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Abstract In this work, maximum likelihood (ML) channel esti- (ML) estimate whose direct calculation is computationally
mation for uplink multicarrier code-division multiple-access (MC- prohibitive. Several iterative procedure based on EM algorithm
CDMA) systems is considered in the presence of frequency fad- were applied to channel estimation problem [6], [7]. EM is also
ing channel. The expectation-maximization (EM)- and a space-
alteating generalized expectation-maximization (SAGE) algorithm consdered for the channel esimation in OFDM receivers and
are introduced to avoid matrix inversion for the ML channel estima- compared with SAGE version [8]. For CDMA systems, Nelson
tion problem. We compare the both algorithms in terms of the number and Poor [9] extended the EM and SAGE algorithms for
of used iteration and show that the proposed algorithms converge the detection rather than for estimation of continues parameters.
same performance of the ML estimator as the increasing number of Moreover, EM and SAGE based iterative receiver structures of
iterations. tractable complexity for JDE of direct-sequence code-divisionIndex Terms: MC-CDMA Systems, Channel estimation, multiple-access (DS-CDMA) signals were presented[I0]. Re-Maximum Likelihood, Least Square, EM, SAGE. cently, the work in [10] has been extended to MC-CDMA

I. INTRODUCTION systems in the presence of frequency selective channels [3],
[4]MC-CDMA scheme has gained considerable interest for [4]

In this paper, we apply the EM and SAGE algorithms toBeyond 3G (B3G) mobile communication systems because
it marries the best of the OFDM and CDMA worlds and the problem of ML channel estimation of uplink MC-CDMA

systems in the presence of frequency selective channels. In this
conseqently,caannel Tsup ly a performancei ofequen way, we convert a multiple-input channel estimation problemselective channels [1]. To evaluate the performance of these inoaumeofsgl-ptchnletmtonrbes
systems, ideal knowledge of transmission parameters is often ich anube easisled. Therefoe,th mation os

assued kown.Sine th chanel nfomatin isrequred which can be easily solved. Therefore, the computational cost

assumed knualiziown. Sinethe,channel iomation is arequcire for implementing the EM-based ML channel estimation is low
by the equalization algritm,haneland the computation is numerically stable. We show that the

part of the receiver structure[2]. For the uplink problem, since . . .
the received signals are a superposition of signals transmitted inialto of thealgrithare degraded for the increasingthe number of active user and therefore the required number offrom different user antennas, the simple channel estimation iteration are increased and MSE performance is also degraded.techniques used in single user systems cannot be used. There- The rest of the paper is organized as follows. In Section
fore channel estimation problem is a critical issue as well as ,II the channel and the signal model of MC-CDMA systemsdetection of data symbols transmitted by users at the base considered in this work are given. In Section III, ML channel
station. Recently, receivers that use separate detection and estimation based on EM and SAGE algorithms are presented.
estimation (SDE) and joint estimation and detection (JDE) The performance of the algorithms proposed in the paper
methods have been investigated [3] ,[4]. In these works, it was
also shown that channel estimation is a crucial part of the arecassessed in SectionIu
receiver and matrix inversion is necessary to estimate channel Notation: Vectors (matrices) are denoted by boldface lowervariations. Moreover, matrix inversion complexity increases by

the umbe ofctiv use an lenth o thechanel.(upper) case letters; all vectors are column vectors; (.)*,
(.)T (.)t and (.)1- denote the conjugate, transpose, conjugateThe expectation-maximization (EM) algorithm [5] is an . .transpose and matrxILnversion respectively;id.e denotes theitertiv appoacwhih cnveres he mximm-lieliood Frobenius norm; IL denotes the L x L identity matrix.

