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Abstract—In this paper we study the outage diversity in
distributed estimation over parallel fading channels. We find tight
upper and lower bounds on the diversity order and show that
they are arbitrarily close under certain conditions. Our results
show that the diversity order does not always equal to the number
of sensors, but also depends on sensing quality of the sensors.

I. INTRODUCTION

Research on distributed estimation in wireless sensor net-
works has been evolving very rapidly. The problem setting
involves sensors observing an unknown parameter in noise
which can be delivered to a fusion center (FC) by analog or
digital transmission methods. The optimality of the analog
amplify and forward method is described in [1], [2]. In
[2], an amplify-and-forward approach is employed with an
orthogonal multiple access fading channel, where the concept
of estimation diversity is introduced, and shown to be given by
the number of sensors. This seminal result which shows that
the “estimation diversity” is given by the number of sensors is
obtained under the assumption of asymptotically large number
of sensors with statistically identical sensing quality, and large
total transmission powers.
Similar to [2], we consider a parallel multiple access fad-

ing channel scenario, but obtain expressions for the outage
diversity under a different asymptotic regime. Namely, we
consider finitely many sensors and large total transmit power.
Moreover, we assume that the sensors may have different
sensing qualities. In contrast to [2], our results show that the
diversity need not be equal to the number of sensors, and
depends on both the sensing quality measured by the sensing
signal-to-noise ratio (SNR), and the threshold used to define
the outage.

II. SYSTEM MODEL

Consider a distributed estimation problem (see Fig. 1) where
the K sensor measurements xk are related to the source
parameter θ by

xk = hkθ + nk k = 1, . . . , K , (1)

where nk ∼ CN (0, σ2
nk

) is the sensing noise, and hk is
a parameter that controls the kth sensor’s SNR given by
γk := |hk|2/σ2

nk
. Without loss of generality, we will assume

that γ1 ≤ . . . ≤ γK . The sensors amplify and forward their

Fig. 1. Distributed estimation in wireless sensor networks

measurements which are separately received by the fusion
center over orthogonal channels:

yk = αkgk(hkθ + nk) + vk , k = 1, . . . , K (2)

where gk ∼ CN (0, σ2
gk

) is the kth channel coefficient, vk ∼
CN (0, σ2

vk
) is the receiver noise, and αk is the amplification

coefficient which controls the power of the kth sensor. We
assume that nk, vk and gk are independent and identical
distributed (i.i.d) random variables across sensor index k,
respectively. We consider equal power transmission in the
sequel, thus |αk| is given by

|αk| =

√
Ptot

K(|hk|2σ2
θ + σ2

nk
)

. (3)

We assume that the fusion center employs maximal ratio
combining before estimating the source parameter θ. Com-
bining the received yk’s to get the maximum SNR amounts
to multiplying with the conjugate of the coefficient of θ when
the noise variances are equal [3]. Defining ηk := |gk|2/σ2

vk
,

the resulting SNR is equal to

SNR =
K∑

k=1

ηkγk

ηk + K(γkσ2
θ+1)

Ptot

. (4)

The SNR in (4) is random because the instantaneous SNR on
the kth channel, ηk, is random. The random variable ηk is
assumed exponentially distributed with mean ζk := E[ηk] =
σ2

gk
/σ2

vk
.

III. OUTAGE AND DIVERSITY

In distributed estimation of θ, the variance of the best linear
unbiased estimator (BLUE) is given by SNR−1 [2]. We define
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the outage probability as

Pout := Pr

⎡
⎣ K∑

k=1

ηkγk

ηk + K(γkσ2
θ+1)

Ptot

< z
∣∣∣γ1, · · · , γK

⎤
⎦ (5)

where z is the threshold, the randomness of the SNR stems
from the channels ηk, and γk are assumed deterministic. We
now examine how fast the outage converges to zero as a
function of the threshold z and the sensing SNRs γk by
investigating outage diversity order defined as

d = lim
Ptot→∞

− log Pout

log Ptot
. (6)

This definition of diversity is in perfect analogy to the defini-
tions of diversity for MIMO systems (see e.g., [4, eqn 3]).
In what follows, we find upper and lower bounds for the

diversity order.
Theorem 1:
1) If

∑i
k=1 γk < z for some i ∈ {0, . . . , K − 1} 1 then

d ≤ K − i. Clearly, the upper bound on d is most useful
if we find the largest such i.

