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Abstract

Modeling the frequency selective fading channels as random processes, we employ a linear expansion based on the
Karhunen—Loeve (KL) series representation involving a complete set of orthogonal deterministic vectors with a corresponding
uncorrelated random coefficients. Focusing on OFDM transmissions through frequency selective fading, this paper pursues a
computationally efficient, pilot-aided linear minimum mean square error (MMSE) uncorrelated KL series expansion coeffi-
cients estimation algorithm. Based on such an expansion, no matrix inversion is required in the proposed MMSE estimator.
Moreover, truncation in the linear expansion of channel is achieved by exploiting the optimal truncation property of the KL
expansion resulting in a smaller computational load on the estimation algorithm. The performance of the proposed approach
is studied through analytical and experimental results. We first exploit the performance of the MMSE channel estimator based
on the evaluation of minimum Bayesian MSE. We also provide performance analysis results studying the influence of the
effect of SNR and correlation mismatch on the estimator performance. Simulation results confirm our theoretical results and
illustrate that the proposed algorithm is capable of tracking fast fading and improving performance.
© 2005 Elsevier GmbH. All rights reserved.

Keywords: Bayesian channel estimation; OFDM systems; Linear expansions

1. Introduction means of a stochastic modeling [3,4,6]. These random co-
efficient models are actually either used for identification of
the model parameters which determine the evolution of the

channel coefficients, or they are used for simulating fading

In a wireless orthogonal frequency division multiplexing
(OFDM) systems over a frequency selective fading, channel

variations arise mainly due to multipath effect [1]. Conse-
quently, channel variations evolve in a progressive fashion
and hence fit in some evolution model [2]. It appears that
basis expansion approach could be natural way of modeling
the channel variation [3]. Fourier, Taylor series, and polyno-
mial expansion have played a prominent role in determin-
istic modeling [4,5]. As an alternative to the deterministic
approaches, the variation in the channel can be captured by
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channels with certain spectral characteristics [4]. Interest-
ingly, random coefficient models used to simulate mobile
fading channel can be obtained from the basis expansion
model with random parameters [4,8]. Note that, the random
process can be represented as a series expansion involving
a complete set of deterministic vectors with corresponding
random coefficients [7]. This expansion therefore provides
a second-order characterization in terms of random vari-
ables and deterministic vectors. There are several such se-
ries that are widely in use. A commonly used series is the
Karhunen—Loeve (KL) expansion [7,8]. The use of the KL
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expansion with orthogonal deterministic basis vectors and
uncorrelated random coefficients has generated interest
because of its bi-orthogonal property, that is, both the
deterministic basis vectors and the corresponding random
coefficients are orthogonal. This allows for the optimal
encapsulation of the information contained in the random
process into a set of discrete uncorrelated random variables.

In this paper, we will focus on OFDM systems over
frequency selective fading channel. Channel estimation for
OFDM systems has attracted much attention with pioneer-
ing works of Edfords et al. [9] and Li et al. [10]. Numer-
ous pilot-aided channel estimation methods for OFDM have
been developed [9-11,13—15]. In particular, a low-rank ap-
proximation is applied to linear minimum mean square error
(MMSE) estimator for the estimation of subcarrier channel
attenuations by using the frequency correlation of the chan-
nel [9]. In [10], a MMSE channel estimator, which makes full
use of the time and frequency correlation of the time-varying
dispersive channel was proposed. Moreover, a low com-
plexity MMSE-based doubly channel estimation approaches
were presented in [11]. In [12], random phase introduced by
Rayleigh fading in OFDM systems is modeled as a multi-
channel autoregressive (AR) process. Based on the proposed
multichannel AR model, the Kalman filtering technique was
applied for tracking the channel taps and maximum a pos-
teriori (MAP) optimum detection technique was utilized for
joint channel estimation and detection. In contrast, we will
rely on the KL basis expansion of stochastic channel model
to perform pilot-aided channel estimation. In the case of the
KL series representation of stochastic channel model, a con-
venient choice of orthogonal basis set is one that makes the
expansion coefficient random variables uncorrelated [16].
When these orthogonal bases are employed to characterize
the variation of the channel impulse response, uncorrelated
coefficients indeed represent the channel. Therefore, the KL
representation allows one to tackle the estimation of corre-
lated channel parameters as a parameter estimation problem
of the uncorrelated coefficients. Exploiting the KL expan-
sion, the main contribution of this paper is to propose a com-
putationally efficient, pilot-aided MMSE channel estimation
algorithms. Based on such representation, no matrix inver-
sion is required in the proposed approach. Moreover, optimal
rank reduction is achieved by exploiting the optimal trun-
cation property of the KL expansion resulting in a smaller
computational load on the estimation algorithm. The per-
formance of the proposed batch approach is explored based
on the evaluation of the Bayesian MSE for the random KL
coefficients.

