
Performance of Space-Time Coded Systems with
Transmit Antenna Selection

Tansal Gucluoglu
Electronics Engineering Department

Kadir Has University
Cibali, Istanbul, 34083, Turkey

email: tansal@khas.edu.tr

Abstract- We deal with transmit antenna selection for space-
time coded (STC) systems over multiple input multiple output
(MIMO) channels. Using pairwise error probability analysis and
simulation results, we show that transmit antenna selection based
on received power levels does not reduce the achievable diversity
order for full rank STCs. Initially, we prove the results for
Rayleigh flat fading channels, and then we state our expectations
for the case of frequency selective (FS) fading. In addition to
the study of full rank codes, we also consider rank deficient
space-time codes, and determine achievable diversity orders with
transmit antenna selection.

I. INTRODUCTION

Space-time coded (STC) systems have become popular
since they offer increased data rates while achieving low
error probabilities [1], [2], [3]. On the other hand, a major
limitation in achieving the promised advantages in practical
systems is the high cost of implementing multiple chains
of radio frequency (RF) circuits (amplifiers, filters, etc.) at
the transmitter and the receiver. A method to reduce the
required hardware complexity is to employ antenna selection
(at the transmitter and/or at the receiver). The idea is to use a
small number of RF chains together with the selected subsets
of available antennas for transmission, and still obtain the
benefits of MIMO communications. In this paper, our focus
is the transmit antenna selection based on feedback from the
receiver.

Recently, there have been significant research on transmit
and receive antenna selection for MIMO systems. A general
overview of the capacity and performance of MIMO sys-
tems with antenna selection at the receiver is presented in
[4]. Antenna selection algorithms and analysis techniques by
considering the minimization of error probability of the STCs
are studied in [5]. A set of near-optimal selection algorithms
based on maximizing the channel capacity is presented in
[6]. Antenna selection at the receiver based on maximizing
the signal-to-noise ratio (SNR) over quasi-static flat fading
channels is considered in [7] and [8]. The performance of STC
systems when the MIMO subchannels experience correlated
fading is studied in [9]. In [10], the authors demonstrate that
transmit antenna selection combined with space-time trellis
codes can achieve full available diversity using simulations.
However, they do not perform an analytical error-rate analysis.
In [11], performance analysis for space-time block codes
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using the Alamouti scheme with transmit antenna selection
over Rayleigh fading channels is presented which basically
proves that full diversity is achieved. It is shown that trans-
mit antenna selection with maximum ratio combining at the
receiver achieves full diversity [12]. Two adaptive transmit
antenna selection criteria based on an upper bound for the
conditional error probability of the space-time coded schemes
are provided in [13]. Transmit antenna selection for uncoded
spatial multiplexing systems is considered in [14]. Similarly,
in [15], transmit antenna selection algorithms are proposed to
maximize capacity or minimize error probability for spatial
multiplexing.
When the transmission rates are increased, depending on

the multipath spread of the channel, frequency selective (FS)
fading channel model may be more suitable than the flat fading
model. Although this is an important model for many practical
applications, there is only some limited research on STC-
MIMO systems with antenna selection over FS channels. Two
suboptimal antenna subset selection schemes are proposed for
direct-sequence code-division multiple access (CDMA) sys-
tems in [16]. Performance improvement with antenna selection
over MIMO-FS fading channels has been presented in [17] and
[18] where only space-time block codes are considered and no
error probability analysis is performed. In [19], receive antenna
selection for MIMO-FS fading channels is studied.

In this paper, we consider transmit antenna selection based
on the received signal to noise ratios, and derive the diver-
sity advantages of general space-time codes. First, using an
approach similar to [7] (where receive antenna selection is
considered), we perform a pairwise error probability analysis
for the case of transmit selection over flat fading channels.
Then, based on these results, we present our expectations on
the offered diversity orders for STC systems over MIMO-
FS fading channels. We do not have formal proofs for the
latter. We show that for full-rank space-time codes, transmit
antenna selection does not degrade the diversity gain compared
to that of the full complexity system. Furthermore, we show
that if the code does not achieve full diversity for the full-
complexity system (i.e., it is rank deficient), then performing
antenna selection results in a loss of overall diversity order.
We note that the results are very general, and apply for
different space-time codes as they are only based on pairwise
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Fig. 1. Space-time coded MIMO system with transmit antenna selection based on received powers.

error probabilities. We corroborate our analytical results using
extensive simulations.

