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Abstract

In this paper, Ricci curves in a 3-dimensional Wey| spiagg, T) are defined and it is shown that
any 3-dimensional Chebyshev net formed by the three families of Ricci curve&#iga T') having
a definite metric and Ricci tensors is either a geodesic net or it consists of a geodesic subnet the
members of which have vanishing second curvatures. In the case of an indefinite Ricci tensor, only
one of the members of the geodesic subnet under consideration has a vanishing second curvature.
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1. Introduction
A manifold of dimension n with a conformal metric tengpand a symmetric connec-
tion V satisfying the compatibility condition
Vg—26®T =0
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or, in local coordinates,
Vigij — 2Tkgij =0 (1.1)

whereT is a 1-form (covariant vector field) is called a Weyl space which will be denoted
by W, (g, T) [1]. Under the renormalization

g=21%g (1.2)
of the metric tensog, T is transformed by the rule
T =T + d(In 1)

wherea is a scalar function defined diz(g, T') [1].
If, under the renormalization (1.2) of the metric tengothe quantityA is changed
according to the rule

A=)\PA,

thenA is a called a satellite of of weight{p}.
The prolonged covariant derivative afwith respect tov is defined by

vaZVkA—kaA. (1.3)

Let R;; be the components of the Ricci tensor of the 3-dimensional Weyl space
Wa(g, T) and letR;;) the symmetric part oR;;. Let the principal directions and the cor-
responding principal values &;;, be denoted, respectively, h{yzz) g andM, M, M. We

1 2 3

then have
(Rj) + Mgipv' =0 (i, j,r=1,23). (1.4)

It is clear thatR;; and M are satellites og of weights{0} and {—2}, respectively. We
r
call v, andg the Ricci’s principal directions. The integral curves of these vector fields

will be named as the Ricci curves ®f3(g, 7). These curves may be considered as the
generalization of Ricci curves in a Riemannian space [2—-4] to a Weyl space. §isce
assumed to be definite, the Ricci curves are all real.

Suppose that the vector fielailstz) and13) are normalized by the conditions

gjv'v/ =1 (r=1,23).
“rr
Accordingly, from (1.4) it follows that

Rijpv'v) =0 (r#5). (1.6)
ro s

We note thatys is the mean curvature d¥3(g, 7) in the direction ofv.

r r
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2. Chebyshev netsformed by Ricci curvesin a Wa(g, T)

Lets = (zl), 12; g) be the 3-dimensional net formed by the tangent vector fitlazjazisand
g of the three families of Ricci curves iWs(g, 7).

If any vector field belonging té undergoes a parallel displacement along the integral
curves of the remaining two vector fieldsdnthens is said to be a Chebyshev net of the
first kind or, simply, a Chebyshev net [5].

Suppose that is a Chebyshev net. This will be the case if and only if the conditions

vkvklgizO (r#s;, r,s=1,2,3). (2.1)
Let n and p be, respectively, the principal normal and binormal vector fields of the

integral curveC of the vector fieldv which are normalized by the conditioggn'n/ = 1,
r r r r

gijb'b’ = 1. In this case, the Frenet formulas
r r

vkvkvj = ,0nj, vkvknj = —ij + ‘L’bj, kakbf =_—1tn/ (2.2)
r r rr r r rr rr r r rr
hold [1].

Taking the absolute derivative of (1.4) in the directionzgéfand transvecting the so-
obtained equation b)g/' and remembering th@tjtr)";rzj =0, Wé get
gl(le(ij))'r)i’Zj + (Rgj) + Iylgij)’}jls)lvﬂr)i =0. (2.3)
Sinces is assumed to be a Chebyshev net, according to (2.1), (2.3) becomes
yW&my¢=0 (r #s). (2.4)
On the other hand, we have the relations
qf = cos@lgj + sinelgj, gf = cos@zgj + sineggj,

n! = cosfzv’ + sinbav’
3 1 2

b = coshiv’ — sinv, b = costov’ — sinfv,
1 3 2 2 1 3
b’ = coshzv’ — sindzv’ (2.5)
3 2 1
where

91=Z(g,r}), 92=Z(g,g), 93=Z(11),g).