The rest of the paper is organized as follows. In Section 2,
general model for OFDM systems is described and received
signal model is presented. In Section 3, multipath channel
statistics and its orthogonal series representation based on
the KL expansion is presented. Basic and simplified MMSE-
based expansion coefficients estimation algorithms are de-
veloped in Section 4. To show its efficiency, the performance
bounds are analyzed and the performance degradation due to

a mismatch of the estimator to the channel statistics as well
as the SNR is demonstrated in Section 5. Some simulation
examples are provided in Section 6. Finally, conclusions are
drawn in Section 7.

2. OFDM system

OFDM has recently attracted considerable attention since
it has been shown to be one of the most effective techniques
for combating multipath delay spread over mobile wire-
less channels thereby improving the capacity and enhancing
the performance of transmission. OFDM increases the sym-
bol duration by dividing the entire channel into many nar-
rowband subchannels and transmitting data in parallel. We
now consider an OFDM system with N subcarriers signaling
through a frequency selective fading channel. The channel
response is assumed to be constant during one symbol dura-
tion. The block diagram in Fig. 1 describes of such OFDM
system. The binary information data is grouped and mapped
into multiphase signals.

In this paper the QPSK modulation is employed. An IDFT
is then applied the QPSK symbols {Xk},iv:_ol, resulting in
{xn}flvz_ol, ie.,

xn = IDFT{ X}
N—1

_ Z Xpel2n/N o
k=0

N — 1. 0

In order to eliminate intersymbol interference arising due
to multipath channel, the guard interval is inserted between
OFDM frames. After pulse shaping and parallel to serial con-
version, the signals are then transmitted through a frequency
selective fading channel. At the receiver, after matched fil-
tering and removing the guard interval, the time-domain re-
ceived samples of an OFDM symbol is given by

Yn =Xp @ hy + vy

L—-1
= Z hnXn—k + vn, @
k=0

where ® represents the convolution operation, £, is the
channel impulse response, and v, is the i.i.d. complex white
Gaussian noise.

The received samples { yn}fyz_ol, are then sent to the DFT
block to demultiplex the multicarrier signals

Yy = DFT{y,}

N—1
1 .
= E:yne*ﬂ“’m/N, k=0,...,N—1. (3)
n=0

For OFDM systems with proper cyclic extensions and
sample timing, the DFT output frequency domain subcarrier
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Fig. 1. OFDM system block diagram.
symbols can be expressed as 3. Random channel model
Yy = Xy Hy + Vi, 4) The complex baseband representation of a fading multi-

where Vi, =DFT{v,}, k=0, 1,..., N — 1 is frequency do-
main complex AWGN samples with zero mean and variance
0. Hj is the channel frequency response given by

Hy=w'(k)h, k=0,1,...,N—1, (5)

where h = [hg, hy, ..., hL_l]T contains the time response
of all L taps, and w(k) = [1, e 2™/N e’jz’rk(L’l)/N]T
contains the corresponding DFT coefficients and (-) " denotes
the Hermitian transpose. Substituting (5) into (4) yields

Yi=Xgw (Oh+ Vi, k=0,...,N—1. (6)

If we focus at the received block Y = [Yo, Y1, ..., Yny_1]T,
we can write the following from (6):

Y=XWh+V, k=0,...,N—1. (7)
where X=diag[ Xy, X1, ..., Xny—1]is adiagonal matrix with
the data symbol entries, W = [w(0), ..., w(N — 1)]T is the
DFT matrix and similarly V is a zero-mean i.i.d. complex
Gaussian vector.

