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Abstract— A new method is introduced, to design mixed 
lumped and distributed element networks via modeling the 
data obtained from the driving point input reflectance of a 
lumped-element prototype. A mixed-element Chebyshev filter 
design is presented, to exhibit the utilization of the new 
method. It is expected that the new method will be employed, 
to design wideband communication networks manufactured 
using VLSI technology. 

I. INTRODUCTION 
For many communications engineering applications, 

lumped-element networks are preferred up to X-band due to 
their compact sizes. However, in VLSI manufacturing 
process, interconnections of lumped circuit elements 
introduce metallic roads which may be considered as 
transmission lines. These undesirable connections destroy 
the idealized performance of the lumped-element network 
prototype. In this case, it would be wise, to use these 
connections as part of the design. Thus, designs with mixed 
lumped and distributed elements become inevitable. The 
common practice in designing mixed-element networks is to 
select the circuit topology. In this topology, lumped-element 
interconnections are regarded as idealized transmission 
lines, perhaps with fixed or variable lengths. Then, values of 
the lumped-elements ( iX ) and characteristic impedances 
( iZ ) of the idealized transmission lines are determined by 
means of the optimization of the gain performance of the 
network. Although this approach seems straightforward, it 
presents serious difficulties. First, the optimization is 
heavily nonlinear in terms of iX  and iZ  that may result in 
local minima or may not converge at all. Secondly, there is 
no established process, to initialize the element values of the 
chosen circuit topology. Worst of all the optimum choice of 
the circuit topology which best describes the filter network 
is in question. Fortunately, these problems are overcome 
employing the design technique introduced in this paper. 
The new network design technique includes two major 
phases. In Phase I, lumped-element network prototype is 
constructed employing the well-established network design 

methods. Then, input reflection coefficient of the prototype 
is evaluated point by point over the passband. In Phase II, 
data generated from the input reflection coefficient is 
modeled using the analytic form of the input reflection 
coefficient described in two complex variables, which in 
turn results in the desired lossless network in two kinds of 
elements, namely lumped and distributed elements or so 
called commensurate transmission lines. In practice, 
commensurate transmission lines or equal length lines are 
used to connect lumped elements of the network. 

In the following sections, first the analytic aspects of data 
modeling method in two variables are introduced. Then, the 
modeling algorithm is presented. Finally, a Chebyshev filter 
is built with mixed lumped and distributed elements, to 
exhibit the utilization of the proposed method. It is noted that 
the method introduced in this paper is the extension of the 
modeling technique proposed for one kind of elements [1-3]. 

II. THEORETICAL ASPECTS 
In this paper, the modeling problem is defined as the 

generation of a realizable, two-variable bounded real (BR) 
reflectance function that best fits the given data. Eventually, 
this BR reflectance describes the lossless network in two 
kinds of elements in resistive termination which is called the 
Darlington representation of the input reflection function 
(Fig. 1). 

 
Fig. 1. Darlington representation of the modeled input reflectance function 

),(11 λpS . 

 
Let )()()( iXiRi jSSjS ωωω +=  designate the given 

data obtained form the input reflectance of the lumped-
element network prototype over the angular frequencies iω . 
Let { }2,1,; =lkSkl  designate the scattering parameters of 
the lossless network which consist of two kinds of elements. 
For a mixed lumped and distributed element, reciprocal, 
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lossless two-port, the scattering parameters may be 
expressed in Belevitch form as follows [4-7] 
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where ),(/),( λλµ pfpf −−= . 
In Eq. (1a), ωσ jp +=  is the usual complex 

frequency variable associated with lumped-elements, and 
Ω+Σ= jλ  is the conventional Richards variable 

associated with equal length transmission lines or so called 
commensurate transmission lines ( τλ ptanh= , where τ  is 
the commensurate one-way delay of the distributed 
elements). These three polynomials are related by the 
losslessness equation 

),(),(),(),(),(),( λλλλλλ −−+−−=−− pfpfphphpgpg  (1b). 
The polynomials ),( λph  and ),( λpg  can be divided 

in three parts as 
),()()(),( λλλ phhphph CDL ++= ,  (1c) 

),()()(),( λλλ pggpgpg CDL ++= .  (1d) 
where )( phL  and )( pg L  represents the lumped subsection 
[L], )(λDh  and )(λDg  represents the distributed 
subsection [D], and ),( λphC  and ),( λpgC  are the 
connectivity information of the components. 

