
 
     Abstract — A systems software architecture for training 
distributed neural, fuzzy neural and genetic networks and their 
relevant information models have been developed. Principles of 
on-line architecture building, training, managing, and  
optimization guidelines are provided and extensively discussed. 
Qualitative comparisons of neural training strategies have been 
provided. 
 

I.  INTRODUCTION 
 
Neural networks (NN) have been extensively studied since 
they offer the techniques for solving the complex real-life 
optimization problems, such as, classification by learning 
from examples, without the need of a parametric model. 
Even though several architectures for network training  have 
been developed so far,  the optimal choice of a suitable 
network size and structural connections and efficient training 
of the network for a given application domain remain to be 
serious problems[13]. There have been efforts to construct 
“general purpose” simulation environments which would 
allow the users to define their NN model, choose the 
functionality of processing elements and carry out the 
training and simulation for specific problems [1]. Research 
has also been carried out for the simulation of NN in a 
distributed environment. A framework for concurrent 
simulation of NN has been proposed in [2], where a general 
purpose object-oriented concurrent programming language is 
used in conjunction with simple models of NN nodes. There 
exists also work about forming a library of software modules 
using object-oriented design and programming which would 
allow users to deploy prototype NN in order to solve specific 
tasks [3-7].  
 
Generalized models for certain types of feed forward NN 
architectures and efficient training algorithms have been 
developed for solving classification and regression problems 
in [8], where specific types of nodes are used for building 
the NN. Even though, those work referenced above may 
address problems such as modular structure and training, the 
problem of finding the optimal software architecture remains 
unanswered. As also pointed out in [9] and [10], the 
evolution of the network to reach the optimal size is a very 
difficult problem. In a distributed environment, the problem 
becomes more critical, as each node operates autonomously 
so that a global minimization of the architecture is very hard. 
The lack of a general, open software architecture which not 
only incorporates the concurrent simulation but also 
integrates  the various other strategies, such as fuzzy neural 

networks and genetic neural networks has attracted our 
interest. Our work aimed to construct an open software 
architecture for NN which exhibits the following attributes: 
A modular and flexible software architecture that will  allow 
dynamic change of the new network topology and 
adjustment of training parameters during the training period 
(“online configurability”). Furthermore, our architecture 
aims to realize easy information retrieval by using a global 
control mechanism working in parallel with decentralized 
controllers on each node. This allows the system to be 
deployed on a distributed environment. This work shows 
clearly that the principle concepts and technology of 
software engineering can be successfully applied to neural 
networks to bring about distributed client-server oriented 
neural, fuzzy neural and genetic neural network architecture. 
 
 

II.   REVIEW OF NEURAL, FUZZY NEURAL AND 
GENETIC NEURAL NETWORK TRAINING 

 

 
In our earlier work [13], we have used software architecture 
to describe the generic, distributed neural networks with its 
relevant information model. We are extending that model 
now by integrating other neural network technologies, such 
as fuzzy neural networks and genetic neural networks. 
The concept of training, or learning from examples, is a very 
important issue. Neural networks are considered to operate 
in basically two modes: training and recall where training 
corresponds to the adaptation of the link weights when new 
patterns/vectors (training data) are applied to the neural 
network at the input layer. Depending on the presence of the 
desired responses for the applied inputs, the training is 
labeled as supervised or unsupervised. In any case, the 
neural network will change the values of its connection 
weights after the inputs are applied in such a manner that the 
outputs yield a satisfactory result. The degree to which the 
outputs are considered to be satisfactory also depends on the 
presence of desired given outputs. The process of recall, on 
the other hand, deals with applying new, unknown inputs at 
the input layer, and obtaining the neural network output. The 
success of the training is not only measured with the ability 
of the trained system to recall the original training data. The 
trained neural network also has to recall previously unknown 
patterns (input/output vectors) correctly which is the 
generalization property of the neural network. 

