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Abstract

In this paper, Ricci curves in a 3-dimensional Weyl spaceW3(g,T ) are defined and it is shown th
any 3-dimensional Chebyshev net formed by the three families of Ricci curves in aW3(g,T ) having
a definite metric and Ricci tensors is either a geodesic net or it consists of a geodesic sub
members of which have vanishing second curvatures. In the case of an indefinite Ricci tens
one of the members of the geodesic subnet under consideration has a vanishing second curv
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A manifold of dimension n with a conformal metric tensorg and a symmetric connec
tion ∇ satisfying the compatibility condition

∇g − 2g ⊗ T = 0
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or, in local coordinates,

∇kgij − 2Tkgij = 0 (1.1)

whereT is a 1-form (covariant vector field) is called a Weyl space which will be den
by Wn(g,T ) [1]. Under the renormalization

g̃ = λ2g (1.2)

of the metric tensorg, T is transformed by the rule

T̃k = Tk + ∂k(lnλ)

whereλ is a scalar function defined onW3(g,T ) [1].
If, under the renormalization (1.2) of the metric tensorg the quantityA is changed

according to the rule

Ã = λpA,

thenA is a called a satellite ofg of weight{p}.
The prolonged covariant derivative ofA with respect to∇ is defined by

∇̇kA = ∇kA − pTkA. (1.3)

Let Rij be the components of the Ricci tensor of the 3-dimensional Weyl s
W3(g,T ) and letR(ij) the symmetric part ofRij . Let the principal directions and the co
responding principal values ofR(ij) be denoted, respectively, byv

1
, v

2
, v

3
andM

1
,M

2
,M

3
. We

then have

(R(ij) + M
r

gij )v
r

i = 0 (i, j, r = 1,2,3). (1.4)

It is clear thatRij andM
r

are satellites ofg of weights{0} and {−2}, respectively. We

call v
1
, v

2
andv

3
the Ricci’s principal directions. The integral curves of these vector fi

will be named as the Ricci curves ofW3(g,T ). These curves may be considered as
generalization of Ricci curves in a Riemannian space [2–4] to a Weyl space. Sincg is
assumed to be definite, the Ricci curves are all real.

Suppose that the vector fieldsv
1
, v

2
andv

3
are normalized by the conditions

gij v
r

iv
r

j = 1 (r = 1,2,3).

Accordingly, from (1.4) it follows that

M
r

= −R(ij)v
r

iv
r

j = −Rij v
r

iv
r

j , (1.5)

R(ij)v
r

iv
s

j = 0 (r �= s). (1.6)

We note thatM is the mean curvature ofW3(g,T ) in the direction ofv.

r r
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2. Chebyshev nets formed by Ricci curves in a W3(g,T )

Let δ ≡ (v
1
, v

2
, v

3
) be the 3-dimensional net formed by the tangent vector fieldsv

1
, v

2
and

v
3

of the three families of Ricci curves inW3(g,T ).

If any vector field belonging toδ undergoes a parallel displacement along the inte
curves of the remaining two vector fields inδ, thenδ is said to be a Chebyshev net of t
first kind or, simply, a Chebyshev net [5].

Suppose thatδ is a Chebyshev net. This will be the case if and only if the condition

v
r

k∇̇kv
s

i = 0 (r �= s; r, s = 1,2,3). (2.1)

Let n
r

and b
r

be, respectively, the principal normal and binormal vector fields of

integral curveC
r

of the vector fieldv
r

which are normalized by the conditionsgijn
r

in
r

j = 1,

gij b
r

ib
r

j = 1. In this case, the Frenet formulas

v
r

k∇̇kv
r

j = ρ
r
n
r

j , v
r

k∇̇kn
r

j = −ρ
r
v
r

j + τ
r
b
r

j , v
r

k∇̇kb
r

j = −τ
r
n
r

j (2.2)

hold [1].
Taking the absolute derivative of (1.4) in the direction ofv

s

l and transvecting the so

obtained equation byn
r

j and remembering thatgij v
r

in
r

j = 0, we get

v
s

l(∇̇lR(ij))v
r

in
r

j + (R(ij) + M
r

gij )n
r

j v
s

l∇̇lv
r

i = 0. (2.3)