2) If z < γk,∀k then d = K.
Proof: See Appendix I.

Theorem 2: If
∑i

k=1 γk ≤ z for some i ∈ {0, . . . , K − 1},
then

d ≥ K − i − 1
γi+1

(
z −

i∑
k=1

γk

)
. (7)

Proof: See Appendix II.
Combining the upper bound of Theorem 1 with the lower

bound of Theorem 2, the diversity order is bounded as

K − i − 1
γi+1

(
z −

i∑
k=1

γk

)
≤ d ≤ K − i. (8)

provided that
∑i

k=1 γk < z by the assumption of Theorem
1 part (1). We now examine the tightness of the bounds.
The threshold z falls in an interval of the form

∑i
k=1 γk <

z ≤ ∑i+1
k=1 γk for some i ∈ {0, . . . , K − 1}. Therefore, the

difference between the upper and lower bounds in (8) can be
at most unity and arbitrarily close to zero, depending on the
exact value of the threshold z, and its relationship with the
sensing SNRs {γk}K

k=1.
Let us now examine a corollary of Theorem 1 and Theorem

2 for the case of equal sensing SNRs (γk = γ,∀k) to get
simpler expressions.
Corollary 1: If the sensing SNRs are equal, (γk = γ, ∀k),

then we have the following simple upper and lower bounds
on d whenever z/γ is not an integer:

K − z

γ
≤ d ≤ K −

⌊
z

γ

⌋
. (9)

If z < γ, we have the exact diversity order d = K.
Proof: Omitted due to space limitations.

1When i = 0,
Pi

k=1 γk = 0, by definition

Fig. 2. Diversity order bounds when the sensing SNRs are equal

Note that in the case when z/γ is an integer, the same proof
can be carried out with recognizing that the integer i can be
chosen as i = z/γ − 1 which is less than z/γ. Using part (1)
of Theorem 1 for this choice of i we obtain d ≤ K − i =
K − z/γ + 1. Examining the tightness of the bounds in (9),
we observe that, similar to the unequal sensing SNR case, the
bounds can be apart at most by one. Fig. 2 illustrates the upper
and lower bounds of the diversity order as a function of z/γ.
It can be seen that z ∈ (0,Kγ). When z < γ, the diversity
order is exactly K. When z/γ is an integer, the upper bound
is d ≤ K − z/γ + 1 as per the discussion above, and it is
exactly one more than the lower bound in (9). On the other
hand, when z/γ is greater than, but sufficiently close to an
integer, the difference between the upper and lower bounds
becomes arbitrarily close to zero.
In this setting where the sensing SNRs are equal, the upper

and lower bounds in (9) show that for a fixed z and γ, when a
new sensor is added into the system, the bounds both increase
by one. In fact, the diversity order increases like d = O(K)
for large K. We note, however, that the growth of the diversity
order with K applies when {γk}K

k=1 are equal, and does not
necessarily hold when {γk}K

k=1 are unequal. In fact, examining
the statement of Theorem 1, we see that it is possible to add
new sensors with very small γk’s such that the upper bound
in Theorem 1 does not increase. To see this, suppose that
the threshold z and set of sensing SNRs {γk}K

k=1 are given.
We add a new sensor whose sensing SNR is small enough
to satisfy γnew < z − ∑i

k=1 γk. This implies that we have∑i
k=1 γk + γnew < z. Using Theorem 1 with i + 1 γk’s, and

K + 1 sensors, we have d ≤ (K + 1) − (i + 1) = K − i, the
same diversity order as when we had K sensors. Therefore,
it is possible to add new sensors into the system without
getting any diversity benefit. Note that the new sensor that
was introduced had to have a sensing quality (measured by
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γnew) that was bad enough to not contribute to the diversity
order. This example clearly illustrates that the diversity order
depends on the sensing SNRs {γk}K

k=1 and not just on the
number of sensors.
The proofs of Theorems 1 and 2 which derive upper and

lower bounds on the diversity order equations (20) and (30)
depend on the distributions of the instantaneous channel SNR
on the kth sensor ηk, and therefore can be easily extended to
cases where ηk is not exponentially distributed. In the next
section, we extend these bounds to cases that involve line-of-
sight between the sensors and the FC.

