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Performance of Transmit and Receive Antenna Selection in the
Presence of Channel Estimation Errors
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Abstract— This letter considers the effect of channel estima-
tion errors on the performance of space-time coded (STC) sys-
tems with transmit and receive antenna selection over quasi-static
flat fading channels. By performing pairwise error probability
analysis and presenting numerical examples, we show that the
diversity order achieved with perfect channel state information
(CSI) is still achievable with imperfect CSI used both at the
antenna selection and the space-time decoding processes. We note
that our results apply to general STC systems with both transmit
and/or receive antenna selection based on largest received powers
which can be estimated by any channel estimator.

Index Terms— Antenna selection, channel estimation errors,
diversity, multiple antenna, space time coding.

I. INTRODUCTION

ANTENNA selection [1] can be an effective technique
to reduce the cost and complexity of space time coded

(STC) [2] systems. With this technique, only a few of all
transmit and/or receive antennas can be selected and switched
to a reduced number of RF chains. There has been consider-
able research on the performance of STC systems with antenna
selection, mostly considering the selection only at the receiver
[3] or only at the transmitter [4] with the assumption of perfect
channel state information (CSI) available at the receiver.
However, it is more practical to consider both transmit and
receive antenna selection with imperfect CSI. In the literature,
antenna selection with imperfect CSI is addressed by only a
few papers [5], [6], [7] studying specific space-time coding
schemes employing antenna selection usually only at the
receiver or transmitter.

In this letter, we study the performance of general STCs
with transmit and/or receive antenna selection based on the
largest received powers. Specifically, we derive an upper
bound on the pairwise error probability of STC with joint
transmit and receive selection. The derived bound and the
simulation results show that the diversity order of STC systems
with antenna selection is not degraded if erroneous channel
estimates are used at the selection and the decoding processes.

The rest of the letter is organized as follows: Section II
describes the system model. The pairwise error probability
bound for joint transmit and receive selection when the re-
ceiver has imperfect channel estimates is derived in Section III.
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Numerical examples are provided in Section IV followed by
the conclusions in Section V.

II. SYSTEM DESCRIPTION

We consider a STC system having M transmit and N
receive antennas while at each frame only LT transmit and LR

receive antennas are used after selection based on maximum
received powers. We assume that only the receiver has the
estimated channel coefficients and it feeds back only the
indices of the selected LT transmit antennas. The channel
is modeled as a quasi-static flat Rayleigh fading where the
channels for different transmit and receive antenna pairs fade
independently and remain constant over the entire transmitted
frame of symbols.

The received signals yn(k) from the receive antenna n (n =
1, · · · , LR) at time k (k = 1, · · · ,K) can be stacked in LR ×
K matrix Y which can be written as

Y =

√
ρ

LT
HS + W, (1)

where S is the LT × K transmitted space-time codeword
matrix with elements sm(k) (transmitted symbol from antenna
m (m = 1, · · · , LT ) at time k). The channel matrix H
contains the LR×LT fading coefficients, hm,n, and W is the
LR × K noise matrix with noise samples wn(k). hm,n and
wn(k) are i.i.d. complex Gaussian random variables having
zero mean and variance 1/2 per dimension. ρ is the expected
signal to noise ratio (SNR) at each receive antenna.

When CSI is perfectly known at the receiver, the pairwise
error probability (PEP) conditioned on the instantaneous H,
can be written as [8],

P (S → Ŝ|H) ≤ exp

(
− ρ

4LT
‖HB‖2

)
, (2)

where B = S − Ŝ is the codeword difference matrix when Ŝ
is the LT ×K decoded codeword matrix. ‖.‖2 represents the
sum of magnitude squares of all entries of a matrix.

In practice, the channel estimator at the receivers provides
fading coefficient estimates, ĥm,n, which can be modeled as
ĥm,n = hm,n + εm,n, where εm,n is a complex Gaussian
random variable representing the channel estimation error
independent of hm,n, having zero mean and variance σ2

e [9].
ĥm,n is a complex Gaussian random variable with zero mean,
variance σ2 per dimension and dependent on hm,n with the
correlation coefficient, µ = 1√

1+σ2
e

. In general, σ2
e can be

estimated using the SNR, the number of pilots, and the method
of estimation.

