulting solutions will be the same. The
objective functions in (41) and (44) are equal if and only if

Koy 2y L1
Ptrn CPtrn PIEeSt) - P]Sper)

(47)

where P,Sper) and P,gm) are the powers allocated to the kth
sensor in the perfect and imperfect channel cases, respectively.
Keeping inmind 31, P,gpcr) PP multiplying both sides

of (47) by P,Sper) and summing, we can re-express (47) as
P(PE‘T) 1 1 K P(Por)
Ttot + 4 Z k = 1.
Ptrn K CPtrn P(eSt)
k=1 1%
Multiplying both sides of (48) by P /PP and inverting

both sides of the e?uatlon we have the following expression for
per) est)
the power ratio P, 7/ Pt :

(48)

(per)
(est) P,
t PO K —k___
pen (g (1 5 3o
P(est) Piyn K CP est) (r'<t)
tot to
P(est)

tot

(49)
Recalling P8 — oo together with P — oo, from (42)

and (45), we obtain the limit of the £th summation term in (49)
as follows:

VT
plper) L
k
e >
lim tot _ — =L
(est) —
plest) p! 1
bot | OO W 1—  lim Pirn NG
tot (est) P(est) K
Pto’t“ — 00 T tot 1
VT
k=1
1
1—  lim D
P —o0 Thet
1
= (50)
1—r

where we used 7j, — 7, and 7 is defined as the asymptotic ratio
between the training and the total powers of the ODTP-ECSI
case given as follows:

Ptrn
lim (est) ~
P(est)_)oo Ptot

tot

ri=

(51
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Fig. 3. Average MSE versus number of sensors for the EDTP-ECSI case.

For a given r, substituting (50) and (51) into (49) and taking
the limit, the asymptotic power penalty ratio between the total
powers of perfect and estimated CSI cases that make the MSEs
identical is obtained as

pED 11\
pe e T\ i) T &

It is clear from (52) that the maximum ratio is obtained as

P(Per) 1
lim o - (53)
plest)_, Pt(;‘:f) 1

tot

when r = 1/2 (50% training power). We can thus conclude that
for large total transmit powers, the penalty paid for not knowing
the channel is 6 dB, which is achieved when F%,,, is half the total
power. This is the same result obtained for equal power alloca-
tion scenario in Section V-B3. The only major difference is that
in the equal-power case, the effect of CEE could be analyzed for
any finite total power, whereas the analysis here is asymptotic
in the total power.

VII. NUMERICAL RESULTS

_ Fig. 2 shows the average MSE of f is better than that of
Oprrr(g), as also argued in Section IV. In Fig. 3, we illus-
trate that in the equal data power estimated CSI (EDTP-ECSI)
case there is an optimum number of sensors that minimize the
MSE. We also observe that the number of sensors that mini-
mize the MSE increases as the total power P;. increases. This
is in agreement with our theoretical results in (31). A similar
trend with the number of sensors is observed in Fig. 4 for the
ODTP-ECSI case with a 60% training power ratio. Both Figs. 3
and 4 confirm that the MSE performance in the estimated CSI
case is exhibiting a degradation beyond an optimum number of
sensors. Fig. 5 in which MSE performances of the EDTP-ECSI
and ODTP-ECSI cases are compared for a fixed total power
show that the optimal case outperforms the equal case. More-
over, the sensitivity of the optimal power allocation case to in-
creasing the number of sensors is also less.
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Fig. 4. Average MSE versus number of sensors for the ODTP-ECSI case.
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Fig. 5. MSE performance comparison of the EDTP-ECSI and ODTP-ECSI
cases.

Figs. 6 and 7 show the average MSE for the equal and opti-
mized power cases, respectively. In the curves labeled “Simula-
tion,” average MSE curves are generated by implementing the
LMMSE estimators (3) and (14), where all the random variables
involved in the system model are generated. These are compared
with the MSE expressions obtained by averaging (16) with re-
spect to the channel distribution. The perfect agreement in the
respective curves indicates that the simulations match our MSE
expressions.

In Fig. 8 for the EDTP-ECSI case, the power penalty
ratios on the horizontal axis can be read off when the av-
erage MSEs are equal (the y-axis is one). We observe
that the curve plotted for P = 20 dB (solid curve) is
crossing the horizontal line E[D®V)]/E[D()] = 1 at
about P° /P = 023 < 1/4, but the curves plotted
for higher total powers (P{" = 25,27, and 30 dB) are
crossing in the vicinity of P2 /Pl = 0.25 = 1/4 as
given in (34) for the EDTP-ECSI case. In Fig. 9, the power
penalty ratio P2 /P{Y s seen to be about 0.24 for the
MSE performances of perfect and imperfect channel cases

to be equal with 7 = Py /P = 60% when the sensor
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Fig. 6. Comparison of the theoretical and the simulation results for the EDTP-
ECSI case.
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Fig. 7. Comparison of the theoretical and the simulation results for the ODTP-
ECSI case.

powers are optimized. The curves in Fig. 10 are plotted for
various training power ratios for the ODTP-ECSI case. In
Fig. 10, we observe that the asymptotic ratios of total powers
are roughly P /Pl = 0.25,0.24,0.21, and 0.16 for
r o= Ptm/Pt(s:t) = 0.5,0.6,0.7, and 0.8, respectively, which
is predicted by (52).