 

A Systems Software Architecture For Training Neural, Fuzzy Neural 
And Genetic Computational Intelligent Networks 

Taner Arsan,  Arif Selçuk Öğrenci,  Tuncay Saydam 
Kadir Has University 

34230 Cibali-Istanbul, Turkey 
{arsan, ogrenci, saydam}@khas.edu.tr 

0-7803-9490-9/06/$20.00/©2006 IEEE

2006 International Joint Conference on Neural Networks
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

5275



 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fuzzy neural network is functionally equivalent to a fuzzy 
inference model. It is basicly a five layer network, an input 
layer which reads in crisp inputs, an output layer which 
produces a crisp output and three hidden layers that 
represent fuzzy membership functions and fuzzy rules. 
Membership function nodes are mapped to fuzzy rule nodes. 
An output membership neuron will receive inputs from the 
corresponding fuzzy rule neurons  combine them through the 
union operator into a crisp output. Training input/output data 
is presented to the system, the computed output will be 
compared to a given one, and as with the regular neural 
network, the system will learn through a back propagation 
algorithm. 
 
Problem domain in genetic networks is represented by a 
chromosome and chromosome population [14,15,16]. 
Chromosome’s performance is evaluated through a 
chromosome fitness function. The sum of squared errors is 
calculated on the training set of examples. The smaller the 

sum, the fitter the chromosome. Crossover operator takes 
two parent chromosomes and creates a single child with 
genetic properties taken from these parents. Mutation 
operator randomly selects a gene in a chromosome, while 
adding a small randomness to each weight in this gene. 
Training will until a previously specified number of 
generations (stopping criteria) have been built and 
considered. 
 

We consider the proposed system to form a bridge between 
various neural networks architectures  and contemporary 
software architecture methodology. In the following 
sections, we first give a Neural, Fuzzy Neural and Genetic 
Neural Network Software Architecture. This will be 
followed by a detailed information model. Then, the 
essential problems of training and optimization are 
addressed, where the NN  Management functions are heavily 
utilized. After considering the relative properties of the three 
training strategies, the  paper will conclude by analyzing the 
principal research contributions. 

Fig. 1. A Software Systems Architecture for Neural Network Training Architecture. 
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III. TRAINING ARCHITECTURE IN NEURAL, 
FUZZY NEURAL AND GENETIC NEURAL 
NETWORKS 

 
 

We have developed a software architecture to enable clients 
to configure, train, and manage their neural networks. As 
shown in Figure 1, there four horizontal layers:  
 
1 Client Layer, that normally run the client machines, 2  
User Interface Layer, that acts as client interface to training 
domain functionalities, 3 Configuration, Training and 
Management Domain Layer, which include the key server 
domain functionalities and  4 Repository Services Layer, 
which provides database services. Information repository  
Façade provides database access services to domain layer 
objects. As the most important part of this architecture, 
domain layer has the following objects: Neural Network 
(NN) Configurator and Builder. Through the use of a 
management interface, clients use this object and NN-
Manager object to help build the neural nodes, nodal 
attributes, links and link attributes.  The functional details of 
training and management objects are elaborated in Figure 2. 
Horizontal layering and vertical structuring inherent in this 
architecture help us achieve the following important 
software engineering advantages: 
. Each neural network client is able to configure its own 

virtual neural network, run and train it independent of 
other users, 

. The architecture integrates regular neural, fuzzy neural 
and genetic neural components into a single, object-
oriented software. This allows distribution 
(implementations may run on several networked 
machines), transparency (both logical/functional, 
location and language transparency), 

. It fosters an architecture that is  open, modular and 
manageable, and allows us to control design complexity 
through layering, 

. Network configurations and  training results may be 
deposited at a common repository for future reference 
and information sharing, 

. Enables the reuse of higher level architectural and 
design abstractions, such as 

Patterns, 
. In general, neural networks are trained by the following 

principles: 
1 Compute alone, learn together, 
2 Compute forward, learn backward. 

 
IV. INFORMATION MODEL OF THE TRAINING 

ARCHITECTURE 
 
The central column of Figure 1, the training architectural 
objects, have been developed into an information model by 
specifying their detailed functionalities. The methods 
relevant to each object are indicated. Neural network 
training interface acts as  training domain interface to calling 
clients. Likewise, information repository interface will act as 

database access interface to domain objects. Network 
management interface object, along with a manager object, 
provide functionalities so that clients can generate network 
nodes, set/get network configuration and set/get the needed 
training data for each training session. Manager 
communicates with the repository to set and get such 
information. Separation of actual training objects from their 
management, is an important distinction that provides an 
encapsulation and hiding of management functions. All 
interface objects are considered as abstract objects having 
virtual method signatures to access the domain objects where 
real objects and methods are implemented. 
 