Based on the model (7), our main objective in this paper
is to develop a batch pilot-aided channel time response es-
timation algorithm according to MMSE criterion and then
explore the performance of the resulting estimator. A pro-
posed approach adapted herein explicitly models the random
channel parameters by the KL series representation and esti-
mates the uncorrelated expansion coefficients. Furthermore,
the computational load of the proposed MMSE estimation
technique is further reduced with the application of the KL
expansion optimal truncation property [8]. In the following
section the random channel model is introduced first.

path channel impulse response can be described as [11]

h(D) =) udx—uly), ®)

/

where 1; is the delay of the /th path and o is the cor-
responding complex amplitude with a power-delay profile
0(t;). Note that o;’s are zero-mean, complex Gaussian ran-
dom variables, which are assumed to be independent for
different paths.

3.1. Channel statistics

We now briefly describe the channel statistics. The cor-
relation function of the frequency response of the multipath
fading channel for different frequencies is

c(fs FHZEH (HH (O], )
where
400 ) '
H) = [ he = 3 e, 00
. l

It can be shown that (9) has the form [9]
c(f, fy=ogcr(f = ) =ager(Af), (11)

cr(Af)=(/ay) Y ape A, (12)
1

where 012 is the average power of the /th path and aé is the
total average power of the channel impulse response defined
as

2 _ 2
=20
/
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For an OFDM system with tone spacing A f, the correla-
tion function for different tones can be written more com-
pactly as

Cm,n = E{HmH:}a (13)

where ¢m.n = CpuA A f-

A more frequently used channel model could be explicitly
derived in terms of an exponentially decaying power delay
profile 0(t;)=Ce~"/™ms and delays 1; that are uniformly and
independently distributed over the length of guard interval.
In [9], it is shown that the normalized exponential discrete
channel correlation for different subcarriers is

1 .
1 —exp (—L (r_ + w>>
Con = rms . .
L 1 2mj(m — n)
Trms 1— exXpl| — + -
Trms Trms N

(14)

Furthermore, the uniform channel correlation between the
attenuations H,, and H, can be obtained by letting tyms —
oo in (14), resulting in

(27er(m —n))
1 —exp — N

2nj(m — n)
N

(15)

Cm,n =

Note that the correlation function of the channel taps for dif-
ferent frequencies depends, in general, only on the multipath
delay spread and is separated from the effect of Doppler fre-
quency. By only exploiting the frequency correlation in the
channel estimation task, we are able to reduce complexity
of the channel estimator.

3.2. Series expansion

The series expansion referred to as KL expansion provides
a second moment characterization in terms of uncorrelated
random variables and deterministic orthogonal vectors. In
the KL expansion method the orthogonal deterministic ba-
sis vectors and its magnitude are respectively the eigenfunc-
tion and eigenvalue of the covariance matrix. Since channel
impulse response h is a zero-mean Gaussian process with
the covariance matrix Cp,, the KL transformation rotates the
vector h so that all its components are uncorrelated. Thus the
vector h, representing the channel impulse response during
the OFDM block, can be expressed as a linear combination
of the orthonormal basis vectors as follows:

L—1
h=Y" gy =Yg (16)

=0

where ¥ = [V, ¥y, ..., ¥ 1], ¥;’s are the orthonor-
mal basis vectors, g = [go, &1, ...,gL,l]T, and g; is the
I’'th weight of the expansion. If we form the covariance

matrix Cy, as
Cr=YA Y, (17)

where Ag=F {gg"}, the KL expansion is the one in which Ag
of Cj, is a diagonal matrix (i.e., the coefficients are uncorre-
lated). If Ag is diagonal, then the form WAg¥" is called an
eigendecomposition of Cp,. The fact that only the eigenvec-
tors diagonalize Cp, leads to the desirable property that the
KL coefficients are uncorrelated. Furthermore, in Gaussian
case, the uncorrelatedness of the coefficients renders them
independent as well, providing additional simplicity. Thus,
the channel estimation problem in this application is equiv-
alent to estimating the i.i.d. complex Gaussian vector g KL
expansion coefficients.

