

 Abstract — A systems software architecture for training
distributed neural, fuzzy neural and genetic networks and their
relevant information models have been developed. Principles of
on-line architecture building, training, managing, and
optimization guidelines are provided and extensively discussed.
Qualitative comparisons of neural training strategies have been
provided.

I. INTRODUCTION

Neural networks (NN) have been extensively studied since
they offer the techniques for solving the complex real-life
optimization problems, such as, classification by learning
from examples, without the need of a parametric model.
Even though several architectures for network training have
been developed so far, the optimal choice of a suitable
network size and structural connections and efficient training
of the network for a given application domain remain to be
serious problems[13]. There have been efforts to construct
“general purpose” simulation environments which would
allow the users to define their NN model, choose the
functionality of processing elements and carry out the
training and simulation for specific problems [1]. Research
has also been carried out for the simulation of NN in a
distributed environment. A framework for concurrent
simulation of NN has been proposed in [2], where a general
purpose object-oriented concurrent programming language is
used in conjunction with simple models of NN nodes. There
exists also work about forming a library of software modules
using object-oriented design and programming which would
allow users to deploy prototype NN in order to solve specific
tasks [3-7].

Generalized models for certain types of feed forward NN
architectures and efficient training algorithms have been
developed for solving classification and regression problems
in [8], where specific types of nodes are used for building
the NN. Even though, those work referenced above may
address problems such as modular structure and training, the
problem of finding the optimal software architecture remains
unanswered. As also pointed out in [9] and [10], the
evolution of the network to reach the optimal size is a very
difficult problem. In a distributed environment, the problem
becomes more critical, as each node operates autonomously
so that a global minimization of the architecture is very hard.
The lack of a general, open software architecture which not
only incorporates the concurrent simulation but also
integrates the various other strategies, such as fuzzy neural

networks and genetic neural networks has attracted our
interest. Our work aimed to construct an open software
architecture for NN which exhibits the following attributes:
A modular and flexible software architecture that will allow
dynamic change of the new network topology and
adjustment of training parameters during the training period
(“online configurability”). Furthermore, our architecture
aims to realize easy information retrieval by using a global
control mechanism working in parallel with decentralized
controllers on each node. This allows the system to be
deployed on a distributed environment. This work shows
clearly that the principle concepts and technology of
software engineering can be successfully applied to neural
networks to bring about distributed client-server oriented
neural, fuzzy neural and genetic neural network architecture.

II. REVIEW OF NEURAL, FUZZY NEURAL AND
GENETIC NEURAL NETWORK TRAINING

In our earlier work [13], we have used software architecture
to describe the generic, distributed neural networks with its
relevant information model. We are extending that model
now by integrating other neural network technologies, such
as fuzzy neural networks and genetic neural networks.
The concept of training, or learning from examples, is a very
important issue. Neural networks are considered to operate
in basically two modes: training and recall where training
corresponds to the adaptation of the link weights when new
patterns/vectors (training data) are applied to the neural
network at the input layer. Depending on the presence of the
desired responses for the applied inputs, the training is
labeled as supervised or unsupervised. In any case, the
neural network will change the values of its connection
weights after the inputs are applied in such a manner that the
outputs yield a satisfactory result. The degree to which the
outputs are considered to be satisfactory also depends on the
presence of desired given outputs. The process of recall, on
the other hand, deals with applying new, unknown inputs at
the input layer, and obtaining the neural network output. The
success of the training is not only measured with the ability
of the trained system to recall the original training data. The
trained neural network also has to recall previously unknown
patterns (input/output vectors) correctly which is the
generalization property of the neural network.

A Systems Software Architecture For Training Neural, Fuzzy Neural
And Genetic Computational Intelligent Networks

Taner Arsan, Arif Selçuk Öğrenci, Tuncay Saydam
Kadir Has University

34230 Cibali-Istanbul, Turkey
{arsan, ogrenci, saydam}@khas.edu.tr

0-7803-9490-9/06/$20.00/©2006 IEEE

2006 International Joint Conference on Neural Networks
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

5275

Fuzzy neural network is functionally equivalent to a fuzzy
inference model. It is basicly a five layer network, an input
layer which reads in crisp inputs, an output layer which
produces a crisp output and three hidden layers that
represent fuzzy membership functions and fuzzy rules.
Membership function nodes are mapped to fuzzy rule nodes.
An output membership neuron will receive inputs from the
corresponding fuzzy rule neurons combine them through the
union operator into a crisp output. Training input/output data
is presented to the system, the computed output will be
compared to a given one, and as with the regular neural
network, the system will learn through a back propagation
algorithm.