The paper is organized as follows: Section II presents the
system model. Section III provides the pairwise-error proba-
bility (PEP) analysis for STC systems with transmit antenna
selection over flat fading channels. Section IV extends the
results to the case of MIMO-FS channels. Finally, Section V
concludes the paper.

II. SYSTEM DESCRIPTION
In this section, we describe the system model for STC-

MIMO systems. Figure 1 shows the STC system with antenna
selection at the transmitter side. The channel is modelled as
a quasi-static MIMO Rayleigh fading channel where the dif-
ferent sub-channels fade independently. In order to determine
the antennas to be used, the pilot symbols can be transmitted
from all available M transmit antennas, and then the SNR for
each transmit antenna can be obtained at each frame. Once
the selection of transmit antennas is done based on the largest
received SNRs, the receiver can feedback the indices of the
LT transmit antennas to be used periodically. The feedback
information about the selected transmit antennas only requires
at most M bits, thus, it does not slow down the transmission
rate significantly. After the selection of antennas is performed,
the information sequence is encoded by a space-time encoder,
and then, the coded sequence is multiplexed by a serial-
to-parallel converter into several data streams. The resulting
data streams are then modulated and transmitted through the
selected LT antennas simultaneously. At the receiver, space-
time decoding is performed using the demodulated signals of
the N receive antennas.

For a general MIMO system with M transmit and N
receive antennas, and D intersymbol interference (ISI) taps,
the received signal at antenna n at time k can be written as

D-1 M

Yn (k) MD Z h,n(k)Sm (k -d) + wn (k) (1)
d=O m=1

where hd n(k) is the fading coefficient at time k between
transmit antenna m and receive antenna n for the dth ISI tap,
Sm (k) is the transmitted symbol from antenna m at time k, and
wn (k) is the noise term, k = 1,... K, where K is the frame
length. Both fading channel coefficients, and noise terms are
modeled as zero mean complex Gaussian random variables.
The noise is assumed to be spatially and temporally white, and

its variance is 1/2 per dimension. The fading coefficients are
spatially independent, but they are assumed to be constant over
an entire frame (i.e., quasi-static fading), so the dependence
on the variable k can be dropped. For the case of flat fading,
D = 1, the fading coefficients are assumed to be identically
distributed for different sub-channels with variance 1/2 per
dimension. For frequency selective fading, the multipath delay
profiles need to be specified for all the sub-channels for a
clear characterization, however, we assume that the for each
sub-channel, the total power of the ISI channel is D, i.e., for
uniform multipath delay profile, all the channel coefficients
have a variance of 1/2 per dimension. Signal constellation
at each transmit antenna is normalized so that the average
power of the transmitted signals is unity, and p is interpreted
as the average SNR at each receive antenna. We assume that
the receiver knows the channel state information (CSI) via
some training symbols, however, the transmitter does not have
access to this, thus it cannot use "waterfilling" type ideas, and
it evenly splits its power across LT transmit antennas used.
Assuming that LT of the M available transmit antennas are

selected at the transmitter side, the received signals can be
stacked in a matrix form as

Y= DHS+W

where the N x (K + D -1) received signal matrix is

YY(1) ... y(K + D -1)

YN(1) ... YN(K + D -1)/

the N x LTD channel coefficient matrix is

ho, hD-1

I,lN .. I,hlN **-

h°LT,

hLT,N

the LTD x (K + D -1) codeword matrix is
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81 (1)
0

0

SLT (1)
0

0

. . . si(K)
81 (1) ...

... 0

SLT (1)
SLT (K)

0

0
s1 (K)

81 (1)

0
SLT(K)

SLT (1)

0
0

sl(.K)

0
0

SLT.(K) /

and the N x (K + D -1) noise matrix is

wi(1)

W=
WN(1)

... wi(K+D -1)

... WN(K + D 1 I
..WN(K+D 1)1

Let us define the event A = {hi, h2, , hLT, the first LT
columns having the largest norms among all the columns of
H'}. Then, the joint pdf of the columns of H is equivalent to
the conditional pdf

fH/l ...H/LT (h, , hLT IA) (4)

where H'j denote random variables with the corresponding
realization hj. For brevity, we will denote this joint pdf as f,
which can be written as

f = P(A)P(AIH'I= hi,** ,H'LT hLT)
*fH'1, ,H/LT (hl,. , hLT).

where P(A) = a

(5)

1M! ., Then the pdf becomes
(M-LT)!LT!