As far as the modeling problem is concerned, one has to 
generate the two-variable, realizable, BR scattering 
parameters of the lossless two-port of Fig. 1 in such a way 
that the input reflection coefficient ),(11 λpS  is fit the 
computed data )( ωjS  at each frequency point under 
consideration. This is not an easy task. In the following 
section however, a practical approach is presented, to build 
the models which guarantees the realizibility of the two-
variable scattering parameters specified by Eq. (1). 

III. A PRACTICAL MODELING APPROACH 
Over the angular frequencies ω , let 

))tan(,()()( 11 ωτωωωε jjSjSj −=  be the error function 
defined as the difference between the given data and the 
analytic form of the input reflection coefficient of the 
network which will be constructed in two kinds of elements. 
Obviously, 2)( ωε j  is the function of both )( phL  and 

)(λDh . This functional relation can be expressed as 

)( 11
*2 SF== εεε ; ),(11 DL hhFS =   (2) 

where “*” represents the complex conjugate of a complex 
number. 

Referring to Eq. (2), one can minimize the error 2ε  in 

the directions of the partial derivatives given by  
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In this case, an iterative method, perhaps the gradient 
method, may be employed, to minimize the error function 

2ε  which in turn yields the polynomials Lh  and Dh  from 
the initialized coefficients as follows, 
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In Eq. (4), the subscript r  designates the iteration index 
starting at 1=r . And, )()0( phL  and )()0( λDh  are the 
initialized polynomials stem from the polynomials )( phL  
and )(λDh , respectively. Thus, the following algorithm is 
proposed to design networks in two kinds of elements via 
modeling. 

Algorithm: Generation of mixed-element network form the 
given reflectance data via modeling 

Inputs: 

• ωω Nii ,..,2,1; = : Sample frequencies. 
• ωN : Total number of sample frequencies. 
• ωωωω NijSSjS iXiRi ,..,2,1);()()( =+= : Sample 

points generated from the input reflection coefficient of 
the lumped-element network prototype. 

• λn : Total number of distributed-elements in distributed 
network [D]. 

• )(λDf : A monic polynomial constructed on the 
transmission zeros of [D]. It is noted that for cascaded 
connection of UEs 2/2 )1()( λλλ n

Df −=  is selected. 
• pn : Total number of lumped elements in lumped 

network [L]. 
• k : Total number of transmission zeros at DC of the 

lumped network [L]. 
• )( pf L : A monic polynomial constructed on the 

transmission zeros of [L]. In our modeling approach, all 
the transmission zeros are imbedded into the lumped 
ladder section [L] by choosing k

L ppf =)( . 
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Initialized coefficients of the polynomials )()0( λDh and 

)()0( phL , respectively. 
• δ : The stopping criteria. For many practical problems, 

it is sufficient to choose 310−=δ . 
Computational Steps 

Step 1: Set 1=r  and start the iterations. 
Step 2: By using the thr )1( −  initial coefficients 
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compute the strictly Hurwitz polynomials )()1( λ−r
Dg  and 

)()1( pg r
L
−  employing the losslessness condition 

Step 3: Synthesize lumped-element two-port [L], and 
distributed-element two-port [D], to obtain the component 
values. 
Step 4: By using the component values, form the scattering 
transfer matrix for each element. 
Step 5: According to the connection order, multiply the 
scattering transfer matrices, and obtain scattering transfer 
matrix of the mixed model, and then obtain ),(),,( λλ phpg  
and ),( λpf  two-variable polynomials. 
Step 6: Compute the error 
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Step 8: Compute the complex quantities over the sample 
frequencies for the given thr )1( −  initials, 
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Step 9: Separate the real and the imaginary parts of 
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Step 10: Using the real and the imaginary parts of the above 
equations, find the coefficients of the polynomials 
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any linear interpolation or curve fitting routine. 
Step 11: Set 1+= rr  and go to Step 2. 