Sinceδ is assumed to be a Chebyshev net, according to (2.1), (2.3) becomes

v
s

l∇̇lR(ij)v
r

in
r

j = 0 (r �= s). (2.4)

On the other hand, we have the relations

n
1

j = cosθ1v
2

j + sinθ1v
3

j , n
2

j = cosθ2v
3

j + sinθ2v
1

j ,

n
3

j = cosθ3v
1

j + sinθ3v
2

j

b
1

j = cosθ1v
3

j − sinθ1v
2

j , b
2

j = cosθ2v
1

j − sinθ2v
3

j ,

b
3

j = cosθ3v
2

j − sinθ3v
1

j (2.5)

where

θ1 = � (v
2
, n

1
), θ2 = � (v

3
, n

2
), θ3 = � (v

1
, n

3
).

Choosingr = 1, s = 2 in (2.4) and using the relations (2.5) we find that

v
2

l(∇̇lR(ij))v
1

iv
2

j cosθ1 + v
2

l (∇̇lR(ij))v
1

iv
3

j sinθ1 = 0. (2.6)

The absolute derivative of (1.6) in the directions ofv
p

l is

vl(∇̇lR(ij))v
ivj + vl(∇̇lv

i)R(ij)v
j + vl(∇̇lv

j )R(ij)v
i = 0. (2.7)
p r s p r s p s r
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Taking first r = 1, p = s = 2 and thenp = 2, r = 1, s = 3 in (2.7) we, respectively
obtain

v
2

l (∇̇lR(ij))v
1

iv
2

j = −v
2

l (∇̇lv
2

j )R(ij)v
1

i (2.8)

and

v
2

l (∇̇lR(ij))v
1

iv
3

j = 0. (2.9)

By (2.8) and (2.9), (2.6) reduces to

v
2

l (∇̇lv
2

i )v
1

jR(ij) cosθ1 = 0. (2.10)

On the other hand, since the vectorv
2
l (∇̇lv

2
j ) is perpendicular tov

2
j , we can write

v
2

l (∇̇lv
2

j ) = ρ
2
n
2

j = λ2v
1

j + µ2v
3

j (2.11)

so that, by (1.5) and (1.6), (2.10) transforms into

λ2M
1

cosθ1 = 0. (2.12)

Similarly, choosingr = 2, s = 1; r = 3, s = 1; r = 3, s = 2; r = 1, s = 3 andr = 2,
s = 3 in (2.4) and making use of (1.5), (1.6), (2.1), (2.5) and (2.7) we, respectively, o

λ1M
2

sinθ2 = 0, (2.13)

µ1M
3

cosθ3 = 0, (2.14)

µ2M
3

sinθ3 = 0, (2.15)

λ3M
1

sinθ1 = 0, (2.16)

µ3M
2

cosθ2 = 0 (2.17)

in which the functionsλ1, µ1, λ3 andµ3 are defined by

v
1

l (∇̇lv
1

j ) = ρ
1
n
1

j = λ1v
2

j + µ1v
3

j , (2.18)

v
3

l (∇̇lv
3

j ) = ρ
3
n
3

j = λ3v
1

j + µ3v
2

j . (2.19)

CaseI. Let the Ricci tensorRij be definite. Since, by (1.5),

M
r

= −R(ij)v
r

iv
r

j = −Rij v
r

iv
r

j (r = 1,2,3)

the conditions (2.12)–(2.17) are, respectively, reduced to

λ2 cosθ1 = 0, (2.20)

λ1 sinθ2 = 0, (2.21)

µ1 cosθ3 = 0, (2.22)

µ2 sinθ3 = 0, (2.23)

λ3 sinθ1 = 0, (2.24)

µ3 cosθ2 = 0. (2.25)
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(2.18)
CaseI-a. λ1 �= 0. Under this condition, (2.21) and (2.25) give

θ2 = 0, µ3 = 0. (2.26)

Sinceθ2 = 0, from (2.5) it follows that

b
2

= v
1
, n

2
= v

3
. (2.27)

Then, by (2.2), we have

0= v
2

j ∇̇j v
1

i = v
2

j ∇̇j b
2

i = −τ
2
n
2

i , (2.28)

0= v
2

j ∇̇j v
3

i = v
2

j ∇̇j n
2

i = −ρ
2
v
2

i + τ
2
b
2

i (2.29)

from which it follows that

ρ
2

= τ
2

= 0. (2.30)

By (2.11) we have

λ2 = µ2 = 0, (2.31)

showing that Eqs. (2.20) and (2.23) are automatically satisfied. Moreover, by (2.2),
and (2.19) we obtain

v
3

l∇̇lv
3

i = ρ
3
n
3

i = λ3v
1

i (2.32)

from which we have either

(a) ρ
3

= λ3 �= 0 (n
3

= v
1
) or

(b) ρ
3

= λ3 = 0.

