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Abstract – A reflectance-based method is presented, to model a set of given Foster impedance data as a 
lossless, singly terminated two-port consisting of lumped-elements in short or open termination. The basis of 
the new method rests on the interpolation of the given data as a realizable bounded-real (BR) reflection func-
tion. The desired circuit model is obtained by synthesizing this function. An algorithm to generate the circuit 
model is presented, and an example is included, which illustrates the utilization of the proposed modeling 
method. 
 
Index Terms –  Circuit optimization, gradient methods, iterative methods, lossless circuits, modeling, passive 
networks. 
 
 

1. Introduction 

For many communications engineering applications, circuit 
models for measured data obtained from physical devices or sub-
systems are inevitable. Typical examples include the characteri-
zation or assessment of front-ends in terms of the minimum 
noise figure level or the maximum power transfer capability [1], 
the design of antenna matching networks or microwave amplifi-
ers for mobile or wireless communication [2], and the fast simu-
lation of high-speed, high-frequency circuits for analog/digital 
communication systems [3]-[6]. 

In broadband matching applications, after designing the imped-
ance matching network, a Foster part (i.e., that part of the matching 
network, whose real part of the input impedance is zero) may be 
needed to improve the matching performance [7]-[8]. In [9], a Foster 
impedance data modeling method is presented. Briefly, the general 
form of a Foster function ( )fX ω  on the jω -axis can be described 
as 
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One can always introduce a pole rp  to the Foster form specified 
by (1) that passes through a given point 

i
. Selecting ( , )i fXω rp  

properly in advance, the residues k k  and  can be computed by 
solving (1) point by point for the given data set. 
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In this work, the given Foster impedance data are modeled with-
out the need to introduce poles, by lossless lumped-elements which 
constitute a two-port in short or open termination, with the resulting 
input reflection coefficient  (Fig. 1). 11( )S p
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Fig. 1: Lossless two-port a) short termination b) open termination. 

 
For a lumped-element lossless two-port like the one depicted in 

Fig. 1, the scattering matrix can be written as [10]: 
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where ( ), ( )g p h p  and ( )f p  are real polynomials in complex 
frequency p jσ ω= + , ( ) / ( ) 1f p f pµ = − = ±  is a unimodular 
constant and ( )g p

( ), (
 is a strictly Hurwitz polynomial. The three 

functions )g p h p , ( )f p  are related by energy conservation, 
namely, the Feldtkeller equation 

( ) ( ) ( ) ( ) ( ) ( )g p g p h p h p f p f p− = − + − . 

In the next section, the properties of singly terminated networks 
are discussed in line with [11]. Then, after a short review of the 
gradient method, its application to the modeling problem is dis-
cussed. Finally, an algorithm is presented and illustrated in terms of 
an example. 

2. Singly terminated networks 

The input impedance of the network seen in Fig. 1 can be written as 
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where  and ( )N p ( )D p  are the numerator and denominator 
polynomials of the impedance function; the subcripts “ ” and 
“ ” refer to the even and odd components, respectively. 

e
o
The average power absorbed by the two-port network must be 

zero, since all the elements are lossless and the network is terminated 
by either an open or a short. In this case, one can write 
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or 
( ) ( ) ( ) ( ) 0e e o oN p D p N p D p− = , (4b) 

where { }Re ( )Z p  represents the real part of the impedance 
( )Z p . 
Since the even and odd parts of the numerator and denominator 

cannot be zero simultaneously, either both  and ( )eN p ( )oD p  
vanish, leading to 
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or both  and ( )oN p ( )eD p  are zero, leading to 
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This leads to the conclusion that the input impedance of a singly 
terminated network can be described by either a ratio of even-to-odd 
or odd-to-even polynomials. 

Using (3) and (4a), it can be shown that for singly terminated 
networks 11( ) 1S p =  or, equivalently, 11 11( ) ( ) 1S p S p− = . From (2) 
follows, therefore, that 
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Assuming that  does not equal ( )h p ( )g p , which would result in 
the trivial case where  at all frequencies, we conclude that 11 1=

)p
S

(gα= −( ) ( )h p g p= ± −  (7) 
and 
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At 0p = ,  can be either 11( )S p 1α = + , corresponding to an open 
termination, or 1α = − , which corresponds to a short termination. 
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3. Application of gradient method to foster impedance 
data modeling 

The gradient of a function F  at 1 2( , , , )Nx x x= …x  is defined as 

1 2
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x x xx …  , (9) n

where the { }; 1,2, ,ix i = … N  constitute the  variables of the 
function. 

N

The gradient for a multi-variable function is analogous to the de-
rivative of a single-variable function in the sense that it can have a 
relative minimum at  only when the gradient at  is the zero 
vector. A standard result from the calculus of multi-variable func-
tions states that the direction of steepest decrease of 

x x

F  at  is the 
direction given by −∇ . 

x
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The goal of minimization is, therefore, to reduce ∇  to its 
minimal value of zero. Given the initial approximation , one 
chooses 

F
(0)x

((1) (0) (0)Fγ= − ∇x x x )  (10) 

for some constant 0γ >
)

, which defines the step-size. 
Assume (S jω  is the reflection coefficient data constructed from 

the given Foster impedance data ( )Z jω , and 11(S j )ω  is the calcu-
lated reflection coefficient of the model. It is desired to have 

11( )S j( )S jω ω=  at the end of the modeling process. The error 
between the given and calculated reflection coefficients can accord-
ingly be defined as 
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The magnitude of the error is 
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To reduce the error until it drops below an acceptable value δ , 
any iterative method may be employed. If the gradient method is 
applied, according to (10) and the results of Section II, the values of 
the numerator polynomial of the reflection coefficient can be calcu-
lated as 
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For singly terminated networks, at the end of the iterative process 

defined above, ( ) ( )h j g jω ω= ± −  must be fulfilled. If these values 
are multiplied by their complex conjugates, 2( )g jω  is reached, 
which describes an even polynomial in the variable ω  such that 

22 2 4
0 1 2( ) ( ) ... 0 ;n

nG g j G G G G 2ω ω ω ω ω= = + + + 〉 ω∀ , (13) 

where  is the desired degree of the polynomial n ( )g p  and, at 
the same time, the number of elements in the model. 