Choosingr =1, s =2 in (2.4) and using the relations (2.5) we find that
12)1 (le(ij))a)igj cosf1 + 12)1 (le(ij))a)igj sing; = 0. (2.6)

The absolute derivative of (1.6) in the directionsubis
p

UI(VIR(ij))Uin + vl(Vlvi)R(ij)vj + vl(lej)R([j)vi =0. (2.7)
p rs p r s p S r
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Taking firstr =1, p=s=2and thenp =2,r =1, s =3 in (2.7) we, respectively,
obtain

| o Lo .
y (VzR(ij))ll)l 12)’ ==Y (Vzlz)’)R(ijﬂl" (2.8)
and
e o
ViR; J =0. 2.9
12)( I (1/))1{13) ( )
By (2.8) and (2.9), (2.6) reduces to
Iz)l(vlgi)ij(,'j) cosp; =0. (2.10)
On the other hand, since the vecgé(Vlzzﬂ') is perpendicular t%vf, we can write
Lo ‘ ) ‘
Vvl = pnt = povl J 211
v (Viv!) pn 20’ + nay (2.11)
so that, by (1.5) and (1.6), (2.10) transforms into
AoM cosf = 0. (2.12)
1

Similarly, choosing =2,s =1;r=3,s=1,r=3,s =2;r=1,s =3 andr = 2,
s = 3in (2.4) and making use of (1.5), (1.6), (2.1), (2.5) and (2.7) we, respectively, obtain

A1A2/1 sing, =0, (2.13)
Mlﬁ:;l costz =0, (2.14)
uz]g] sinfz = 0, (2.15)
AaM sindy =0, (2.16)
ug]\z/[ cosh, =0 (2.17)
in which the functions.1, n1, A3 andug are defined by
vi(Vivh) = pnl = ray) + pay/, (2.18)
g’(Vzgj) = ggj = Asllfj + uztz)j. (2.19)

Casel. Let the Ricci tensoR;; be definite. Since, by (1.5),
M=—R(U)Uivj=—Rl','Uin r=1273
r rr “rr

the conditions (2.12)—(2.17) are, respectively, reduced to

A2c0s91 =0, (2.20)
A1Sinf2 =0, (2.22)
n1C€0s93 =0, (2.22)
u2Sind3 =0, (2.23)
A3Sind; =0, (2.24)

u3coshy = 0. (2.25)
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Casel-a. A1 # 0. Under this condition, (2.21) and (2.25) give
62 =0, u3z3=0. (2.26)
Sinced, = 0, from (2.5) it follows that

p=v. n=v (2.27)
2

Then, by (2.2), we have

ozgfngi =12;fv,»12;' =—5121i, (2.28)
O:vjVjvi =vjani =—pv' + 1P (2.29)
2 '3 2 72 22 22
from which it follows that
2 2
By (2.11) we have
r2=pn2=0, (2.31)

showing that Eqgs. (2.20) and (2.23) are automatically satisfied. Moreover, by (2.2), (2.18)
and (2.19) we obtain

Iy i i i
v'Vivt = pn' = A3v 2.32
3 13 33 3l ( )

from which we have either

@ p=r3#£0m=v)or
3 3 1
(b) g:)\g:o.

In the case (a), by (2.52,: zl) implies63 =0 andp = 12) So, we must have
3

0= vl%vi = vl%ni = —,OUi + Tbi = —,Ovi —+ ‘L'Ui = p=1=0
3 1 3 3 33 33 33 32 3 3

contradicting the conditiog # 0. Consequently, only the case (b), i.e.,

;3) =x3=0 (2.33)
can occur.
Under these conditions, Egs. (2.20)—(2.25) are reduced to the single equation
u1c0s93 = 0. (2.34)

In (2.34) 11 can not vanish since, otherwise, by (2.2) and (2.18) we must have

vlvlvi =pnl = A1vi
1 1 11 2

from which we obtain
n=v (P=i1#0) (2.35)
1 2 1
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and, consequently, by (2.5)

01=0, b= (2.36)
1 3

But (2.35), (2.36), (2.1) and (2.2) imply that

0=lelvi :vlvlni =—pvi+tp=—pvi+10) = p=1=0
1 2 1 1 11 11 11 13 101
contradicting the conditiop = A1 # 0.
1
So, in (2.34)u1 # 0 so that; = /2. From (2.5), we get
n=uv, b=—v
3 2 3 1
by means of which we obtain
0=v'Vjvi =v'Vin' = —pv’ + 1p' = —pv’ — T
3 2 3 '3 33 33 33 31
or equivalently
=T7T= 0, 2.37
2=} @37

where we have used (2.1) and (2.2).
(2.30) and (2.37) show that the two families of Ricci curves which are the integral curves
of the vector fie|d321 andg are geodesics with vanishing torsion (second curvature).