In the case (a), by (2.5),n
3

= v
1

impliesθ3 = 0 andb
3

= v
2
. So, we must have

0= v
3

l∇̇lv
1

i = v
3

l∇̇ln
3

i = −ρ
3
v
3

i + τ
3
b
3

i = −ρ
3
v
3

i + τ
3
v
2

i ⇒ ρ
3

= τ
3

= 0

contradicting the conditionρ
3

�= 0. Consequently, only the case (b), i.e.,

ρ
3

= λ3 = 0 (2.33)

can occur.
Under these conditions, Eqs. (2.20)–(2.25) are reduced to the single equation

µ1 cosθ3 = 0. (2.34)

In (2.34)µ1 can not vanish since, otherwise, by (2.2) and (2.18) we must have

v
1

l∇̇lv
1

i = ρ
1
n
1

i = λ1v
2

i

from which we obtain

n = v (ρ = λ1 �= 0) (2.35)

1 2 1
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ishing
and, consequently, by (2.5)

θ1 = 0, b
1

= v
3
. (2.36)

But (2.35), (2.36), (2.1) and (2.2) imply that

0= v
1

l∇̇lv
2

i = v
1

l∇̇ln
1

i = −ρ
1
v
1

i + τ
1
b
1

i = −ρ
1
v
1

i + τ
1
v
3

i ⇒ ρ
1

= τ
1

= 0

contradicting the conditionρ
1

= λ1 �= 0.

So, in (2.34)µ1 �= 0 so thatθ3 = π/2. From (2.5), we get

n
3

= v
2
, b

3
= −v

1

by means of which we obtain

0= v
3

l∇̇lv
2

i = v
3

l∇̇ln
3

i = −ρ
3
v
3

i + τ
3
b
3

i = −ρ
3
v
3

i − τ
3
v
1

i

or equivalently

ρ
3

= τ
3

= 0, (2.37)

where we have used (2.1) and (2.2).
(2.30) and (2.37) show that the two families of Ricci curves which are the integral c

of the vector fieldsv
2

andv
3

are geodesics with vanishing torsion (second curvature).

In a very similar way, it can be shown that

λi �= 0 impliesµi �= 0, λj = µj = 0 (i �= j ; i, j = 1,2,3), (2.38)

µi �= 0 impliesλi �= 0, µj = λj = 0 (j �= i). (2.39)

But these conditions say that the two families of Ricci curves are geodesics with van
second curvatures in Case I-a.

CaseI-b. λ1 = 0. We first note thatµ1 = 0 since according to (2.39)µ1 �= 0 would
imply λ1 �= 0.

CaseI-b1. λ1 = µ1 = 0, µ2 �= 0 (or µ3 �= 0). In this case, according to (2.39)λ2 �= 0
andλ3 = µ3 = 0 so that

ρ
1

= 0, ρ
3

= 0.

Under these conditions, from (2.20) and (2.23) we find thatθ1 = π/2 andθ3 = 0, respec-
tively. Then, by (2.5) we obtain

n
1

= v
3

and n
3

= v
1

by means of which we get

0= v
1

l∇̇lv
3

i = v
1

l∇̇ln
1

i = −ρ
1
v
1

i + τ
1
b
1

i ⇒ ρ
1

= τ
1

= 0,

0= vl∇̇lv
i = vl∇̇ln

i = −ρvi + τb
i ⇒ ρ = τ = 0.
3 1 3 3 3 3 3 3 3 3
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Accordingly, the two families of Ricci curves are geodesics with vanishing second c
tures (torsions).