This research has been conducted within the NEWCOM Network of Ex-
cellence in Wireless Communications funded through the EC 7th Framework II. SIGNALMODEL
Programme and the Research Fund of Istanbul University under Projects, We consider a baseband MC-CDMA uplink system with
UDP-889/22122006, UDP-1679/10102007, UDP-921/09052007. This work
was also supported in part by the Turkish Scientific and Technical Research P sub-carriers and K mobile users which are simultaneously
Institute (TUBITAK) under Grant 104E166. active. For the kth user, each transmit symbol is modulated in
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the frequency domain by means of a P x 1 specific spreading Assuming the channel model in the (2) is the correct channel
sequence Ck. After transforming by a P-point IDFT and model that ignores the leakage due to nonuniform channel tap
parallel-to-serial (P/S) conversion, a cyclic prefix (CP) is spacing, the least-squares (LS) solution of (5) which is also the
inserted of length equal to at least the channel memory (L). maximum-likelihood (ML) channel estimate (assuming known
In this work, to simplify the notation, it is assumed that the transmitted symbols) can be written ,while A is of full column
spreading factor equals to the number of sub-carriers and all rank[12], as follows
users have the same spreading factor. Finally, the signal is
transmitted through a multipath channel with impulse response hML =(AtA)-lAty (6)

L where
gk(t) Zgk,l (t - Tk,1) (1)

I Q1,1 Q1,2 Q1,K
where L is the number of paths in the kth users channel; 9k,l AtA QQ | 2,1 Q2,2 Q2,K |
and Tk,l are, respectively, the complex fading coefficient and (7)
the delay of Ith path and Pk is the transmit power of the kth L K, QK,K
user. The fading process is assumed to be white. Note that Here, Qj that is the matrix elements of Q can be evaluated
the L-dimensional discrete channel impulse response vector

a
.

gk ~ ~~~~~~kL n h rnmsinpwrR as follows using the properties b(jm)bk(m)= 1, FtF =R'Lgk = [9k~k1,9k2, .. , 9k,L]Tand the transmission power Pk adCTC k k(M ,

can be combined as hk = VPkgk, since they can not be a
separated from each other.

In the receiver, the received signal is sampled at chip-rate, Mx IL
serial-to-parallel (S/P) converted, CP is removed, and DFT is Qi l M (8)
then applied to the discrete time signal to obtain the received >m=l m m
vector expressed as The problem of interest is the calculation of the inverse of the

K KL x KL square matrix in (6). The inverse of Q is of com-
y(m) = 3 bk(m)CkFhk +w(m) m =1,2,..., M (2) putational complexity (O((KL)3)) and requires significant

k=1 computation for large values of L and K. Especially, ongoing
research with goal of increasing user capacity, the number of

wherel;bk(in)=denotd ataCk snth by the user
Ckl wiPTthemt active user K will be increased enormously. Therefore, instead

symbol;ip,Cik diag(kes)va swinthek [st k,1 1c were of directly minimizing (5), Expectation-Maximization (EM)
each hip,ik, akes alue in te se {\- I v}dni and its generalized version SAGE algorithms will be proposed.

the kth users spreading code ; F C CpXL denotes the DFT
matrix with the (k, l)th element given by e-i27kl/P ; and A. EM algorithm
w(m) is the P x 1 zero-mean, i.i.d. complex Gaussian vector The suitable approach for applying the EM algorithm for
that models the additive noise in the P tones, with variance the problem at hand is to decompose the received signal in
(72/2 per dimension. (2) into the sum [5] as follows

Suppose M symbols are transmitted. We stack y(m) as K
y=[yT(1), ...,yT(M)]T. Then the received signal model can Y= JYk (9)
be written as =

bi(1)C,F ... bK(1)CKF h, 1 w(l) where

Y= b .V.C. + bk(l)Ck 0 0 F Wk(1)
abn(d)CFca bK(M)CKFJ[ hK I [w(M)J Yk[[hk0 (10)

(3) L ° O (MC LF w()
and can be rewritten in more succinct form 0 0k L Wk(M)

Here, Yk represents the received signal component transmitted
y = Ah + w (4) by the kth user through the channel with impulse response hk.

where A and h are MR x KL and KL xlI dimension matrices. Note that y and Yk in (9) are treated as the complete and the
incomplete data respectively in the EM approach employed.

