
Abstraction in FPGA Implementation of Neural Networks

ARĐF SELÇUK ÖĞRENCĐ
Electronics Engineering

Kadir Has University
Fatih, 34230-Istanbul

TURKEY
ogrenci@khas.edu.tr

Abstract: - A model for FPGA implementation of multilayer perceptron neural networks is presented. The model tries
to incorporate object oriented design principles in the analysis, training, and design of components using hardware
description languages. The synthesis will be based on the tools supplied by the FPGA vendors. The results indicate that
the method can be utilized, and it can be further improved to create a general methodology that bridges the gap
between hardware and software in embedded system design.

Key-Words: - hardware synthesis, software architecture

1 Introduction
Embedded systems are special purpose computing
structures that process signals originating from the
complex environment in which they are “embedded.” In
that way, they can control other actions in the system. In
the simplest case, an embedded system may be
implemented using a single dedicated microprocessor or
FPGA (Field Programmable Gate Array) whereas
complex systems such as a distributed network of
processors may also exist. The embedded system is
mostly a reactive system designed to communicate with
its environment in performing a specific job. Hence,
general purpose processor architectures are not well
suited for embedded systems.
 The following groups of constraints have to be
satisfied by embedded systems:
a) Functional requirements
b) Quantitative constraints (speed, area, power, etc.)
c) Interaction with the environment (communication,

reconfigurability, interface, etc.)
Therefore, there is a need for a serious methodology to
satisfy the constraints and to optimize the system. The
traditional methodology incorporates a top-down
behavioral/functional analysis followed by a bottom-up
synthesis based on components. The methodology can
be applied with a high level of efficiency and reliability
for complex digital systems due to the existence of
advanced computer aided design tools that offer the use
of hardware description and synthesis languages
(VHDL, Verilog, SystemC, etc.) Usually, the analysis
and the design (synthesis) are integrated in a way that
those tools map behavioral/functional definitions onto
component models present in their libraries. All the other
constraints are then used as ingredients of the
optimization process during synthesis.

 Software development methodologies based on
object oriented analysis and design (utilizing design
patterns); have allowed a high level of modeling and
abstraction within the last decade. The efficiency of
software development has increased substantially. UML
(Unified Modeling Language) has emerged as a standard
language to be used in the design of complex software
systems within the object oriented paradigm. It is
generally accepted that UML can also be used in
hardware implementations, and embedded systems can
be considered as the natural candidates for such
implementations [1]. However, there exist several
fundamental problems in this area:
a) Even though the level of abstraction for hardware

models approaches the level required for object
oriented systems (due to use of UML, SystemC etc.),
hardware is still considered as made up of
components interconnected using wires. On the
contrary, object oriented design is about objects and
the communication between them. Hence, there is a
need for a methodology that combines components
with objects, and wires with communication.

b) It is not clear how the constraints to be satisfied by
embedded systems; have to be described in object
oriented methodology. The automatic mapping of
requirements such as speed, area, etc. onto models or
patterns, is still not possible.

c) The transformation of objects and patterns into
hardware and RTL (Register Transfer Level)
definitions is not clear.

 Neural networks form an excellent example for
embedded systems that need to be implemented as
special purpose computing units rather than as software
in general purpose processors. Especially, use of
reconfigurable FPGA for neural networks allows the
designer to have flexibility. Several FPGA based

9th WSEAS International Conference on NEURAL NETWORKS (NN’08), Sofia, Bulgaria, May 2-4, 2008

ISBN: 978-960-6766-56-5 221 ISSN: 1790-5109

implementations of neural networks have been reported
in the literature recently [2-4] that employ different
design methodologies. However, they also do not
address the problems mentioned above. Most of the
implementations in the literature are concerned mainly
about the optimization of the architecture depending on
the problem so that the design fits into appropriate
FPGA units. There exists also work about forming a
library of software modules using object-oriented design
and programming which would allow users to deploy
prototype neural networks in order to solve specific tasks
[5-6].
 The motivation for this work is that a unified design
methodology can be developed to incorporate software
development principles to embedded system design of
multilayer perceptron neural networks (Fig. 1). This
would require that neural networks would be considered
at a higher, abstract level as software components, which
then will be mapped to actual hardware components on
FPGAs. In the following sections, we first give a formal
definition of a neural network software architecture
which will be used for the abstraction. Then, the
essential problems of training and optimization will be
mentioned, and the mapping of software components to
hardware descriptions will be discussed. The paper will
conclude by analyzing the results and by discussing
future research topics.

2 Abstract Neural Network Model
An open and distributed software architecture for neural
networks has been derived in [7], in which an object
oriented methodology is put forward where the
information model is based on the requirements derived
from neural networks. The proposed information model
for the software architecture is given in Fig. 2. This
architecture will be utilized in the abstraction of the
problem realizing a multilayer perceptron neural network
of Fig. 1 in an FPGA. The main goal of the methodology
is to use training and optimization software for higher
levels of abstraction and using a synthesis tool for a
specific FPGA at the hardware level.
 The system flow will be as follows:
a) Train the neural network (topology will be selected

based on user input) to determine weights
b) Quantize input and output according to the desired

level of precision as supplied by the user
c) Choose a model (serial or parallel) implementation

based on the performance requirements
d) Generate VHDL models of the building blocks at

behavioral level, such as, multiplier, adder, and
sigmoid block

e) Run the FPGA synthesis tool to map the design onto
a specific device

f) If the performance is not satisfactory (timing and
area) then go to step c) and choose another model; if
all models have been used, then go to step e) and
choose a larger FPGA.