In Fig. 11, the simulation results for the EDTP-ECSI case
indicate the accuracy of the optimum number of sensors K*
calculated from (31). It is clear that the optimum number of
sensors increases with an increasing MSE performance, while
accuracy of K* decreases. However, the MSE value at K* is
close to the minimum MSE, as seen from Fig. 11.

The outage probability results are illustrated by the simu-
lations in Fig. 12 and 13 for the EDTP case. Fig. 12 justifies
that the estimation diversity order is K in the EDTP-PCSI case
and remains the same despite channel estimation, as proved
in Section V-B4. Fig. 13 shows that the outage probability
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case.

. plest) (est) 2 2
ODTP CASE: P!/ Pigi! = 0.6, K=10, {=1 dB, =10 dB, o}=1 , o=
3 T T T T T T T t T
— PV _ 2048
---P-2548
VG R ol s Dot Pt wesiesomsg sisssosimsiess | vemsamy PStS()': 27 dB H
' A S R S S Py Pl _ 30 dB
A}

Ratio of the Average MSEs (E[D(Pe"]/ E[D(es!)])

0.5 L
0.05 0.1

0.25 0.3 0.35 0.4 0.45 0.5

0.115 0:2
Ratio of the Total Powers (Pf(‘:te 0 Pt(:"ft))

Fig. 9. Ratio of the average MSEs versus ratio of the total powers for the ODTP
case.

(est)

= ODTP CASE : P, /=30 dB, K=10, (=1 dB, y=10 dB, °§=1’°S=‘

?) 2 ! I : : ' : ' (est) ('e t).

2 : T 1
[m) _PEm )/ Pl(ot )_ 05
o | est, est;

E 1.8 i T 'Pzrn )/ Pt(ot )= 0‘6"
= ' est est]

%; ----‘PErn t)/ Pt(ot t): 0.7
= es esl

S 16 : H L T e s Pim ! Piot = 08|
o

@ 1.4f

1%}

=

8 121

©

[0}

z 1

[0}

£

5 0.8+

k) i ; ; ; :

g 0.05 0.1 045 02 025 03 035 04 045 05

Ratio of the Total Powers (P"¢"/p{®*))
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lower bound obtained by using the x? distribution derived in
Section V-B-4) yields a very tight lower bound.
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VIII. CONCLUSION

This paper studies the effect of fading channel estimation
error on the performance of distributed estimators of a source 6.
A two-phase approach was employed where, in the first phase,
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the fading coefficients are estimated and, in the second phase,
these estimates and the received signal are used to estimate the
source 6. Both equal power and optimized power were used
for power allocation to sensors in the second phase. For the
equal power case, it was found that exactly half of the total
power should be used for training. The power penalty ratio in
(33) to get the same performance as the perfect CSI case can
be arbitrarily large but goes to 6 dB for large total powers.
The diversity order, which quantifies the rate with which the
variance outage goes to zero with the total power, was found
to remain the same as the perfect channel case. However, un-
like the perfect CSI case, for a fixed total power, increasing the
number of sensors eventually degrades the MSE suggesting an
optimum number. We approximated this optimum number sen-
sors, which was shown to increase with the total power P, but
decrease with the sensing SNR . The simulations verified that
the approximation to the optimum number of sensors is accurate
enough to yield MSEs that are close to the minimum.

Similar results were found when optimized power is used for
the second phase. The optimum training power in this setting
was shown to be greater than half the total power. In assessing
the loss in total power due to channel estimation in this op-
timized sensor power setting, we used an asymptotic analysis
where the total transmit power was large. It was found that the
power penalty ratio between perfect and imperfect CSI cases
was about 6 dB.