Referring to Step 10 of the above algorithm, it is crucial 
to generate the polynomials )()( λr

Dh  and )()( ph r
L  [8]. In the 

following, an example is worked out, to generate a model for 
a given lumped-element Chebyshev filter. 

IV. EXAMPLE: MIXED-ELEMENT BUTTERWORTH FILTER 
In this example, a two-lumped-element Butterworth 

filter prototype is transformed to a mixed-element 
counterpart via proposed modeling algorithm. Throughout 
the computations normalized elements are used. Lumped-
element filter prototype, its transducer power gain (TPG) 
plot and the data generated from its input reflection 
coefficient are given in Fig. 2, Fig. 3 and Table 1, 
respectively. 

 
Fig 2. A two-element LC-ladder Butterworth filter (RS=RL=1, L=1.4142, 

C=1.4142). 

 
Fig 3. TPG curve of the normalized lumped-element filter. 

Table 1. Reflection data for the lumped element Chebyshev filter. 

iω  Re { })( ijS ω  Im { })( ijS ω  iω  Re { })( ijS ω  Im { })( ijS ω  

0.0 0 0 0.9 -0.0929 0.6225 

0.1 -0.0099 0.0014 1.0 0 0.7071 

0.2 -0.0383 0.0113 1.1 0.1031 0.7639 

0.3 -0.0812 0.0379 1.2 0.2061 0.7951 

0.4 -0.1310 0.0883 1.3 0.3024 0.8057 

0.5 -0.1765 0.1664 1.4 0.3886 0.8015 

0.6 0.2040 0.2704 1.5 0.4639 0.7873 

0.7 -0.2015 0.3912 1.6 0.5287 0.7669 

0.8 -0.1635 0.5137 1.7 0.5841 0.7429 

Close examination of Fig. 3 reveals that upper-edge or 
the cut-off frequency of the lumped prototype filter is at 
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1=cω  with minimum passband gain of 5.0min =G . In the 
mixed-element filter, equal length of the transmission lines is 
fixed as 090 (quarter wavelength) at the normalized 
frequency 6094.00 =f . That is, normalized delay length is 
fixed at .4102.0=τ  

Since the lumped-element filter prototype has a low-pass 
nature, ),( λpf  is selected as 

4222 21)1(1)()(),( λλλλλ +−=−⋅== DL fpfpf . Then, 
applying the algorithm above, ),(11 λpS  is computed with 
the coefficient matrices, 
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Fig. 4: Mixed element Butterworth filter (RS=RL=1, L=0.9251, C=0.9662, 

Z1=1.2608, Z2=0.6891, τ=0.4102). 

Consequently, the transducer power gain performances 
of the lumped- and mixed-element filters are shown in Fig. 5. 
Close examination of this figure reveals that the mixed-
element filter constructed via modeling exhibits excellent 
gain performance by preserving the minimum gain of the 
passband at 5.0min =G . 

 
Fig. 5: TPG plots of lumped- and mixed-element filters. 

V. CONCLUSION 
In this paper, a new method is proposed, to construct 

networks in two kinds of elements, namely lumped and 
distributed elements, via modeling. The proposed method 

consists of two major phases. In Phase I, a lumped-element 
network prototype is designed using the classical 
techniques. Then, the input reflection coefficient of the 
prototype network is generated over the passband 
frequencies. In the second phase, reflectance data is 
modeled as a bounded real input reflection function in two 
complex variables, which in turn results in the desired 
mixed-element network with two kinds of elements. 
Application of the new procedure is exhibited by designing 
a mixed-element filter employing total number of four 
elements. In the design process, first a two-element 
Butterworth filter is constructed with minimum passband 
gain of 5.0min =G . Then, the mixed-element filter is 
designed by modeling the input reflection coefficient data 
obtained from the lumped-element prototype filter. In the 
mixed-element filter, two lumped-elements are used. These 
elements are connected with each other via equal length 
transmission lines one by one. Thus, the actual production 
of the mixed-element filter is facilitated by introducing the 
inevitable connections as part of the design. It is shown that 
mixed-element filter design preserves the minimum of the 
passband gain of the lumped-element prototype. 

It is expected that the proposed method will find 
applications, to design networks for communication systems 
manufactured on a single chip using Si-Based VLSI 
technology. 
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