Fig. 1 Multilayer perceptron neural network model

.

.

.

Σ Sigmoid

Σ Sigmoid

Σ Sigmoid

.

.

.

Σ Sigmoid

INPUT
NODES

WEIGHT
MULTIPLICATION

WEIGHT
MULTIPLICATION

Σ Sigmoid

OUTPUT
NODES

.

.

.

.

.

.

9th WSEAS International Conference on NEURAL NETWORKS (NN’08), Sofia, Bulgaria, May 2-4, 2008

ISBN: 978-960-6766-56-5 222 ISSN: 1790-5109

Fig. 2 Neural network software architecture information model

3 Example: Hardware Components of

Neural Network
As a design example, a simple, nonlinear function
approximation problem has been investigated. The
function is the sin (x) where x ranges from 0 to π/4. The
desired precision at the output has been set to be 1/64, so
that the output needs to be quantized with 16 bits where
8 bits are used for the integer part and 8 bits are used for
the floating part. Meanwhile the input has been
quantized with 5 bits. A 1 x 8 x 1 structure has been
employed, and the network has been trained using
standard backpropagation for 10000 epochs. Then the
weights and intermediate outputs have been quantized
with 16 bits. Using the high level behavioral descriptions
of the multiplier(s), adder(s), and the sigmoid blocks, a

structural description of the neural network has been
generated. The system has utilized a fast parallel
multiplier using both Wallace Tree and Booth
algorithms. On the other hand standard half-adder based
adders have been utilized for the summation blocks.
Finally, a quadratic approximation has been used for the
sigmoid function. The VHDL code has been synthesized
on a Xilinx Spartan family FPGA.
 The synthesis results are given in Table 1. The
simulations have verified that the neural network
approximation has been successful, and the circuit can
be mapped to a FPGA efficiently. The system was not
capable of synthesizing the network on a smaller set of
FPGA units.

9th WSEAS International Conference on NEURAL NETWORKS (NN’08), Sofia, Bulgaria, May 2-4, 2008

ISBN: 978-960-6766-56-5 223 ISSN: 1790-5109

Table 1. Output report of the synthesis tool
Resource Used Available Utilization
IO’s 96 176 55%
Function Generators 2073 2400 86%
CLB Slices 1037 1200 86%
Estimated Delay 267ns

4 Conclusion and Future Work
In this paper, the possibility of employing an abstract
software architecture model for the synthesis of neural
networks in FPGA has been investigated. There is a lack
of methods and tools for the full utilization of object
oriented methods and software design patterns in the
hardware implementation of embedded systems. Such a
methodology would be very useful if the constraints of
the system could be efficiently described within the
software architecture. As an initial point towards that
direction, a simple design example has been investigated
and the results have been given. As future work, the
speed and area requirements could be integrated into the
architectural modeling so that the automatic generation
of VHDL would consider macro models of building
blocks and/or the available set of FPGA chips in the
optimization process.

References:

[1] R. Damasevicius and V. Stuikys, Application of the
object-oriented principles for hardware and

embedded system design, Integration, the VLSI

Journal, Vol. 38, 2004, pp. 309-339.
[2] V. Pandya, S. Areibi and M. Moussa, A Handel-C

Implementation of the Back-Propagation Algorithm
on FPGA, Proceedings of the 2005 International
Conference on Reconfigurable Computing and

FPGAs (ReConFig 2005), 2005.
[3] S. Vitabile, V. Conti, F. Gennaro, and F. Sorbello,

Efficient MLP Digital Implementation on FPGA,
Proceedings of the 2005 Euromicro Conference on

Digital System Design (DSD 2005), 2005.
[4] D. Lettnin, A. Braun, M. Bogdan, J. Gerlach, and W.

Rosenstiel, Synthesis of Embedded SystemC Design:
A Case Study of Digital Neural Networks,
Proceedings of the Design Automation and Test in

Europe Conference (DATE 2004), 2004.
[5] G. Valentini and F. Masulli, NEURObjects: An

object-oriented library for neural network
development, Neurocomputing, Vol. 48, 2002, pp.
623-646.

[6] T. P. Caudell et al, eLoom and Flatland:
specification, simulation and visualization engines
for the study of arbitrary hierarchical neural
architectures, Neural Networks, Vol. 16, 2003, pp.
617-624.

[7] A. S. Ogrenci, T. Arsan and T. Saydam, An Open
Software Architecture of Neural Networks:
Neurosoft, Proceedings of Software Engineering and
Applications (SEA2004), 2004.

9th WSEAS International Conference on NEURAL NETWORKS (NN’08), Sofia, Bulgaria, May 2-4, 2008

ISBN: 978-960-6766-56-5 224 ISSN: 1790-5109