It is easy to see that a similar conclusion may be drawn for the
CaseI-b2. λ1 = µ1 = 0, λ2 �= 0 (orλ3 �= 0).
CaseI-c. λi = µi = 0 (i = 1,2,3). In this case, Eqs. (2.20)–(2.25) are automatic

satisfied. By (2.11), (2.18) and (2.19) we have

ρ
1

= ρ
2

= ρ
3

= 0

showing that the three families of Ricci curves are geodesics.
According to the above considerations these are the main cases that have to be

ered.
It is to be noted that in the Case I-c,W3(g,T ) becomes an affine space since it has

Chebyshevian and geodesic net.
We are now able to state

Theorem 2.1. In a W3(g,T ) having a definite metric and a definite Ricci tensor a
3-dimensional Chebyshev net formed by the three families of Ricci curves is ei
geodesic net or it consists of a geodesic sub-net whose members have vanishing
curvatures(torsions).

CaseII. We now consider the case for whichW3(g,T ) has an indefinite Ricci tenso
and assume that the Ricci’s principal valuesM

1
,M

2
andM

3
are distinct. Then, only one o

M
1

,M
2

andM
3

may be zero. So, if we takeM
1

= 0 (M
2

�= M
3

�= 0) in (2.12) and (2.16) the

Eqs. (2.13)–(2.17) are respectively transformed into Eqs. (2.21)–(2.23) and (2.25). N

λ1 sinθ2 = 0, µ1 cosθ3 = 0,

µ2 sinθ3 = 0, µ3 cosθ2 = 0. (2.40)

Let λ1 = 0 in (2.40). Then according to (2.2) and (2.18) we get

v
1

l∇̇lv
1

i = µ1v
3

i = ρ
1
n
1

i

from which we have either

(a) µ1 = ρ
1

�= 0 implying v
3

= n
1

(θ1 = π/2), b
1

= −v
2

so that according to (2.1) and (2.

we obtain

0= v
1

l∇̇lv
3

i = v
1

l∇̇ln
1

i = −ρ
1
v
1

i + τ
1
b
1

i = −ρ
1
v
1

i − τ
1
v
2

i

which is impossible, or
(b) µ1 = ρ

1
= 0. (2.41)

In this case, Eqs. (2.40) reduce to

µ2 sinθ3 = 0, (2.42)

µ3 cosθ2 = 0. (2.43)
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These equations will be satisfied if

(i) µ2 = µ3 = 0 or
(ii) µ2 �= 0 (orµ3 �= 0).

In the case of (i), with the help of (2.2), (2.11) and (2.19) we respectively have

v
2

l∇̇lv
2

i = ρ
2
n
2

i = λ2v
1

i , (2.44)

v
3

l∇̇lv
3

i = ρ
3
n
3

i = λ3v
1

i . (2.45)

The respective solutions of (2.44) and (2.45) are

ρ
2

= λ2 = 0 and ρ
3

= λ3 = 0. (2.46)

Note that the casesρ
2

= λ2 �= 0 andρ
3

= λ3 �= 0 in (2.44) and (2.45) can not occur.

Combining (2.41) and (2.46) we conclude that in the case of (i) three families of
curves become geodesics.

In the case of (ii), from (2.42), we obtainθ3 = 0. Then, by means of (2.5), (2.1) an
(2.2) we find that

n
3

= v
1
, b

3
= v

2
,

0= v
3

l∇̇lv
1

i = v
3

l∇̇ln
3

i = −ρ
3
v
3

i + τ
3
b
3

i

or, equivalently

ρ
3

= τ
3

= 0. (2.47)

On the other hand, by (2.2), (2.27) and (2.47) we get

v
3

l∇̇lv
3

i = ρ
3
n
3

i = 0 = λ3v
1

i + µ3v
2

i

from which it follows thatλ3 = µ3 = 0. So, Eq. (2.43) is also satisfied.
Eqs. (2.41) and (2.47) say that in case of (ii) the two families of Ricci curves are

desics one family of which has vanishing second curvature.
Hence we may state

Theorem 2.2. In a W3(g,T ) having a definite metric tensor and an indefinite Ricci ten
whose principal directions are distinct, any3-dimensional Chebyshev net formed by
three families of Ricci curves is either a geodesic net or it consists of a geodesic su
member of which has a vanishing second curvature.
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