4. MMSE estimation of KL coefficients

A low-rank approximation to the frequency-domain linear
MMSE channel estimator is provided by Edfords et al. [9] to
reduce the complexity of the estimator. Optimal rank reduc-
tion is achieved in this approach by using the singular-value
decomposition (SVD) of the channel attenuations covari-
ance matrix Cyg of dimension N x N. In contrast, here, we
adapt the MMSE estimator for the estimation of multipath
channel parameters & that uses covariance matrix of dimen-
sion L x L. The proposed approach employs KL expansion
of multipath channel parameters and reduces the complex-
ity of the SVD used in eigendecomposition since L is usu-
ally much less than N. We will now develop MMSE batch
estimator for pilot-assisted OFDM system in the sequel.

4.1. MMSE channel estimation

Pilot symbol-assisted techniques can provide information
about an undersampled version of the channel that may be
easier to identify. In this paper, we therefore address the
problem of estimating multipath channel parameters by ex-
ploiting the distributed training symbols. Considering (7)
and in order to include the pilot symbols in the output vector
for the estimation purpose we focus on an under-sampled
signal model. Assuming N, pilot symbols are uniformly in-
serted at the known locations of the ith OFDM block, the
N, x 1 vector corresponding to the DFT output at the pilot
locations becomes

Y, = X,Wph + V,,, (18)

where X, =diag[X;(0), X;(A), ..., X;(Np — DA)] is a di-
agonal matrix with pilot symbol entries, A is pilot spacing
interval, Wy, is an Np x L FFT matrix generated based on
pilot indices, and similarly V}, is the under-sampled noise
vector.

For the estimation of h, the new linear signal model can
be formed by premultiplying both sides of (18) by Xg and
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assuming pilot symbols are taken from a QPSK constellation
XpXp = I,, then (18) takes the form

XY, = Wph + X[V,
Y=Wyh+V, (19)

where Y and V are related to Y, and V, by the linear
transformation, respectively. Furthermore, V is statistically
equivalent to V.

Eq. (19) offers a Bayesian linear model representation.
Based on this representation, the minimum variance estima-
tor for the time-domain channel vector & for the ith OFDM
block, i.e., conditional mean of k given f(, can be obtained
using the MMSE estimator. We should clearly make the as-
sumptions that & ~ A7(0, Cp), V ~ (0, Cy) and h is
uncorrelated with V. Therefore, the MMSE estimate of & is
given by [18]

~ -1 ~
h=(Wicg'W, +C;) wicg'Y. (20)

Due to QPSK pilot symbol assumption together with the
result Cy=E [\7{”] = O'ZINP, we can therefore express (20)
by

N —1 ~
= (W;Wp + azc,;l) WiY. Q1)

Under the assumption that uniformly spaced pilot symbols
are inserted with pilot spacing interval A and N = A x N,

correspondingly, WZ,Wp reduces to Wng = Npl.. Then
according to (21) and WEL,Wp = Npl, we arrive at the ex-
pression

~ -1 ~
b= (VoL +0*C; ') WY 22)

Since the MMSE estimation still requires the inversion of
Cp, it therefore suffers from a high computational com-
plexity. However, it is possible to reduce complexity of the
MMSE algorithm by diagonalizing channel covariance ma-
trix with a linear KL expansion.

4.2. Estimation of KL coefficients

In contrast to (19) in which only 4 is to be estimated,
we now assume the KL series expansion coefficients g is
unknown. Substituting (16) in (19), the data model (19) is
then rewritten for each OFDM block as

which is also recognized as a Bayesian linear model, and
that g ~ A7(0, Ag). As aresult, the MMSE estimator of g is

g=Ag(NpAg + 0°11) " "WWY
=T¥'WY, (24)

where
I' = Ag(NpAg + o?I) !