When the CSI is known at the receiver, the PEP conditioned
on the instantaneous CSI is the same as the one for the case
of a MIMO AWGN channel. For any given D and H, the PEP
of erroneously receiving S, when S is transmitted, is given by,

P(S - SIH) =I erfc(c IIHBI)2\\4DM

which can be upper bounded as

P(S - SIH) < exp 4DM IIHB2)

(2)

(3)

where B = S -S is the codeword difference matrix. I42
represents the sum of magnitude squares of all entries (i.e.,
IIy 2 = El 1 EJ 1 |V,j 2 is the Frobenius norm of the I x J
matrix V, where vij is the entry of V at the jth row and jth
column). To find the PEP over MIMO fading channels, we
simply need to average this quantity in (3) over the fading
statistics.

III. TRANSMIT ANTENNA SELECTION OVER FLAT FADING
CHANNELS

In this section, we study pairwise error probabilities for
STCs with transmit antenna selection based on the received
SNR levels over flat fading (D = 1) channels. First, we
derive PEP bound for full rank codes, and then consider rank-
deficient codes. Our approach is parallel to the one taken in
[7] for receive antenna selection. We also present simulation
results to verify the theoretical findings.

A. Transmit Antenna Selection with Full Rank Space-Time
Codes

Let us denote the N xM channel transfer matrix by H', and
its LT columns having the largest norms by hi. h2 .. hLT.
i.e., they form the equivalent channel matrix described in the
previous section, H. In order to derive an upper bound on the
PEP, we first need to compute the joint probability density
function (pdf) of the columns of H.

oP(IIH'LT+i12 < Ih i. 12, IIH'M 12 < 1h.i.1 2)

*fH/',.. ,H/LT (h, hLT) (6)

where Ihmin 12 = min{f hl1 2, * * , iLT1h 2}, then the joint
pdf can be written as,

LT \LT
f a (i fHij (hj) ZE IRm (hi, , hLT)

j=l T 1=1

P( IH/L +112 < IlIh, 12 IH'm 12 < IlIh 12) (7)

where IR, (hl, * * * , hL,) is the indicator function

-IR1 (hi...~ hLT) { 1 if (hi... , hLT) e Rl
IR,(hl... ,LT) ~ 0 else

and the region 'Z is defined as

R, = .hi,- hhKLT<hk|, k= 1,- ,l-1,1 ± 1, ,LT}-

Finally, using the Gaussian statistics, the joint pdf of the
selected LT columns can be written as

f
(1t=1 [ n=nh2

e (lhl1 2+...+ lhLT 112)
* 7NLT

I7R,,l (hi) ...** hL ()

(8)

The PEP in (3) can be upper bounded by averaging over the
selected columns having the joint pdf in (8), that is,

P(S--~S < E1 fe 4LT 1 - e-
1=1 l ne=h2 nh11 L

E LT Il h i 2*e Z l 2

NiLT dhl ...dhLT.
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We can utilize the eigenvalue decomposition of BB* = UAU*
where U is a unitary matrix and A is a diagonal matrix with
eigenvalues of BB*. Then, we note that

LT

IIHBI2 = tr ((HU)A(HU)*) =E Ai llC, 112
i=l

where ci is the jth column of HU, and

LT

E licill'
i=l

(10)

Let us write 11 as 11 < 1(1)1(2) with

(1) J= Iio (i 4LT ) _n1 (z
1 fo" .. o _

tr ((HU) (HU)*)

(16)

-1 umn) LIlT II dumnmlmln=l

=1 uln) YIdl
N n=l

~(2) JX c cx (Kl+ P4 ) : N 1 .," (1 N

tr (HUU H-)
tr (HH*)
LT

Zh
211 lhilII

i=l

At this point, let us assume that we have a full-rank space-

time code which means that all the eigenvalues of the matrix
BB* are positive (i.e., nonzero). Later in this section, we will
also consider the rank-deficient STCs (some of the eigenvalues
of BB* being zeros) as well. We denote the minimum of
Al,...,ALT byAandnotethat