Problem domain in genetic networks is represented by a
chromosome and chromosome population [14,15,16].
Chromosome’s performance is evaluated through a
chromosome fitness function. The sum of squared errors is
calculated on the training set of examples. The smaller the

sum, the fitter the chromosome. Crossover operator takes
two parent chromosomes and creates a single child with
genetic properties taken from these parents. Mutation
operator randomly selects a gene in a chromosome, while
adding a small randomness to each weight in this gene.
Training will until a previously specified number of
generations (stopping criteria) have been built and
considered.

We consider the proposed system to form a bridge between
various neural networks architectures and contemporary
software architecture methodology. In the following
sections, we first give a Neural, Fuzzy Neural and Genetic
Neural Network Software Architecture. This will be
followed by a detailed information model. Then, the
essential problems of training and optimization are
addressed, where the NN Management functions are heavily
utilized. After considering the relative properties of the three
training strategies, the paper will conclude by analyzing the
principal research contributions.

Fig. 1. A Software Systems Architecture for Neural Network Training Architecture.

NN_Configuration, Training,
Management and Historical

Training Information Repository

Information Repository Facade

Neural Network (NN) Client Fuzzy NN Client Genetic NN Client

NN Configurator Interface NN Training Interface NN Management Interface

Client
Layer

Server
User
Interface
Layer

Fuzzy Neural
Network Trainer

Neural Network Trainers

Genetic Neural
Network Trainer

NN Topology

NN Configurator
and Builder

Abstract NN
Node Factory

Configuration,
Training
and
Management
Domain
Layer

Repository
Services
Layer

NN_Manager

5276

III. TRAINING ARCHITECTURE IN NEURAL,
FUZZY NEURAL AND GENETIC NEURAL
NETWORKS

We have developed a software architecture to enable clients
to configure, train, and manage their neural networks. As
shown in Figure 1, there four horizontal layers:

1 Client Layer, that normally run the client machines, 2
User Interface Layer, that acts as client interface to training
domain functionalities, 3 Configuration, Training and
Management Domain Layer, which include the key server
domain functionalities and 4 Repository Services Layer,
which provides database services. Information repository
Façade provides database access services to domain layer
objects. As the most important part of this architecture,
domain layer has the following objects: Neural Network
(NN) Configurator and Builder. Through the use of a
management interface, clients use this object and NN-
Manager object to help build the neural nodes, nodal
attributes, links and link attributes. The functional details of
training and management objects are elaborated in Figure 2.
Horizontal layering and vertical structuring inherent in this
architecture help us achieve the following important
software engineering advantages:
. Each neural network client is able to configure its own

virtual neural network, run and train it independent of
other users,

. The architecture integrates regular neural, fuzzy neural
and genetic neural components into a single, object-
oriented software. This allows distribution
(implementations may run on several networked
machines), transparency (both logical/functional,
location and language transparency),

. It fosters an architecture that is open, modular and
manageable, and allows us to control design complexity
through layering,

. Network configurations and training results may be
deposited at a common repository for future reference
and information sharing,

. Enables the reuse of higher level architectural and
design abstractions, such as

Patterns,
. In general, neural networks are trained by the following

principles:
1 Compute alone, learn together,
2 Compute forward, learn backward.

IV. INFORMATION MODEL OF THE TRAINING

ARCHITECTURE

The central column of Figure 1, the training architectural
objects, have been developed into an information model by
specifying their detailed functionalities. The methods
relevant to each object are indicated. Neural network
training interface acts as training domain interface to calling
clients. Likewise, information repository interface will act as

database access interface to domain objects. Network
management interface object, along with a manager object,
provide functionalities so that clients can generate network
nodes, set/get network configuration and set/get the needed
training data for each training session. Manager
communicates with the repository to set and get such
information. Separation of actual training objects from their
management, is an important distinction that provides an
encapsulation and hiding of management functions. All
interface objects are considered as abstract objects having
virtual method signatures to access the domain objects where
real objects and methods are implemented.