A. Diversity with Line of Sight

So far, we have assumed that the channel gk is zero-mean
complex Gaussian implying Rayleigh fading (exponential ηk).
However, in the presence of line of sight between some
or all of the sensors and the FC, distributions other than
the exponential might be suitable for ηk. We first begin by
considering a Ricean amplitude (i.e., √ηk is Ricean), which
means that the density function of ηk in this case is given by

fηk
(x) =

(1 + κ)
ζk

e−κe
− (κ+1)

ζk
x
I0

(
2

√
κ(κ + 1)x

ζk

)
, (10)

where κ is the Ricean factor, and ζk := E[ηk]. Just like
the exponential case, fηk

(0) �= 0, and lima→0 af
′
ηk

(a) = 0,
regardless of the value of κ, for the density function in (10).
Reconsidering the lower bound in (20) and the upper bound
in (30), we conclude that the bounds on the diversity in the
Ricean case remain the same as the Rayleigh case.
Another widely used distribution for the channel envelope√
ηk in the presence of line of sight is the Nakagami distrib-

ution. The corresponding density function for ηk is given by

fηk
(x) =

mmxm−1

Γ(m)ζm
k

exp
(
−mx

ζk

)
,m > 1 , (11)

where m is the Nakagami parameter, and ζk = E[ηk] as
before. In this case, we now show that the bounds in (8) both
scale by a factor of m:
Theorem 3: If

∑i
k=1 γk ≤ z ≤ ∑i+1

k=1 γk and ηk are
distributed as in (11) then

(K − i − 1)m ≤ d ≤ (K − i)m (12)
Proof: Omitted due to space limitations.

Note that for the special case of γk = γ ∀k, the bounds
can be obtained by multiplying the upper and lower bounds
in (9) by m.

IV. SIMULATIONS
In this section, we provide simulation results to verify

and illustrate our findings in previous sections. We assume
that the variance of the source parameter σ2

θ = 0.1 and the
instantaneous channel SNRs {ηk}K

k=1 are i.i.d exponential
random variables with unit mean. The numerical results herein
are obtained by generating over 109 runs, which is necessary
since Pout is exceedingly small even for moderate values of
K and Ptot.
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Fig. 3. Outage probability vs. total power for a set of fixed and unequal
sensing SNRs {γk} = {1, 2, 3, 4, 5}

We first verify the outage and diversity for the case of fixed
sensing SNRs {γk}K

k=1, as in Theorems 1 and 2. Consider a
case where there are 5 sensors with different sensing SNRs:
γ1 = 1, γ2 = 2, γ3 = 3, γ4 = 4 and γ5 = 5. We simulate
the outage probabilities as a function of the total power for
different thresholds where z ∈ {2.5, 5.5, 9.5, 14.5, 16}. The
results are shown in Fig. 3 and Fig. 4. From Fig. 3 where
the outage probability is plotted versus Ptot, we can see
that the diversity order as seen from slopes decreases as the
threshold z increases. When z = 16, the outage probability is
always 1 since z >

∑5
k=1 γk = 15. To illustrate the results

better, we also plot the estimated diversity order, given by
− log Pout/ log Ptot, in Fig. 4. Recall that from Theorem 1
and Theorem 2, the diversity order is bounded by 5− i− 1 ≤
d ≤ 5 − i if

∑i
k=1 γk < z ≤ ∑i+1

k=1 γk. Given the values
of γk and z as above, using the above condition, we find
that the appropriate i is given by 1, 2, 3, 4, 5 corresponding to
2.5, 5.5, 9.5, 14.5, 16, respectively. These theoretical diversity
results are verified and illustrated clearly in Fig. 4 where it
is shown that as Ptot increases the estimated diversity order
converges into the correct region in Fig. 4. For example, when
z = 5.5, we find that i = 2 since