In a very similar way, it can be shown that

Ai #0impliesu; #0, Aj=pj= 0G#j;i,j=1,2,93), (2.38)
i #0impliesa; #0, w; =1; =0(j #1). (2.39)

But these conditions say that the two families of Ricci curves are geodesics with vanishing
second curvatures in Case I-a.
Casel-b. A1 = 0. We first note thaj; = 0 since according to (2.39)1 # 0 would
imply A1 # 0.
Casel-b1. A1 = 1 =0, u2 # 0 (or uz # 0). In this case, according to (2.39) # 0
andi3 = u3 =0 so that
p=0, p=0.
1 3
Under these conditions, from (2.20) and (2.23) we find that 7 /2 andd3; = 0, respec-
tively. Then, by (2.5) we obtain

n=v and n=v
1 3 3 1

by means of which we get

0= UIVZUiZUIVIHiZ—pvi—Ftbi = ,0:‘[:0,
1 3 1 1 11 11 1 1

0= le;vi =le1ni :—,Ovi—|-l'bi = p=1t=0.
3 1 3 3 33 33 3 3
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Accordingly, the two families of Ricci curves are geodesics with vanishing second curva-
tures (torsions).

It is easy to see that a similar conclusion may be drawn for the

Casel-bz. A1 =1 =0, A2#0 (orirz #0).

Casel-c. ,; = u; =0 (i =1, 2,3). In this case, Eqgs. (2.20)—(2.25) are automatically
satisfied. By (2.11), (2.18) and (2.19) we have

p=p=p=0
1 2 3

showing that the three families of Ricci curves are geodesics.

According to the above considerations these are the main cases that have to be consid-
ered.

It is to be noted that in the Case |%/3(g, T) becomes an affine space since it has one
Chebyshevian and geodesic net.

We are now able to state

Theorem 2.1. In a Wz(g, T) having a definite metric and a definite Ricci tensor any
3-dimensional Chebyshev net formed by the three families of Ricci curves is either a
geodesic net or it consists of a geodesic sub-net whose members have vanishing second
curvatureg(torsiong.

Casell. We now consider the case for whidls(g, T) has an indefinite Ricci tensors
and assume that the Ricci’s principal vaILMSM andM are distinct. Then, only one of

M M andM may be zero. So, if we takM 0 (M # M #0) in (2.12) and (2.16) then
Eqs (2. 13) (2.17) are respectively transformed mto Eqs (2.21)—(2.23) and (2.25). Namely,
A1Sinf2 =0, L1C0893 =0,
U2Sing3 =0, 13C0862 =0. (2.40)
Let A1 =0in (2.40). Then according to (2.2) and (2.18) we get
ll)lvlll)i _ Mlgi _ '(1)’}1
from which we have either

@) p1= 'f # 0 implying 131 =n 6r=7/2),b= —Y so that according to (2.1) and (2.2)
1
we obtain
0=v'Vjvi =v'Vinl = —pv! + 1p' = —pv’ — v
1 '3 1 1 11 1

which is impossible, or
(b) n1= /1> =0. (2.41)

In this case, Egs. (2.40) reduce to

w2Sinf3 =0, (2.42)
u3cosdr = 0. (2.43)
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These equations will be satisfied if

(i) uza=mpz=00r
(i) pu2#0 (orus#0).

In the case of (i), with the help of (2.2), (2.11) and (2.19) we respectively have

Iy i i i
v'Viv' = pn' = Ao’ 2.44
2 12 22 21 ( )
Iy i i i
v'Vivt = pn' = A3, 2.45
3 [3 gS 31 ( )

The respective solutions of (2.44) and (2.45) are
g:kzzo and g:xszo. (2.46)

Note that the casetzsz A2#0 andg =3 #0in (2.44) and (2.45) can not occur.

Combining (2.41) and (2.46) we conclude that in the case of (i) three families of Ricci
curves become geodesics.

In the case of (ii), from (2.42), we obta#iy = 0. Then, by means of (2.5), (2.1) and
(2.2) we find that

or, equivalently

p=1=0 (2.47)

On the other hand, by (2.2), (2.27) and (2.47) we get

IRy i i i
Vv = =0=2A
§V18 =55 3 TH3
from which it follows thatiz = u3 = 0. So, Eq. (2.43) is also satisfied.

Egs. (2.41) and (2.47) say that in case of (ii) the two families of Ricci curves are geo-
desics one family of which has vanishing second curvature.

Hence we may state

Theorem 2.2. In a W3(g, T) having a definite metric tensor and an indefinite Ricci tensor
whose principal directions are distinct, ar3ydimensional Chebyshev net formed by the
three families of Ricci curves is either a geodesic net or it consists of a geodesic subnet a
member of which has a vanishing second curvature.
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