The key aspect of this model is naturally the three training
objects as well as the manager object, as shown in the
middle part of Figure 2. We distinguish three networks and
training strategies: Artificial neural network literature is
quite rich in variations of multilayer neural network learning
algorithms, such as unsupervised (self-organizing maps,
competitive,..),supervised (bidirectional associative memory,
Hopfield,..) learning. Rather than considering each of these
as learning objects in column 1, we have given the
information models of only the two. The first column,
standard neural network trainer has three objects,
preprocessor, competitive trainer and adaptive multilayer
trainer. In competitive learning, neurons are expected to
compete among themselves, and only a single output neuron
is activated at any time. The winning neuron is the one that
best matches the input vector, based on the minimum
distance Euclidean criterion. Adaptive multilayer NN trainer
does everything a regular NN trainer performs, such as
weight initialization, output function activation, error
computation and distribution through back propagation, but
with one important addition: in order to improve
convergence of back propagation learning, learning rate
parameter is continuously adjusted during training. The
second column has a fuzzy neural network trainer. This is a
rather complex object, which, during design, may be divided
functionally into, fuzzifier/defuzzifier, fuzzy function builder
and fuzzy rule engine and trainer objects. This system is a
neural network that is functionally equivalent to a fuzzy
inference model. In addition to input and output layers that
read in crisp inputs and produces a crisp output, a neuro-
fuzzy system has three hidden layers that represent
membership functions and fuzzy rules. Membership function
nodes are mapped to fuzzy rule nodes. An output
membership neuron receives inputs from the corresponding
fuzzy rule neurons and combines them through the union
operator. Training input/output data is presented to the
system, the computed output will be compared to a given
one, and the system will learn through a back propagation
algorithm. The neuron activation functions are modified as
the output error is propagated backward. The third column is
a genetic neural network trainer object. This also is a
complex object that, during design, may be decomposed into
following functionally coherent objects, such as :
chromosome population builder, fitness function evaluator,
mutation and crossover, population trainer. Problem domain
is represented here as a chromosome and chromosome

5277

NN_Configuration, Training,
Management and Historical

Training Information
Repository

+get_training_info()
+set_training_info()
+get_configuration_info()
+get_history()
+get_management_info()
+view_training_info()

Information Repository Facade

+get_node_info()
+set_node_info()
+get_link_info()
+set_link_info()
+suspend_node()
+resume_node()
+get_node_state()
+set_node_state()
+get_link_state()
+get_NN_config()
+set_configuration()
+set_training_info()
+get_training_info()
+display_NN_config()
+get_NN_param()
+set_NN_param()

NN_ManagerNN_Manager

Information Repository Facade

Neural Network Management Interface

+get_training_data()
+preprocess_input_data()
+choose_training_method()

Neural Network Trainer
Neural Network Preprocessor

+Initialize_weights_randomly()
+apply_input()
+Set_error_criterion()
+calculate_hidden_layer_outputs()
+calculate_output_layer_outputs()
+calculate_error_gradient()
+backpropagate_error()
+determine_weight_corrections()
+sum_squared_errors()
+adjust_learning_rate_parameter()

Self_Org._Feature_Map_TrainerAdaptive_MultiLayer_
NN_Trainer

+compute_network_inputs()
+initialize_random_weights()
+partition_data_into_classes()
+find_Enclidian_Distance()
+begin_training()
+backpropagate()
+is_training_completed()
+find_CL_winner_neuron()
+find_new_CL_weight_vector()
+update_synaptic_weights()

Competitive Trainer
Competitive_N_N_Trainer

+construct_fuzzy_set()
+adapt_fuzzy_set()
+add_new_set()
+delete_set()
+adapt_set()
+construct_rule_base()
+adapt_rule_base()
+add_new_rule()
+delete_new_rule()
+adapt_new_rule()
+apply_back_propagation()
+fuzzify()
+defuzzify()
+compute_firing_strength()
+apply_union()
+apply_intersection()
+choose_membership_function()
+enter_initial_values()
+evaluate_fuzzy_rule()
+apply_sum_product_composition()
+modify_activationfunction()
+begin_training()

Fuzzy_Neural_Network_TrainerFuzzy Neural Network Trainer

+choose_chromosome_population_size()
+enter_crossover_probabilities()
+enter_mutation_probabilities()
+define_fitness_function()
+generate_random_chrom_population()
+apply_mutation_operator()
+apply_crossover_operator()
+select_mating_chromosome_pair()
+apply_fitness_function()
+compare_fitness()
+enter_connection_weight_matrix()
+apply_back_propagation()
+create_offspring_chromosome_pair()
+create_new_generation()
+optimize_weights()
+optimize_transfer_functions()
+optimize_input_parameter()
+call_NN_Trainer()
+apply_stopping_criteria()
+select_topology()
+begin_training()