III. MAXIMUM-LIKELIHOOD (ML) CHANNEL ESTIMATION Equation (10) can be written in more succinct form as

Estimation of the channel impulse response vector is ob- folos
tamned by directly minimizing the following cost function Yk =XkFhk + Wk 1 < k K K (11)

h = arg min{y Ah 2} (5)The Gaussian noise vector, Wk in (11) rep~resentsthpoinar ofn{~- l5 win the decomposition defined by _Z= Wk the,phortio
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variance is (7/3k. The coefficients /3k determine the part of the --' - -EM
noise power of w assigned to yk, satisfying Z =l/3k 1, SAGE

-1 -,. Maximum Likelihood
/3k <. 10 ... ................

At the qth iteration the EM algorithm computes in a :. ...............................-

first step, called Expectation Step (E-Step). Following the
EM technique presented in [8], the algorithm estimates the...
corresponding component in the received signal for each of .,
the user links as follows, 15dB

E-Step: For k=1,2,....K, compute .......

0k=1j [ L- SS~~~~~~~~~~~~~~~~~~~2dBl
M-Step: For k=1,2.......,K,compute ,-/-"

121(q) J~(q (qkF 14

hk = argmin { -Ykq) ~ 2} 20) 30 4 702)__
k 10 20 30 40 50 60 70

Number of iteration
Solving (14), we can calculate channel impulse response for
the kth user as follows: Fig. 1. Convergence of MSE with respect to number of iterations

t-i(q) ~~~~~ofthe EM-type estimators compared with the MSE of the ML estima-
hkq FtX_ lYk (15) tor.(L=4,T=8)

In this step, as in the conventional OFDM scheme (single
user), it divides the corresponding component by the reference For 1 < j < K and j 7t k
symbols in the frequency domain and then multiply by F to ^(q±1) ^(q) (20)
obtain an updated estimate of the channel impulse response. Zk -Zk
The EM algorithm do not require any matrix inversion because Choosing initial values for the EM algorithm is an important
Xk is a diagonal matrix. issue for the convergence of speed of the both algorithm. We

B. SAGE algorithm can obtain an initial estimate of the channel for the EM-typeiteration as follows:
The SAGE algorithm proposed by Fessler et al. [11] is A O)

generalization of the EM algorithm. Rather than updating hk ) = FtX.y. (21)
all parameters simultaneously at iteration q, updates only As expected from Eq.(21), increasing the number of active user
a subset of the elements of the parameter vector in each will degrade the initialization performance of the algorithm.
iteration. Following the SAGE technique presented in [8], This in turn, will increase the number of iterations necessary
the algorithm estimates the corresponding component in for convergency as will be shown in the simulation section.
the received signal for each of the user links as follows,
Initialization: For 1 < k <K IV. SIMULATIONS

^(0) = X F(°) l To demonstrate the performance of the proposed channel
Zk XkFh (16) estimators, we simulate uplink MC-CDMA systems operating

At the qth iteration (q=0,1,2,...): For k = 1 + [qrmod , in.the.presence of.frequency selective channels. In computer
compute ~~~~~~~~~~~simulations, we assume that all users are received with the

same power level (Pk=l). Orthogonal Walsh sequences se-
K 1 lected as a spreading code and the processing gain is chosen

(=q) (q +S(E)I equal to the number of subcarriers P 16. Each user sends its
k+ 3k Y Z (17) data frame composed of.Tpilot symbols, and F data symbols,

over mobile fading channel. Wireless channels between mo-

h +)-FtX-l (q) 18 biles antennas and the receiver antenna are modeled based on-k Yk (18) a realistic channel model determined by COST-207 project in
which Typical Urban(TU)channel model is considered having

(q q±) = X (19) the channel length L and the channel tap gains are given
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in Table 1. QPSK signal modulation format is adopted with
bandwidth is chosen as 1.228 MHz (Qual Comm-CDMA).