In the presence of channel estimation errors, as in [9], when
S is transmitted, the conditional mean of the received signal
(complex Gaussian random variable yn(k)) can be written as
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E{yn(k)|ĥm,n, sm(k)} =
µ√
2σ

√
ρ

LT

LT∑
m=1

ĥm,nsm(k),

and the conditional variance is as follows

V ar{yn(k)|ĥm,n, sm(k)} = 1 + (1 − |µ|2) ρ

LT

LT∑
m=1

|sm(k)|2.

We note that the distance term can be written as

d2(S, Ŝ) =

LR∑
n=1

K∑
k=1

∣∣∣∣∣
LT∑

m=1

ĥm,n√
2σ

sm(k)

∣∣∣∣∣
2

=
1

2σ2
‖ĤB‖2, (3)

where the LR ×LT matrix Ĥ contains the estimated channel
coefficients, ĥm,n. Then, the PEP bound conditioned on Ĥ
can be obtained as,

P (S → Ŝ|Ĥ) ≤ exp

(
− ρ̃

2σ2
‖ĤB‖2

)
, (4)

where we define

ρ̃ ≡
µ2 ρ

LT

4 + 4LT (1 − |µ|2) ρ
LT

, (5)

which approaches ρ at high SNRs (thus high µ). The uncon-
ditional PEP upper bound for any antenna selection scheme
can be obtained by averaging the above conditional PEP using
the statistics of the selected channel coefficients.

III. ANTENNA SELECTION IN THE PRESENCE OF

CHANNEL ESTIMATION ERRORS

In this section, we obtain a bound on the pairwise error
probabilities of space time coded systems with joint transmit
and receive antenna selection over quasi-static flat fading
channels. We first study a simple case in which only one
antenna is selected both at the transmitter (LT = 1) and the
receiver (LR = 1) by finding the largest channel coefficient ĥ
with the largest norm. Then, the size of the matrices S, Ŝ, B
will be 1 × K, and thus, the upper bound on the conditional
PEP can be written as

P (S → Ŝ) ≤
∫

C1
exp

(
− ρ̃1

4

1

2σ2
‖ĥB‖2

)
f(ĥ)dĥ, (6)

where we define ρ̃1 ≡ µ2ρ/
(
1 + (1 − |µ|2)ρ)

and note that
as µ approaches 1, ρ̃1 approaches ρ. The integration is taken
over the 1-dimensional complex space, C1, and f(ĥ) denotes
the probability density function (pdf) of ĥ which is a zero
mean complex Gaussian random variable with variance 2σ2

and it can be written as

f(ĥ) = MN

(
1 − e

− |ĥ|2
2σ2

)(MN−1)
1

2σ2π
e
− |ĥ|2

2σ2 . (7)

Since BB∗ is 1 × 1, we can simply write BB∗ = λ and
‖ĥB‖2 = λ|ĥ|2. Moreover, by using the following result (as
in [8])

g(x) = 1 − e−x
N−1∑
n=0

xn

n!
≤ xN

N !
,

for x > 0, we can write

P (S → Ŝ) ≤ MN

∫
C1

exp

(
− ρ̃1

4
λ
|ĥ|2
2σ2

)
(
−|ĥ|2

2σ2

)(MN−1)
1

2σ2π
e
− |ĥ|2

2σ2 dĥ. (8)

With the change of variable ĥ√
2σ2 = βejθ, and thus, dĥ =√

2σ2βdβdθ, the complex integration can be converted into
double integral,

P (S → Ŝ) ≤ MN

∫ 2π

0

dθ

∫ ∞

0

e−
ρ̃1
4 λβ2

(
β2)(MN−1)

e−β2
√

2σ2

2σ2π
βdβ. (9)

For further simplification, we use v = β2 and dv = 2βdβ,

P (S → Ŝ) ≤ MN√
2σ2

∫ ∞

0

e
−

(
ρ̃1
4 λ+1

)
v
v(MN−1)dv. (10)

Then, after solving the integral, the simplified PEP expression
can be obtained as

P (S → Ŝ) ≤ MN√
2σ2

(MN − 1)!(
ρ̃1
4

λ + 1
)MN

. (11)

In this final PEP expression, we observe that the diversity
advantage of MN (the exponent of ρ̃1 and ρ at high SNRs)
still can be achieved even with the use of single transmit and
single receive antenna, while the antenna selection and the
space time decoding use imperfect channel state information.