The key aspect of this model is naturally the three training 
objects as well as the manager object, as shown in the 
middle part of Figure 2. We distinguish three networks and 
training strategies: Artificial neural network literature is 
quite rich in variations of multilayer neural network learning 
algorithms, such as unsupervised (self-organizing maps, 
competitive,..),supervised (bidirectional associative memory, 
Hopfield,..) learning. Rather than considering each of these 
as learning objects in column 1, we have given the 
information models of only the two. The first column, 
standard neural network trainer has three objects, 
preprocessor, competitive trainer and adaptive multilayer  
trainer.  In competitive learning, neurons are expected to 
compete among themselves, and only a single output neuron 
is activated at any time. The winning neuron is the one that 
best matches the input vector, based on the minimum 
distance Euclidean criterion. Adaptive multilayer NN trainer 
does everything a regular NN trainer performs, such as 
weight initialization, output function activation, error 
computation and distribution through back propagation, but 
with one important addition: in order to improve 
convergence of back propagation learning, learning rate 
parameter is continuously adjusted during training. The 
second column has a fuzzy neural network trainer. This is a 
rather complex object, which, during design, may be divided 
functionally into, fuzzifier/defuzzifier, fuzzy function builder 
and fuzzy rule engine and trainer objects. This system is a 
neural network that is functionally equivalent to a fuzzy 
inference model. In addition to input and output layers that 
read in crisp inputs and produces a crisp output, a neuro-
fuzzy system has three hidden layers that represent 
membership functions and fuzzy rules. Membership function 
nodes are mapped to fuzzy rule nodes. An output 
membership neuron receives inputs from the corresponding 
fuzzy rule neurons and combines them through the union 
operator. Training input/output data is presented to the 
system, the computed output will be compared to a given 
one, and the system will learn through a back propagation 
algorithm. The neuron activation functions are modified as 
the output error is propagated backward. The third column is 
a genetic neural network trainer object. This also is a 
complex object that, during design, may be decomposed into 
following functionally coherent objects, such as : 
chromosome population builder,  fitness function evaluator, 
mutation and crossover, population trainer. Problem domain 
is   represented  here  as  a   chromosome   and  chromosome  
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Figure 2. A Systems Information Model of Neural, Fuzzy Neural and Genetic Neural Networks Training Objects. 

population. Chromosome’s performance is evaluated 
through a fitness function. Each weight in the chromosome 
is assigned to a respective link in the network. The sum of 
squared errors is calculated on the training set of examples. 
The smaller the sum, the fitter the chromosome. Crossover 
operator takes two parent chromosomes and creates a single 
child with genetic properties taken from these parents. 

Mutation operator randomly selects a gene in a chromosome, 
while adding a small randomness to each weight in this 
gene. Training continues until a specified number of 
generations have been built and considered. Back 
propagation algorithm with certain variations are used in all 
three different training networks. In genetic networks, back 
propagation is normally used after each certain number of 
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generations, e.g.10, have been generated. Recurrent network 
methods needed for the above cases have not been 
considered  in  this  information  model.  In  all the cases, the  

training data is set through the network manager object. 
More detailed comparisons of these three training objects are 
given in Table 1. 

 
TABLE 1. COMPARISON OF NEURAL TRAINING AND LEARNING STRATEGIES. 

Comparison Attribute Neural Networks    (NN) Fuzzy Neural    Networks Genetic Neural  Networks 

Components Artificial Neurons (AF) AF + Fuzzy Rule Nodes Strings representing chromosomes + 
AF 

Topology Structure Fixed, Networked Neurons Fixed, Multilayer Networked 
Neurons + Rule Nodes Dynamic, Networked Neurons 

Soft Intelligence Yes Yes Yes 

Learning Through Link weight adjustment Fuzzy inference and link weight 
adjustment 

Link weight optimization and 
selection combined 

Optimization Solution Back propagation Back propagation Apply genetic operators over 
generations plus back propagation 

Optimization Nature Suboptimal (local) Suboptimal (local) Near Optimal (hopefully local and 
Global) 

Topology Selection Difficult to select Difficult to select Topology concept is based on 
neurons and chromosome lengths 

Layered Architecture Yes, low degree Yes, high degree Yes, low degree 

Stopping criteria Error limit or number of training 
epochs 

Fuzzy inference / error limit, number 
of training epochs 

Error limit and/or number of 
generations created 

Computational Overhead  
(application dependent) Medium ? Higher ? High / Medium ? 