= diag { %0 . A1) } (25)
lgoNp + 027" Dy Ny +0?

and Agy, Ag, ..., Ag,_, are the singular values of Ag.

It is clear that the complexity of the MMSE estimator
in (22) is reduced by the application of the KL expansion.
However, the complexity of the g can be further reduced by
exploiting the optimal truncation property of the KL expan-
sion [8].

4.3. Truncated KL expansion

A truncated expansion g, can be formed by selecting r
orthonormal basis vectors among all basis vectors that satisfy
Cp¥ = YA,. The optimal selection of these vectors that
yields the smallest average mean-squared truncation error

% E [ejer] is the one which chooses the orthonormal basis

vectors associated with the first largest  eigenvalues as given
by

1 1 L—1
T E [eje,] == 2 e (26)
—

where €, =g —g,.. For the problem at hand, truncation prop-
erty of the KL expansion results in a low-rank approximation
as well. Thus, a rank-r approximation to Ag_ is defined as

Ag = diagl{lgy, grs s Ag 150, ..., 0} Q7

Since the trailing L — r variances {),g,}lL:_r1 are small com-
pared to the leading r variances {/lg,}lr:_é, the trailing L — r
variances are set to zero. However, in reality the pattern of
the eigenvalues, of Ag splits the eigenvectors into dominant
and subdominant sets. Then the choice of r is more or less
obvious. The optimal truncated KL (rank-r) estimator of (24)

now becomes

g, =T, YWY, (28)
where

T, =Ag (NpAg +0?I)"!

y! !
=diag{¢ L 0,...,0}.

b 2’ Y 4 2’
/goNp + 0 g1 Np+ o

5. Performance analysis

We turn our attention to analytical performance results
of the MMSE approach. The performance of the MMSE
channel estimator is exploited first based on the evaluation
of the minimum Bayesian MSE.
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5.1. Bayesian MSE

For the MMSE estimator g, the error is
€e=g—§. (30)

Since the diagonal entries of the covariance matrix of
the error represent the minimum Bayesian MSE, we now
derive the covariance matrix C¢ of the error vector. From
the Performance of the MMSE estimator for the Bayesian
Linear model Theorem [18, pp. 391], the error covariance
matrix is obtained as

C. = (A;l +FP)C;! (F‘l’))_l

—1
=2 (NpIL + 62A£1)
=T (31)

and then the minimum Bayesian MSE of the full rank esti-
mator becomes

1
Buvse(@) = 7 tr(Ce)

— oo (32)
£~ 1+ Ny /g, SNR

where SNR =1/67 and tr denotes trace operator on matrices.

5.2. Mismatch analysis

Once the true frequency-domain correlation, characteriz-
ing the channel statistics and the SNR, are known the opti-
mal channel estimator can be designed as indicated in Sec-
tion 4. However, in mobile wireless communications, the
channel statistics depend on the particular environment, for
example, indoor or outdoor, urban or suburban, and change
with time. Hence, it is important to analyze the performance
degradation due to a mismatch of the estimator to the chan-
nel statistics as well as the SNR, and to study the choice of
the channel correlation, and SNR for this estimator so that
it is robust to variations in the channel statistics.

5.2.1. Bayesian MSE for truncated MMSE estimator
under SNR mismatch

Bnse(g) given in (32) can also be computed for the trun-
cated (low-rank) case as follows. Substituting (23) in (28),
the truncated MMSE KL estimator now becomes

& =Nl g+, ¥YWV. (33)
The estimation error
& =g-8

=g — (NpI'yg + T, ¥'WIV)

=, — NI )g — T, YWV (34)

and then the average Bayesian MSE is
. 1
Bumse(g,) = I tr(Ce,)
_ 1 2 ~212
=7 tr(Ag(Ip — NpL'y)” + NpGLy). (35