∑2
k=1 γk = 3 < z <∑3

k=1 γk = 6. Thus, the diversity order is expected to be
bounded between (2, 3) due to Theorem 1 and Theorem 2,
and indeed seen to be correct in Fig. 4.
Fig. 5 and Fig. 6 show the outage probability and the

diversity order for the case of fixed and equal sensing SNRs
where γk = 1, ∀k, with z ∈ {1.2, 2.2, 3.2, 4.2, 5.2}. With the
number of sensors K = 5, the theoretical diversity order is
given by (9). Again, we observe that our simulation results
match with the theoretical results: as z increases, the diversity
order decreases. More importantly, all the aforementioned
figures (Fig. 3 - Fig. 6) show that, given the sensing SNRs,
the diversity order of the outage probability depends on not
only the number of active sensors K in the system but also the
comparative values of the outage threshold z and the sensing
SNRs {γk}K

k=1.
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Fig. 4. Estimated diversity order vs. total power for a set of fixed and unequal
sensing SNRs {γk} = {1, 2, 3, 4, 5}
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Fig. 5. Outage probability vs. total power for fixed and equal sensing SNRs
γk = 1,∀k
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Fig. 6. Estimated diversity order vs. total power for fixed and equal sensing
SNRs γk = 1, ∀k

V. CONCLUSION
We found upper and lower bounds on the diversity order of

the distributed estimation problem, which are within unity of
each other. We showed that the diversity order for a fixed K
is not always given by K, and depends on the sensing SNRs
γk and the threshold z. Our results suggest that the sensors
with a bad sensing SNR should shut down to save energy and
bandwidth since the system diversity gain by adding them is
negligible.

APPENDIX I
PROOF OF THEOREM 1

Proof: We begin with part (1). Let Zk := ηkγk

ηk+ack
be

the kth term of the sum in (5), where a := P−1
tot and ck :=

K(γkσ2
θ +1) for simplicity of notation. Recall that γk and ck

are deterministic, and ηk is exponentially distributed. Clearly
0 ≤ Zk < γk with probability one.
For ε > 0 sufficiently small we have

Ai := {Z1, . . . , ZK : Zk ≤ ε, k = i + 1, . . . , K} (13)

⊂
{

Z1, . . . , ZK :
K∑

k=1

Zk ≤ z

}
, (14)

because constraining Zi+1, . . . , ZK to be small ensures
K∑

k=1

Zk ≤ (K − i)ε +
i∑

k=1

Zk < (K − i)ε +
i∑

k=1

γk , (15)

where the second inequality follows because Zk < γk. The rhs
in (15) is smaller than z, by assumption of the Theorem for
ε > 0 sufficiently small. This establishes that (14) is correct.
Recalling that the set on the rhs of (14) is the outage event

in (5), we have

Pr[Ai] ≤ Pout . (16)

Since Zk are independent,

Pr[Ai] =
K∏

k=i+1

Pr[Zk ≤ ε] ≤ Pout. (17)

Keeping in mind that Zk = ηkγk

ηk+ack
it is straightforward to

verify that

Pr[Zk ≤ ε] = FZk
(ε) = Fηk

(
aεck

γk − ε

)
, γk > ε (18)

where FZk
(·) and Fηk

(·) are the cumulative distribution
functions of Zk and ηk, respectively. Taking the logarithm
of both sides of (17), recalling a = P−1

tot , and dividing by
log Ptot = − log a we obtain

d = lim
Ptot→∞

− log Pout

log Ptot
≤

K∑
k=i+1

lim
a→0

log Fηk

(
aεck

γk−ε

)
log a

. (19)

Using L’Hospital’s rule twice, on the kth term of the sum in
(19), we have

d ≤ K − i +
K∑

k=i+1

lim
a→0

af
′
ηk

(
ackε
γk−ε

)
fηk

(
ackε
γk−ε

) . (20)

866



Recall that ηk is exponential with fηk
(x) = ζ−1

k exp(−x/ζk)
for x ≥ 0, and therefore, each term of the sum in (20) is zero,
establishing part (1) of the Theorem.
To prove part (2) we begin by recalling that d ≤ K due to

part (1). To show d ≥ K, note that{
Z1, . . . , ZK :

K∑
k=1

Zk ≤ z

}
⊂ {Z1, . . . , ZK : Zk ≤ z} (21)

because Zk ≥ 0. Therefore, the probabilities of the events in
(21) are related as

Pout ≤ Pr [Z1 ≤ z, . . . , ZK ≤ z] =
K∏

k=1

Pr [Zk ≤ z] . (22)

Using (18) and taking the logarithms of both sides, (22) can
be written as

log Pout ≤
K∑

k=1

log Fηk

(
azck

γk − z

)
, (23)

where, we used γk > z to write Pr[Zk ≤ z] in terms of
Fηk

(·). Dividing through by − log Ptot = log a and taking the
limit as Ptot → ∞ (a → 0) we obtain

d = lim
Ptot→∞

− log Pout

log Ptot
≥

K∑
k=1

lim
a→0

log Fηk

(
azck

γk−z

)
log a

. (24)

Similar to (19) and (20), it is straightforward that each limit
on the rhs of (24) is given by 1 using L’Hôspital’s rule, which
proves that d ≥ K, and completes the proof.