... ... .. ... .. ... ... .. -

SAGE
Table 1. Taps Power . ........- ML

Delay (stsn) Linear Logarithmic .
0 0.6564 -1.8286

0.81 0.2086 -6.8072
1.62 0.0790 -11.0210
2.44 0.0560 -12.5171 K=8 K=12

At receiver, the initial ML channel estimate is obtained by 10.............
using T preamble symbols. Fig.1 compares the mean-square /
error (MSE) performance of the EM-type algorithms as a '.............
function of the number of iterations for the number of active - ''-..... /l.l.-
users is K = 8. For all simulations weight coefficients in L .....//.|....
(13) are chosen to be equal, i.e., 3k=1/K. It also includes
comparisons with the MSE of the ML estimator. It is shown
that the SAGE algorithm converges to the ML estimate within
16 iterations on average SNR 15 dB, while the EM algorithm ,..;...
converges to the ML estimate within 30 iterations. It was also
shown that required the number of used iterations are increased
to 24 and 60 for SAGE and EM respectively for SNR 25dB. lo-2
On the other hand, since all the uplink channels are updated 10 20 30 40 50 60 70

Number of iteration
every K iterations while all of them are updated for every one
iteration in the EM algorithm, we can count K iterations of Fig. 2. MSE performances of EM type and ML estimator as a function
the SAGE algorithm as if one iteration for EM algorithm as a of active user
function of complexity requirement. In this case, performance
difference between SAGE and EM can be seen more clearly.

In Fig.2, increasing number of active users has been inves-
tigated. It was shown that performance of the ML channel
estimator is degraded by the increasing the number of active ..' ' 7 --EM

..SAGE
user K because it needs to estimate more parameters hk for -ML
constant pilot number T. Moreover, increasing the number of Full Load System (K=16)
active user also affects the initialization of the EM and SAGE SNR=15dB
algorithm. Therefore, the number of required iterations for the
EM and SAGE algorithm to converge the ML performance are T=12
also increase by the increasing of the number of active user. T. =8
This fact can be demonstrated by the increasing the number io- X :.:.,.
of channel taps number,L. -." // |

In Fig 2, it is demonstrated that the required number of /
iteration are increased and MSE performance is also degraded ?
for K = 12. It is also expected that this performance degra-
dation continues for a full load system K = 16. Therefore, in
Fig. 3, the number of pilot tones T are increased to improve / ; / ' '
channel estimation performance for K = 16. With increasing
pilot tones, both MSE error and the number of iteration '., ..

lead to decreasing as shown in Fig 3. It was concluded that
increased observed vector length supply lower MSE error and
initialization of both EM and SAGE are also improved. 12

10 20 30 40 50 60 70 80 90 100
V. C0NCLJSONS -Numberof iteration

The problem of maximum likelihood channel estimation
foupin MCCM sytmrprtn i h rsneo Fig. 3. MSE performances of EM type and ML estimator as a functionfor uplnkM-CDMAsystes opertlng n thepresece OIof number of used pilot tones

frequency selective fading channels was investigated. We pre-
sented an iterative approach based on a version of the EM type
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algorithms suitable for superimposed signals. It was shown
that the new channel estimation schemes allows to achieve
ML estimator, when direct computation of the matrix inversion
is too complex. In this work, it was shown that The SAGE
channel estimator updates the parameters sequentially, while
the EM channel estimator reestimates them simultaneously.
Although SAGE can not use the benefits of parallelization,
we demonstrated that it yields faster convergence than EM
algorithm in channel estimation for MC-CDMA systems.
Moreover, it was concluded that both algorithms require more
iterations when the system capacity approaches to the full
system capacity and this could be solved by increasing the
number of pilot tones.
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