In practice, the true channel correlations and true SNR de-
noted by SNR are not known. If the MMSE channel estima-
tor is designed to match the correlation of a multipath chan-
nel impulse response Cp, and SNR, but the true channel pa-
rameters h has the correlation Cj, then the average Bayesian
MSE for the designed channel estimator is obtained as

r—1 272 2 =2 L—1
R 1 lgi (09)° + Np)»g,o 1
Busc @)=+ 5 Z Y
Ve Lz (Nplg +02)? L= )

where ¢2 = SN;R’ G = %
SNR
1 i Ty (14 Npig, SN
L = (14 NyigSNR)?
1 L—1
+ 7 > g (36)
i=r

Based on the result obtained in (36), Bayesian estima-
tor performance can be further elaborated for the following
scenarios:

e By taking SNR = SNR, the performance result for the
case of no SNR mismatch is

1 r—1 2 1 L-1
Buse(€) =~ ) ———— + — Y g,
MSE®,) = 7 ; T+ NpigSNR | L ’2:; s

(37)
Notice that, the second term in (37) is the sum of the
powers in the KL transform coefficients not used in
the truncated estimator. Thus, truncated Bysg(g,) can
be lower bounded by % Z,L;rl /.g; Which will cause an
irreducible error floor in the SER results.
e Asr — L in (35), Bpysg(g) under SNR mismatch re-
sults in the following Bayesian MSE:

N (1 +Npag,.%)
Buse(@) = >

i=0

38
(1 + Nplg SNR)? %8)

e Finally, the Bayesian MSE in the case of no SNR mis-
match is also be obtained as,

L—1

Bumse (@) = % >

i=0

Agi

— 39
1 4 Np/g SNR G

5.2.2. Bayesian MSE for truncated MMSE KL
estimator under correlation mismatch

In this section, we derive the Bayesian MSE of the trun-
cated MMSE KL estimator under correlation mismatch.
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Although the real multipath channel k& has the expansion
correlation Cj,, we designed the estimator for the multipath
channel & =¥g with correlation Cp,. To evaluate the estima-
tion error g —g, in the same space, we expand the h onto the
eigenspace of h as h=W¥g resulting in correlated expansion
coefficients.

For the truncated MMSE estimator, the error is

ér :g _gr B
=g~ (Nplyg + T¥WIV)
=g- NpIg —T,¥'WV. (40)

As a result, the average Bayesian MSE is

o1
Bymse(g,) = I tr(Ce,)
1
= T U(Ag + NIT?Ag
+ *NpI'2 — 2N, T, B)
NP;“gi (;“gi B Zﬁi)]

par Nplg + 02
L1
1 x 1
— To. d ¢¢=——
Tt T TR
r—1
1 [} , NoSNR U Gy, — 2/3,.)}
- “8i
L& I+ NySNRZ,
L1

i=r
1 ! j"gi + NPSNR}'gi (j"gi + ;“gi - 2ﬁi>
L “ 1+ NpSNR

Jgis @1

where B is the real part of £ [ggf] and f3;’s are the diagonal
elements of f. With this result, we will now highlight some
special cases:

o Letting 8; =/, =;1g1. in (41) for the case of no mismatch
in the correlation of the KL expansion coefficients, the
truncated Bayesian MSE is identical to that obtained in
(37).

e Asr — L in (41), the Bayesian MSE under correlation
mismatch is obtained to yield

L-1 7 =
1 520 T + NpSNR A, G, + 2y — 25)
B o) — — 8i P 8i \"*8i 8i i .
MSE(®) = 7 Z,-:o I+ NpSNR,

(42)

e Under no correlation mismatch in (41) where f§; =4,, =

;lg,- , the Bayesian MSE obtained from (41) is identical
to that in (39).

e Also note that as SNR — o0, (41) reduces to MSE(g —
8-

6. Simulations

In this section, the merits of our channel estimators is
illustrated through simulations. We choose average mean
square error (MSE) as our figure of merit. The fading multi-
path channel with L paths given by (5) with an exponentially
decaying power delay profile (14) is considered.