We note that the simple derivation above can also be
performed for selecting more than one antenna at the receiver
and the transmitter. For example, similar to [8], when LT

transmit antennas are selected after the selection of a single
receive antenna, the pdf of the selected LT channel coefficients
can be written as

f =
N.M !

(M − LT )!LT !

LT∑
p=1

∫ vp

0
· · ·

∫ vp

0

(
1 − e

−w
2∑

m=0

wm

m!

) (N−1)

1

(π2σ2)LT
e
−w

IRp (v1, · · · , vLT
)

M∏
m=LT +1

dvm, (12)

where w = v1 + v2 + . . . + vM with vi = |ci|2
2σ2 , 1 ≤ i ≤ M

and IRp
(v1, · · · , vLT

) is the indicator function which is 1 if
and only if vp is the minimum of all vi for 1 ≤ i ≤ LT ,
otherwise, IRp

(v1, · · · , vLT
) = 0. The PEP upper bound can

be obtained by averaging conditional PEP in expression (4)
over the above joint pdf. Following the similar steps as in [8],
the PEP bound can be simplified as

P (S → Ŝ) ≤ κ̃

(
1

λ̂MN

) (
ρ̃

4LT

)−MN

, (13)

where κ̃ is a constant which depends on the available and
selected number of antennas, and λ̂ is the minimum of
eigenvalues of the square of the codeword difference matrix,
BB∗. In this final PEP result, we observe that the diversity
order (the exponent of ρ̃) is maintained (still MN ) although
imperfect channel estimates are used at the receiver. When
perfect CSI is available (µ = 1), we note that ρ̃ = ρ, therefore,
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M=3, N=2, perfect CSI
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Fig. 1. PEP plots for STC from [10] with LT = 2, LR = 1, and channel
estimation error variance depends on SNR (variable µ).
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Fig. 2. FER plots of STC based on (5, 7)8 convolutional coding with M =
3, N = 2, LT = 2, LR = 1, (considering both variable and fixed µ).

the effect of having imperfect channel estimates (µ < 1) can
be seen as reduction of SNR. Although not shown due to space
limitations, similar PEP bounds for full rank or rank deficient
space time coded systems employing only transmit [4] or only
receive antenna selection [3] can be obtained.

IV. SIMULATION RESULTS

In this section, the performance of STC systems with joint
transmit and receive antenna selection using imperfect CSI is
illustrated. We note that in the presence of channel estimation
errors the decoding metric should be as described in [9] which
is slightly different than the metric for perfect CSI scenario,
however, we have observed that the performance difference is
insignificant.

The PEP plots of the expression (4) and frame error rate
(FER) plots of STC based on (5, 7)8 convolutional coding
with joint transmit/receive antenna selection LT = 2, LR = 1
are depicted in Figures 1 and 2, respectively. As in practical

receivers, the channel estimation errors in these simulations
are assumed to decrease with increasing SNR (variable µ), i.e.,
σ2

e = 1/(α.ρ), where the constant α depends on the number of
pilots and estimation method. We observe that the simulated
full rank codes can achieve full diversity even when imperfect
CSI (µ < 1) is used. Increasing α decreases error rates and
the performance approaches to that of perfect CSI. FER plots
with fixed correlation µ = 0.995 (σ2

e = 0.01) shows the
performance degradation at high SNRs. When the correlation
µ is larger than 0.9995, the FER is almost the same as the
FER with perfect CSI. When fixed µ is smaller than 0.995,
the degradation becomes significant which suggests putting
some restrictions on the mean square error performance of
channel estimators to be used in these systems. Although not
shown, similar performance curves are also obtained for rank
deficient codes and for only transmit or only receive selection.

V. CONCLUSIONS

In this letter, the effect of imperfect channel estimates on the
performance of STC systems with joint transmit and receive
antenna selection is presented. Only the receiver is assumed
to have the imperfect CSI and the antenna selection is based
on maximum estimated received powers. The pairwise error
probability analysis and the numerical examples have shown
that the diversity order achievable with perfect CSI is not
reduced when imperfect channel estimates are used in antenna
selection and space time decoding. Therefore, we can claim
that STC systems with antenna selection based on received
powers are robust against channel estimation errors.
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