LT LT

Ai llciii2> jCiI12

LT

A h1 2

i=l

Using c-e-dx = 1, we obtain

Hi=l,i7u1( 4LT

(1 1)

(17)

For 1(2) we first use v, = Uln and note that

N \YNM-NLT N N

: vn 1: .. 1: *V*ni *V*nNMN LT (18)

n=l n1=1 nNM-NLT=1

and Vn1 VnNM-NLT 1n=(Vn)n such that

N

in = NM -NLT.

n=l

Then we can write 1(2) as,
(12)

Hence, the upper bound on the PEP can further be
bounded as

hi "i=h1
P(S-S) < ZJcae 4LT

NTi

N1e -1

H2n1 M -LT LT

h~

[n=) n ] HL

To simplify this expression further, we use the following r
(as also used in [7])

N- 1 n Nv

g(v) e-V <

-O N!n=O

for v > 0, and write an upper bound to the 1th term o

summation as

< | -4 L , T1 A jhi 112 e
-T,< ~~4LT =1

M LT
N L

[Iht 112N M-LT LTdh
N!

m=1

I(2) (1)M LTjc EN (
je

+)vn

N N

... (vn ) dvi ... dVNy
nl 1 nNM-NLT 1

(19)

Changing the order of summation and integration and using
O;

xme-axdx:
am+l

results in

(2) _ t 1 M-LT N N N i

(14) t =1 aNM-NLT= ( 4Lw bt in

Finally, at high SNRs, from 1I(i) and 1(2) we obtain,

(20)

P(S -S) <(N!)M-LT (NM)

N N

nl =l nNM-NLT==1

(15)

where llhj1 2 = ENN hl,, 2. By making the change of
variables, hl,n orne-0' and Uln = Ol2n' and taking the
integral over the entire space (as opposed to each region R1),
we can further upper bound this quantity as

This is our main result which shows that a diversity order of
MN (i.e., full diversity available in the system) is achieved.
The coding gain depends on the eigenvalues of the square of
the codeword difference matrix, BB*. Obviously, the coding
gain with antenna selection will be lower than that of full-
complexity system. When a full-rank STC is used, A will be

866

= |* ( 4LT)m n=l umn

O~ ~~~L Y((E N )N M-LT L XT N
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p MN

4LT (21)
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Fig. 2. FER for full rank 4 state STTC from [1] with transmit antenna
selection.

nonzero and one way to design new codes suitable for transmit
antenna selection would be maximizing the minimum value of
A of all codeword pairs.

Let us now provide several examples to illustrate the error
rates of STC systems with transmit antenna selection. Figure
2 shows frame error rate (FER) plots for the M transmit and
1 receive antenna system (with LT = 2) when the 4-state
space-time trellis codes (STTC) from [1] with a frame length
of 130 QPSK symbols are used. As seen from the plots, with
no antenna selection, this full rank STTC achieves full space
diversity of order 2 when M = 2 and N = 1. When the
number of available transmit antennas is increased to M = 3
and M = 4, while still using LT = 2 of them for transmission,
the diversity order becomes 3 and 4, respectively.

B. Transmit Antenna Selection with Rank-Deficient Space-
Time Codes

Until now, we considered the full-rank STCs and observed
that they achieve space diversity of order MN. To complete
the picture, in this section, we consider the performance of
rank-deficient STCs with antenna selection.

For rank-deficient space-time codes, when LT > 1 transmit
antennas are selected, the derivation of the PEP will follow
the same lines as full-rank codes ((9)-(20)). However, when
rank-deficient space-time codes are used with the rank q =

rank(B) < LT < M, then (LT- q) eigenvalues (Ai terms)
will be zero. Therefore, 1(1) and 1(2) (expressions (17) and
(20)) will be computed for only nonzero eigenvalues, where A
is the minimum of the nonzero eigenvalues. If the eigenvalue
Al which corresponds to i = I term in the overall 11 integral,
is zero then the SNR term in 1(2) will disappear, on the other
hand, SNR exponent in 1I1) will be Nq. If A1 is nonzero then
SNR exponent in (2) will be N while the exponent in I(1)
will be N(q -1). From the summation of the SNR exponents
for 1(1) and 1(2), we see that the diversity order for rank-
deficient codes will be at least qN. We claim that this is the
true diversity order as opposed to MN for full-rank codes.
This is because, we can also derive a lower bound on the PEP

Fig. 3. PEP for rank-deficient STBC with transmit antenna selection.

that will result in the same diversity order. A similar argument
is made in [7] for the case of receive antenna selection.