The scenario for our simulation study consists of a wire-
less QPSK OFDM system employing the pulse shape as
a unit-energy Nyquist-root raised-cosine shape with rolloff
o= 0.2, with a symbol period (7s) of 0.120 ps, correspond-
ing to an uncoded symbol rate of 8.33 Mbit/s. Transmission
bandwidth (5 MHz) is divided into 1024 tones. We assume
that the fading multipath channel has L = 40 paths with
an exponentially decaying power delay profile (5) with an
Trms = 5 sample (0.6 ps) long.

A QPSK-OFDM sequence passes through the channel taps
and is corrupted by AWGN (10, 20, 30 and 40dB, respec-
tively). We use a pilot symbol for every twenty (A = 20)
symbols. The MSE at each SNR point is averaged over
1000 realizations. We compare the experimental MSE per-
formance and its theoretical Bayesian MSE of the proposed
full-rank MMSE estimator with maximum-likelihood (ML)
estimator and its corresponding Cramer—Rao bound (CRB).
Fig. 2 confirms that MMSE estimator performs better than
ML estimator at low SNR. However, the two approaches has
comparable performance at high SNRs.

6.1. SNR design mismatch

In order to evaluate the performance of the proposed full-
rank MMSE estimator to mismatch only in SNR design, the
estimator is tested when SNRs of 10 and 30dB are used in
the design. The MSE curves for a design SNR of 10 and
30dB are shown in Fig. 3. The performance of the MMSE
estimator for high SNR (30dB) design is better than low
SNR (10 dB) design across a range of SNR values (0-30 dB).
This results confirm that channel estimation error is con-
cealed in noise for low SNR whereas it tends to dominate
for high SNR. Thus, the system performance degrades es-
pecially for low SNR design.

6.2. Correlation mismatch

To analyze full-rank MMSE estimator’s performance fur-
ther, we need to study sensitivity of the estimator to design
errors, i.e., correlation mismatch. We therefore designed
the estimator for a uniform channel correlation which gives
the worst MSE performance among all channels [9,13]
and evaluated for an exponentially decaying power-delay
profile. The uniform channel correlation between the
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Fig. 2. Performance of proposed MMSE and MLE together with Bmse and CRB.
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Fig. 3. Effects of SNR design mismatch on MSE.

attenuations can be obtained by letting 7,y — o0 in (5),
resulting in (15).

Fig. 4 demonstrates the estimator’s sensitivity to the chan-
nel statistics in terms of the average MSE. As it can be seen
from Fig. 4 only small performance loss is observed for low
SNRs when the estimator is designed for mismatched chan-
nel statistics. This justifies the result that a design for worst
correlation is robust to mismatch.

6.3. Performance of the truncated estimator

The truncated estimator performance is also studied as a
function of the number of the KL coefficients. Fig. 5 presents
the MSE result of the truncated MMSE estimator. If only a
few expansion coefficients is employed to reduce the com-
plexity of the proposed estimator, then the MSE between
channel parameters becomes large. However, if the number
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Fig. 4. Effects of correlation mismatch on MSE.
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Fig. 5. MSE as a function of KL expansion coefficients.

of parameters in the expansion is increased, the irreducible

error floor still occurs.

7. Conclusion

We consider the design of a low complexity MMSE chan-

nel estimator for OFDM systems in

unknown wireless dis-

persive fading channels. We derive the batch MMSE estima-

tor based on the stochastic orthogonal expansion represen-
tation of the channel via the KL transform. Based on such
representation, we show that no matrix inversion is needed
in the MMSE algorithm. Therefore, the computational cost
for implementing the proposed MMSE estimator is low and
computation is numerically stable. Moreover, the perfor-
mance of our proposed batch method was studied through
the derivation of minimum Bayesian MSE. Since the actual
channel statistics and SNR may vary within OFDM block,
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we have also analyzed the effect of modeling mismatch on
the estimator performance and shown both analytically and
through simulations that the performance degradation due
to such mismatch is negligible for low SNR values.
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