APPENDIX I
The Lagrangian function of the problem in (25) is given by
Z f}/ﬁkc(Ptot _Ptrn)Ptrn
=1 {f/kC(Ptot _P‘crn)Ptrn"|'I(<P)tot"‘I(2
_/\1(Ptot _Ptrn) _/\2Ptrn

L(Ptrn; /\17 )‘2):_

with the following KKT conditions [19], [22]:

Z

'YnkC Ptot_ZPtrn)(KCPtot‘i'K )

2—1—)\1—)\2(;)0

(1C(Piot — Pirn) Porn+ K (Prot + K2)
(3) 4)
AI(F)tot_F)trn) (3) 0 )‘1 Z 07 Ptrn S Ptot
() 6) Q)
A2Ptrn — 0 /\2 Z 07 Ptrn 2 0. (54)

It is easy to see that P;,,, cannot be equal to zero since Py, = 0
implies A\; = 0 from (54.2), Ao > 0 from (54.6), and A\; — Ay >
0 from (54.1), which are not compatible. Similarly, P, = Piot
implies A\; > 0 and A2 = 0, and we have another contradiction
A1 < 0 from (54.1). Therefore, Py, must satisfy 0 < P, <
Piot, implying A\; = 0 and A, = 0. Inthis case, the sumin (54.1)
must be zero, in other words, P;o; — 2P, = 0. Therefore, the
optimum value of the training power Py, is a unique solution
of the system in (54)

Piot
Pia= 2

(55)

and P} = (Pt — Pf)/ K = Piot /2K Yk, since we consider
equal data power case.
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APPENDIX 11

We now prove Theorem 2. The Lagrangian function is given
by
L(Ptrn Pl,.. PK7)\1,)\2 ;1,1;1,1()

— Z lj/kpk Z fYﬁkCPtrnPk
nkCPttHPk +K<Pk +<Ptrn+K

K
_/\1 <Pt0t_Ptrn_ZPk> _)\QPtrn

k=1

and the following KKT conditions are derived from the La-
grangian function:

K A
-3 YK C((Pe+1) Py, @
k=1 (ﬁkcptrnpk‘i'KCPk-i-CPtrnJ,_K)Q 1 2
Yk ( Pron+K) Py VPRCI

B ({f/kCPtrnPk+KCPk+<Ptrn+K)2

(5)
)\I(Ptot_Ptrn Zpk>—0 )\ >0 Ptrn+zpk<Ptot>

k=1 k=1
(6) ™ ®
)‘ZPtrn—O )‘2207 PtrnZO
9) (10) (11)
ukPk =0 Vk, Mk Z 0 Vk, Pk Z 0 Vk. (56)

We will assume 0 < P;,, < P;st, which means Ay = 0 as seen
from (56.6). From (56.9) and (56.11), active sensors with P >
0 have corresponding Lagrange multipliers p, = 0. We now
want to determine how much optimum data transmission power
has to be allocated for each active sensor. Condition (56.2) can
be rewritten for active sensors (i.e., P > 0 and pu; = 0) as

\/ ”k 1 + cn,n

Tk + P A

1+ <Ptm

P+ P, > 0. (57)

i+ P

Using (57), it follows that for active sensors (P, > 0), we have
Mk > (A1/7)(1 + (K/{Pin)). This means that 7y, if it exceeds
the following threshold:

T =
C trn

the kth sensor will be activated in the data transmission phase.
In (57) and (58), the Lagrange multiplier A; still needs to be
determined. Let the active sensor set be defined as B := {/|j, >
7} for the estimated CSI case. Recalling Ele g Pt = Pt —
Py, we sum both sides of (57) and use the power constraint in

(58)

(19)
1/775 1 + Cpt )
Piot — Pyn + CP““ =4/ )\ .
iep et Ptm 1 eeB e + Pml

(59

Solving for A; in (59) and substituting into (57) and (58), the

optimal data power P} and the threshold level 7 are obtained as
(45) and (46), which establishes the first part of Theorem 2.

For the second part, we first note that from (45) and (46), the

optimum data transmission power per sensor and the threshold

depend on the training power Pi,,. We now want to find the
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optimum training power P, . Bearing inmind Ap = Oand p1, =
0 for £ € B for active sensors, and substituting the denominator

term in (56.2) into (56.1), we get the following equation:

Pttn2 Pt*rn 2 1
TJFT:ZPe +gZPf-

teB LeB

(60)

Accordingly, note that the total optimal training power Py, de-
pends on the power of active sensors ;. Equations (45) and (60)
show that P} and P, depend on each other and the channel
realizations. Since the total training power P;,, must be se-
lected without knowing the channel realizations, we would like
to bound it with a value that is not channel dependent. Toward

this goal, we use Cauchy—Schwartz inequality:

1
ZPZQZ@

LteB

2 2

ZPZ Z% ZPZ

teB teB

(61)

where |B| is the cardinality of the set of active sensors. Substi-
tuting the above lower bound into (60) and using ), 5 Pr =
Pior— P;;,, on the right-hand side, we obtain the following lower
bound on the optimal training power Py, :

Ptot

P:rn Z

(62)

which establishes the second part of Theorem 2.
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