Genetic_NN_Trainer
Genetic Neural Network Trainer

+get_training_info()
+choose_trainer()
+run_trainer()
+view_training_info()
+abstract(virtual) signatures of trainer()
+ and some repositoryfacademethods()

Neural Network Training InterfaceNeural Network Training Interface

Figure 2. A Systems Information Model of Neural, Fuzzy Neural and Genetic Neural Networks Training Objects.

population. Chromosome’s performance is evaluated
through a fitness function. Each weight in the chromosome
is assigned to a respective link in the network. The sum of
squared errors is calculated on the training set of examples.
The smaller the sum, the fitter the chromosome. Crossover
operator takes two parent chromosomes and creates a single
child with genetic properties taken from these parents.

Mutation operator randomly selects a gene in a chromosome,
while adding a small randomness to each weight in this
gene. Training continues until a specified number of
generations have been built and considered. Back
propagation algorithm with certain variations are used in all
three different training networks. In genetic networks, back
propagation is normally used after each certain number of

5278

generations, e.g.10, have been generated. Recurrent network
methods needed for the above cases have not been
considered in this information model. In all the cases, the

training data is set through the network manager object.
More detailed comparisons of these three training objects are
given in Table 1.

TABLE 1. COMPARISON OF NEURAL TRAINING AND LEARNING STRATEGIES.

Comparison Attribute Neural Networks (NN) Fuzzy Neural Networks Genetic Neural Networks

Components Artificial Neurons (AF) AF + Fuzzy Rule Nodes Strings representing chromosomes +
AF

Topology Structure Fixed, Networked Neurons Fixed, Multilayer Networked
Neurons + Rule Nodes Dynamic, Networked Neurons

Soft Intelligence Yes Yes Yes

Learning Through Link weight adjustment Fuzzy inference and link weight
adjustment

Link weight optimization and
selection combined

Optimization Solution Back propagation Back propagation Apply genetic operators over
generations plus back propagation

Optimization Nature Suboptimal (local) Suboptimal (local) Near Optimal (hopefully local and
Global)

Topology Selection Difficult to select Difficult to select Topology concept is based on
neurons and chromosome lengths

Layered Architecture Yes, low degree Yes, high degree Yes, low degree

Stopping criteria Error limit or number of training
epochs

Fuzzy inference / error limit, number
of training epochs

Error limit and/or number of
generations created

Computational Overhead
(application dependent) Medium ? Higher ? High / Medium ?

Robustness to noise / Can
deal with incomplete data Yes / No Yes / Yes Yes / No ?!

Probabilistic Attributes No Yes – Fuzzy Crossover mutation probabilities,
random initial population generation

Activation Function Continuous / Discrete Crisp
Activation Function

Fuzzy Membership Activation
Function

Selection based on crisp activation
function

Treshold Influences Neural Activation Influences Neural Activation
Influences genetic variation

mechanism and neural activation
function

Neural Network Management

A distributed software architecture that provides
transparency and asynchronous virtual network machine to
its clients requires online software management. NN-
Manager, a neural network management object: The main
functionality of this object is to monitor neural network
environment, collect network state information, configure
network by setting each network node’s input and output
data, port connections and keep up-to-date network
information repository. Initially, all domain objects work
with this management objects in order to build network
configuration (set/change/get node and topology
information) as well as set/change/collect training data.

V. QUALITATIVE COMPARISONS OF NEURAL
TRAINING STRATEGIES

In order to help the clients using different approaches to
neural network training software, we have developed Table
1. Based on our experience with neural networks and a
recent literature survey, we have used fourteen important
attributes to compare the relative properties, similarities,
differences and performance advantages of the three training
strategies namely, regular neural, fuzzy neural and genetic
neural networks. This table is designed to guide the users
choose their neural learning strategy based on their problem
domain, input data, computational and performance
requirements.