APPENDIX II
PROOF OF THEOREM 2

Proof: Using the Chernoff bound on the outage in (5)
we obtain

Pout ≤ exp(ν(a)z)
K∏

k=1

E

[
exp

(
−ν(a)

ηkγk

ηk + ack

)]
, (25)

where the expectation is with respect to ηk, and ν(a) > 0 is an
arbitrary but positive function of a := P−1

tot , which we choose
as ν(a) = −β log a > 0, for some constant β > 0, to be later
specified, and for a < 1. Substituting ν(a) in (25), taking the
logarithms of both sides, and expressing the expectation as an
integral, we obtain

log Pout ≤ −zβ log a +
K∑

k=1

log
[∫ ∞

0

fηk
(x)a

xβγk
x+ack dx

]
. (26)

Breaking up the integral in the kth term of the sum for some
function g(a) > 0, we have∫ g(a)

0

fηk
(x)a

xβγk
x+ack dx +

∫ ∞

g(a)

fηk
(x)a

xβγk
x+ack dx

≤
∫ g(a)

0

fηk
(x)dx + a

g(a)βγk
g(a)+ack , (27)

where we obtained upper bounds on both terms on the left
hand side (lhs) of (27) by substituting the lower limits of

both integrals for x in the exponent of a because a
xβγk

x+ack

is a monotonically decreasing function of x, and also used∫ ∞
g(a)

fηk
(x)dx ≤ 1. Substituting g(a) = a1−δ , for some

0 < δ < 1, the exponent of the second term on the rhs of
(27) can be written as

g(a)βγk

g(a) + ack
= βγk − aδβγkck

1 + aδck
. (28)

Since the second term on the rhs of (28) is small for small a,
a

g(a)βγk
g(a)+ack ≈ aβγk . Using this result with (27), the kth term in
(26) can be bounded for a sufficiently small as

log
∫ ∞

0

fηk
(x)a

xβγk
x+ack dx ≤ log

[∫ a1−δ

0

fηk
(x)dx + aβγk(1 + ε)

]
. (29)

Recalling the definition of the diversity order (6), substituting
(29) into (26), and using the L’Hospital’s rule twice, we obtain

d≥−zβ +
K∑

k=1

lim
a→0

(1 − δ)2(a1−δf
′
ηk

(a1−δ) + fηk
(a1−δ))

(1 − δ)fηk
(a1−δ) + βγkaβγk−1+δ(1 + ε)

+
(βγk)2aβγk−1+δ(1 + ε)

(1 − δ)fηk
(a1−δ) + βγkaβγk−1+δ(1 + ε)

(30)

Substituting fηk
(a) = ζ−1

k exp(−a/ζk), we observe that
a1−δf

′
ηk

(a1−δ) → 0 as a → 0 and that fηk
(0) �= 0.

Examining (30), it is clear that the limit depends on whether
βγk > 1 − δ or not. Working out this limit, we have d ≥
−zβ +

∑K
k=1 T1−δ(βγk), where T1−δ(βγk) is the limit in the

kth term in (30), and Ty(x) = y if x ≥ y, and Ty(x) = x if
x ≤ y. Since the above lower bound is most useful when it
is larger, using the continuity of Ty(x) with respect to y, we
can take the supremum of T1−δ(βγk) over 0 < δ < 1 which
is obtained as δ → 0, yielding

d ≥ −zβ +
K∑

k=1

T1(βγk) . (31)

We can select any positive β for the Chernoff bound, which
we choose as β = 1/γi+1 and substitute in (31) to obtain

d ≥ (K − i) − 1
γi+1

(
z −

i∑
k=1

γk

)
, (32)

where to get the rhs, we used 0 < γ1 ≤ γ2 ≤ . . . γK , and the
definition of T1(·). This is completes the proof.
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