Let us now present several examples to verify our ex-
pectations. Figure 3 shows the PEP plots of the expression
in (2) averaged over fading for the system with transmit
antenna selection LT = 2. We used an arbitrary codeword pair
from space-time block codes [2] with 4 input QPSK symbols
([1,j,1,-j] and [1, 1, 1, 1] where j 1/X). We observe
that with this rank-deficient code with q = 1, the diversity
order qN = 1 remains same for N 1 and different numbers
of available transmit antennas M C {3, 4, 5}. The same rank-
deficient codeword pair achieves diversity orders of 2, 3 and
4 when M = 3, LT = 2 and N is 2, 3 and 4, respectively.

IV. TRANSMIT ANTENNA SELECTION OVER FREQUENCY
SELECTIVE FADING CHANNELS

In this section, we deal with transmit antenna selection over
frequency-selective fading channels. Considering the channel
and signal model described in Section II, it is clear that
the MIMO FS fading channel with M antennas and D ISI
taps can be considered as MIMO flat fading channel with
MD virtual transmit antennas, thus, similar derivations can
be performed for the FS fading channels as well. However,
since the derivations of the joint pdf of the selected channel
coefficients and the PEP bound are more complicated for this
case, we only provide the expected diversity orders using the
extensions of the basic arguments of the previous section.

Our claims are as follows. The diversity order for STCs
with transmit antenna selection over FS fading channels will
be MND if a full rank STC is used. If a STC with q =

rank(BB*) < MD is used, then similar to the flat fading
case the diversity order for FS channel will be reduced to
qN. We expect these claims to be valid regardless of the
multipath delay profile of the underlying ISI channels, though
the channel matrix could be easier to deal with for the uniform
profile (as all the channel coefficients will be identically
distributed). We do not have formal proofs of these claims,
thus we resort to simulations to verify them.
We provide PEP plots of the expression in (2) for several

STC systems with transmit antenna selection over FS fading
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channel in Figure 4. We use arbitrary codeword pairs from [20]
with QPSK symbols and consider the MIMO systems with
N = 1, D = 2,LT = 2. The full rank codeword difference
matrix used in the simulations is

2 0 0 0
(2000 2~B= 0 0 2 0

0 2 0 0

For a full rank general delay diversity STC [20], the full rank
STC achieves a diversity order of 4 when M = 2 with no
antenna selection. With transmit antenna selection, LT = 2, a
diversity order of 6 is achieved when M = 3. Similarly, when
LT = 2 of M = 4 available transmit antennas are used, the
diversity order becomes MND = 8. On the other hand, when
a rank-deficient standard delay diversity STC [20] is used in
M = 2, D = 2, N = 1 system with no antenna selection, the
achieved diversity order is only 3, since the rank of the code
is q = 3. When there are M = 3 or M = 4 available transmit
antennas, using LT = 2 of them results in the same diversity
order of qN = 3 as expected. Having more transmit antennas
only increases the coding gain.

V. CONCLUSION

In this paper, we studied the performance of STC-MIMO
systems with transmit antenna selection over quasi-static fad-
ing channels. We considered transmit antenna selection based
on the maximum received powers where only the receiver
has knowledge of the channel state information. For flat
fading channels, using pairwise error probability analysis and
simulation results, we demonstrated that by employing antenna
selection one can still achieve full available diversity provided
that the underlying STC is full-rank. With rank-deficient STCs,
the diversity order depends on the rank of the codeword
difference matrix and the number of receive antennas. Based
on our results for the transmit antenna selection schemes over
flat fading channels, we have commented on the diversity
orders of the STC-MIMO systems with transmit antenna se-
lection over frequency-selective fading channels, and verified
our expectations using simulations.
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