VI. RESEARCH CONTRIBUTIONS AND
CONCLUSIONS

From the foregoing software architecture work, we would
like to derive the following conclusions:

. Each neural network client may configure its own virtual

neural network server, runs and trains it independently,

. The architecture that integrates regular neural, fuzzy

neural and genetic neural components into a single,
object-oriented software that is distributed (may run on
several networked machines), transparent (both logical
and location transparency, allowing for components
working independently), asynchronous and
autonomous,

. The architecture is layered, open, and manageable by a

management component. The architecture is modular. It
can be expanded by adding more neural network clients
or servers, or, by adding objects with new and enhanced
functionalities.

. The architecture has a well-developed distributed

software management hierarchy. While assigning local
management functions at each neural network node, the
NN server management as shown in Figure 2. is placed
and separated at a higher hierarchical level. An integrated
neural network operation is accomplished by the
interaction of these management functions.

5279

. Three different types of clients can have their own
special user interfaces to access the server’s
configuration, training and management functionalities.
It is implied that a given user can have multiple copies as
“simultaneous” windows to work on various aspects of
his solution,

. Each neural network training result may be deposited at

a common repository for future reference and
information sharing,

. Detailed information model of the three different neural

network training schemes, including the regular, fuzzy
and genetic trainers, is an important part of this paper.
Each object in this model has methods to show its highly
detailed working functionalities in a clear manner. This
model will prove to be very helpful during the detailed
software design process.

. Functional separation, encapsulation and information

hiding principles have been carefully incorporated into
the architecture and its information model.

. Table 1, which compares the basic attributes of the three

training techniques, might well be the most
comprehensive of such comparisons in the literature.
Based on several key attributes it tries to identify the
advantages of each technique.

. In this paper, we believe to have successfully applied the

current object-oriented software engineering principles,
techniques and methodology to derive an integrated
neural network training architecture.

REFERENCES

[1] E. Mesrobian & J. Skrzypek, A Software Environment

For Studying Computational Neural Systems, IEEE
Transactions on Software Engineering, 18(7), 1992,
575-589.

[2] G.L.Heileman et al., A General Framework for
Concurrent Simulation of Neural Network Models,
IEEE Transactions on Software Engineering, 18(7),
1992, 551-562.

[3] G. Valentini & F. Masulli, NEURObjects: An object-
oriented library for neural network development,
Neurocomputing, 48(1-4), 2002, 623-646.

[4] A. Weitzenfeld et al., A Neural Schema Architecture for
Autonomous Robots, Proc. of 1998 International
Symposium on Robotics and Automation, Coahuila,
Mexico, 1998.

[5] G. E. Mobus & P. S. Fisher, Mavric’s Brain, IEA/AIE
‘94: Proceedings of the Seventh International
Conference on Industrial and Engineering Applications
of Artificial Intelligence and Expert Systems, Austin,
Texas. 1994, 315-320.

[6] W. Pree et al., OO Design & Implementation of a
Flexible Software Architecture for Decision Support
System, Proceedings of the 9th International Conference

on Software Engineering & Knowledge Engineering
(SEKE’97) Madrid, Spain, 1997, 382-388.

[7] T. P. Caudell et al, eLoom and Flatland: specification,
simulation and visualization engines for the study of
arbitrary hierarchical neural architectures, Neural
Networks, 16, 2003, 617-624.

[8] G. Arulampalam & A. Bouzerdom, A generalized
feedforward neural network architecture for
classification and regression, Neural Networks, 16,
2003, 561-568.

[9] L. A. Coward, A Functional Architecture Approach to
Neural Systems, International Journal of Systems
Research and Information Systems, 9(2-4), 2000, 69-
120.

[10] N. Garcia-Pedrajas et al., Multi-objective cooperative
coevolution of artificial neural networks, Neural
Networks, 15, 2002, 1259-1278.

[11] E. D. Karnin, A Simple Procedure for Pruning Back-
Propagation Trained Neural Networks, IEEE
Transactions on Neural Networks, 1(2), 1990, 239-242.

[12] T.F. Rathbun et al., MLP Iterative Construction
Algorithm, Neurocomputing, 17, 1997, 195-216.

[13] A.S.Ogrenci, T. Arsan and T. Saydam An Open
Software Architecture of Neural Networks: Neurosoft,
Proceedings of SEA2004, Boston,MA. November 2004.

[14] Nikola Kasabov, Evolving Connectionist Systems,
Springer Verlag, 2003.

[15] Michael Negnevitsky, Artificial Intelligence, Addison
Wesley, 2002.

[16] L.N.Castro and J. Timmis, Artificial Immune Systems,
Springer Verlag, 2002.

5280