Robustness to noise / Can 
deal with incomplete data Yes / No Yes / Yes Yes / No ?! 

Probabilistic Attributes No Yes – Fuzzy Crossover mutation probabilities, 
random initial population generation 

Activation Function Continuous / Discrete Crisp 
Activation Function 

Fuzzy Membership Activation 
Function 

Selection based on crisp activation 
function 

Treshold Influences Neural Activation Influences Neural Activation 
Influences genetic variation 

mechanism and neural activation 
function 

 
Neural Network Management 
 
A distributed software architecture that provides 
transparency and asynchronous virtual network machine to 
its clients requires online software management. NN-
Manager, a neural network management object: The main 
functionality of this object is to monitor neural network 
environment, collect network state information, configure 
network by setting each network node’s input and output 
data, port connections and  keep up-to-date network 
information repository. Initially, all domain objects work 
with this management objects in order to build network 
configuration (set/change/get node and topology 
information) as well as set/change/collect training data.  
 

V.   QUALITATIVE COMPARISONS OF NEURAL 
TRAINING STRATEGIES 

 
In order to help the clients using different approaches to 
neural network training  software, we have developed Table 
1.  Based on our experience with neural networks and a 
recent literature survey,  we have used fourteen important 
attributes to compare the relative properties, similarities, 
differences and performance advantages of the three training 
strategies namely, regular neural, fuzzy neural and genetic 
neural networks. This table is designed to guide the users 
choose their neural learning strategy based on their problem 
domain, input data, computational and performance 
requirements.    
 

VI. RESEARCH CONTRIBUTIONS AND 
CONCLUSIONS 

 
From the foregoing software architecture work, we would 
like to derive the following conclusions: 
 
. Each neural network client may configure its own virtual 

neural network server, runs and trains it independently, 
 
. The architecture that integrates regular neural, fuzzy 

neural and genetic neural components into a single, 
object-oriented software that is distributed (may run on 
several networked machines), transparent (both logical 
and location transparency, allowing for components 
working independently), asynchronous and 
autonomous, 

 
. The architecture is layered, open, and manageable by a 

management component. The architecture is  modular. It 
can be expanded by adding more neural network clients 
or servers, or, by adding objects with new and enhanced 
functionalities. 

 
.  The architecture has a well-developed distributed 

software management hierarchy. While assigning local 
management functions at each neural network node, the 
NN server management as shown in Figure 2. is placed 
and separated at a higher hierarchical level. An integrated 
neural network operation is accomplished by the 
interaction of these management functions. 
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. Three different types of clients can have their own 
special user  interfaces to access the server’s 
configuration, training and management functionalities. 
It is implied that a given user can have multiple copies as 
“simultaneous” windows to work on various aspects of 
his solution, 

 
. Each  neural network  training result may be deposited at 

a common repository for future reference and 
information sharing, 

 
. Detailed information model of the three different neural 

network training schemes, including the regular, fuzzy 
and genetic trainers, is an important part of this paper. 
Each object in this model has methods to show its highly 
detailed working functionalities in a clear manner. This 
model will prove to be very helpful during the detailed 
software design process. 

 
. Functional separation, encapsulation and information 

hiding principles have been carefully incorporated into 
the architecture and its information model. 

  
. Table 1, which compares the basic attributes of the three 

training techniques, might well be the most 
comprehensive of such comparisons in the literature. 
Based on several key attributes it tries to identify the 
advantages of each technique.  

 
. In this paper, we believe to have successfully applied the 

current object-oriented software engineering principles, 
techniques and methodology to derive an integrated  
neural network training architecture.  
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