The coefficients { }0 1 2, , ,... nG G G G

2

 can easily be found by any 
linear or nonlinear interpolation or curve fitting method as described 
by [9]. Then, replacing ω  by 2p− , one can extract ( )g p

( )

 from 
 by explicit factorization. In this step, obvi-

ously the roots of  are computed, and then, 
2( ) ( )G p g p g− = ( )p−

2( )G p− g p
)

 is con-
structed on the left half-plane (LHP) roots of  as a strictly 
Hurwitz polynomial. 

2(G p−

 

4. Generation of the model 

Inputs: 
• ( ) ( ); 1,2,..,i f iZ j jX iω ω= = N  : Given Foster impedance 

data. 
•  : Desired number of elements in the model. 
• α  : Termination type, 1α = −  for short termination, and 

1α = +  for open termination. 
•  : Initial polynomial . See Step 2 below. ( )h p ( )h p
• 0g  : Constant term of the polynomial ( )g p . 
• γ  : Step-size of the Gradient process. 
• δ  : The stopping criteria of the sum of the square errors. 
 
Computational Steps: 
Step 1: Calculate reflectance data from the given Foster imped-

ance data via ( ) 1( )
( ) 1

Z jS j
Z j

ωω
ω

−
=

+
. 

Step 2: A proper initial polynomial  can be obtained by the 
following procedure: From (8) follows that 

( )h p
( ) ( ) ( )g p S p g pα− = . 

Expressing  
2
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equation: 
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If the coefficient 0g  is selected as a user-defined coefficient, 
and p jω=  is substituted into (14), the following set of linear 
equations is obtained: 
A X B= , (15) 

where 
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After solving (15), the polynomial ( )g p  is obtained, and the 
initial polynomial  can be formed subsequently according 
to (7). The 

( )h p

0g -value can be supplied by ad-hoc choice. 

Step 3: Form 11
( )( )
( )

g pS p
g p

α −
= . 

Step 4: Calculate the sum of the square error via 

11( ) ( ) ( )j S j S jε ω ω= − ω  and 2( )c jδ ε ω= ∑ . 

δ δ≤Step 5: If c , synthesize 11
( )( )
( )

g pS p
g p

α −
=  and stop.  

Otherwise, go to the next step. 

Step 6: Calculate (( ) ( )
( )

)jh j h j
g j

ε ωω ω γ
ω

−
= +  over the sample 

frequencies. 

Step 7: Calculate G g2( ) ( ) ( )j g jω ω= − ω , and form 
( ) ( )g p h pα − = . 
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Step 8: Go to Step 3. 
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5. Example 

In this section, an example is presented, to illustrate the imple-
mentation of the proposed method. The imaginary part of an 
impedance consisting of an inductor in series with the parallel 
combination of a capacitor and a resistor, with the normalized 
values: L=1, C=2, R=1, was used to construct the Foster imped-
ance. The Foster impedance and the real and imaginary parts of 
the reflection coefficient data (see (3)) are listed in Table I. 
 

 
Table 1: Calculated Foster impedance and reflection coefficient data. 

 
Normalized 

Frequency ( )iω  
( )iZ jω  Re { }( )iS jω  Im { }( )iS jω  

0.1 j0.1010 -0.980 0.200 

0.2 j0.2077 -0.917 0.399 

0.3 j0.3248 -0.809 0.588 

0.4 j0.4552 -0.657 0.754 

0.5 j0.6000 -0.471 0.882 

0.6 j0.7588 -0.269 0.963 

0.7 j0.9302 -0.072 0.997 

0.8 j1.1122 0.106 0.994 

0.9 j1.3028 0.259 0.966 

1.0 j1.5000 0.385 0.923 

 
 

In the next step, short termination ( 1α = −

( )

), and four elements 
( ) were selected for the model. Applying the proposed 
algorithm, the polynomials h p  and 

4n =
( ) g p  were determined as 
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synthesis of the obtained impedance function 11

11

1 (
1 (

S p
S p

)
)

( )Z p +
=

−
 

resulted in the equivalent circuit depicted in Fig. 2. 
L1 L2

C 1 C 2
)( pZ

 
Fig. 2: Obtained model of the Foster impedance data given in Table 1. 
C1=0.26596, C2=0.13621, L1=0.5048, L2=0.54723. 
 

A comparison of the original and re-constructed impedance values 
is illustrated by Fig. 3. 

 
Fig. 3: Comparison between the given and model impedances. 

The error between the given and model impedances seen in Fig. 3 
can be further reduced, if the number of elements in the model is 
increased. But in this case, dissipation losses will increase, since the 
components are lossy in practice. Therefore, it is usually preferred to 
use the least number of elements in the Foster models. 

6. Conclusion 

A reflectance-based technique was presented to model measured 
or computed Foster impedance data. Unlike other available tech-
niques, the proposed method does not require to introduce any pole. 
The key idea of the new numerical method is to use singly termi-
nated networks. The numerator polynomial  of the reflectance 

 was determined by employing the gradient technique. An 
example illustrated the implementation of the modeling method and 
served as a proof-of-principle. The modeling method is simple and 
straight-forward in implementation. It is considered an important 
tool for many applications like broadband matching and device 
modeling, where performance of the designed network has to be 
optimized. 

( )h p
11( )S p
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