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Focusing on transmit diversity orthogonal frequency-division multiplexing (OFDM) transmission through frequency-selective
channels, this paper pursues a channel estimation approach in time domain for both space-frequency OFDM (SF-OFDM) and
space-time OFDM (ST-OFDM) systems based on AR channel modelling. The paper proposes a computationally efficient, pilot-
aided linear minimum mean-square-error (MMSE) time-domain channel estimation algorithm for OFDM systems with trans-
mitter diversity in unknown wireless fading channels. The proposed approach employs a convenient representation of the channel
impulse responses based on the Karhunen-Loeve (KL) orthogonal expansion and finds MMSE estimates of the uncorrelated KL
series expansion coefficients. Based on such an expansion, no matrix inversion is required in the proposed MMSE estimator. Sub-
sequently, optimal rank reduction is applied to obtain significant taps resulting in a smaller computational load on the proposed
estimation algorithm. The performance of the proposed approach is studied through the analytical results and computer sim-
ulations. In order to explore the performance, the closed-form expression for the average symbol error rate (SER) probability
is derived for the maximum ratio receive combiner (MRRC). We then consider the stochastic Cramer-Rao lower bound(CRLB)
and derive the closed-form expression for the random KL coefficients, and consequently exploit the performance of the MMSE
channel estimator based on the evaluation of minimum Bayesian MSE. We also analyze the effect of a modelling mismatch on the
estimator performance. Simulation results confirm our theoretical analysis and illustrate that the proposed algorithms are capable
of tracking fast fading and improving overall performance.
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1. INTRODUCTION

Next generations of broadband wireless communications
systems aim to support different types of applications with
a high quality of service and high-data rates by employing a
variety of techniques capable of achieving the highest possi-
ble spectrum efficiency [1]. The fulfilment of the constantly
increasing demand for high-data rate and high quality of ser-
vice requires the use of much more spectrally efficient and
flexible modulation and coding techniques, with greater im-
munity against severe frequency-selective fading. The com-
bined application of OFDM and transmit antenna diversity
appears to be capable of enabling the types of capacities and
data rates needed for broadband wireless services [2–8].

OFDM has emerged as an attractive and powerful al-
ternative to conventional modulation schemes in the recent
past due to its various advantages in lessening the severe ef-
fect of frequency-selective fading. The broadband channel
undergoes severe multipath fading, the equalizer in a con-
ventional single-carrier modulation becomes prohibitively

complex to implement. OFDM is therefore chosen over a
single-carrier solution due to lower complexity of equalizers
[1]. In OFDM, the entire signal bandwidth is divided into a
number of narrowbands or orthogonal subcarriers, and sig-
nal is transmitted in the narrowbands in parallel. Therefore,
it reduces intersymbol interference (ISI), obviates the need
for complex equalization, and thus greatly simplifies chan-
nel estimation/equalization task. Moreover, its structure also
allows efficient hardware implementations using fast Fourier
transform (FFT) and polyphase filtering [2]. On the other
hand, due to dispersive property of the wireless channel, sub-
carriers on those deep fades may be severely attenuated. To
robustify the performance against deep fades, diversity tech-
niques have to be used. Transmit antenna diversity is an ef-
fective technique for combatting fading in mobile in multi-
path wireless channels [4, 9]. Among a number of antenna
diversity methods, the Alamouti method is very simple to
implement [9]. This is an example for space-time block code
(STBC) for two transmit antennas, and the simplicity of the
receiver is attributed to the orthogonal nature of the code
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[10, 11]. The orthogonal structure of these space-time block
codes enable the maximum likelihood decoding to be im-
plemented in a simple way through decoupling of the signal
transmitted from different antennas rather than joint detec-
tion resulting in linear processing [9].

The use of OFDM in transmitter diversity systems mo-
tives exploitation of diversity dimensions. Inspired by this
fact, a number of coding schemes have been proposed re-
cently to achieve maximum diversity gain [6–8]. Among
them, ST-OFDMhas been proposed recently for delay spread
channels. On the other hand, transmitter OFDM also of-
fers the possibility of coding in a form of SF-OFDM [6–8].
OFDM maps the frequency-selective channel into a set of
flat fading subchannels, whereas space-time/frequency en-
coding/decoding facilitates equalization and achieves perfor-
mance gains by exploiting the diversity available with trans-
mit antennas. Moreover, SF-OFDM and ST-OFDM trans-
mitter diversity systems were compared in [6], under the as-
sumption that the channel responses are known or can be
estimated accurately at the receiver. It was shown that the SF-
OFDM system has the same performance as a previously re-
ported ST-OFDM scheme in slow fading environments but
shows better performance in the more difficult fast fading
environments. Also, since, SF-OFDM transmitter diversity
scheme performs the decoding within one OFDM block, it
only requires half of the decoder memory needed for the ST-
OFDM system of the same block size. Similarly, the decoder
latency for SF-OFDM is also half that of the ST-OFDM im-
plementation.

Channel estimation for transmit diversity OFDM sys-
tems has attracted much attention with pioneering works
by Li et al. [4] and Li [5]. A robust channel estimator for
OFDM systems with transmitter diversity has been first de-
veloped with the temporal estimation by using the correla-
tion of the channel parameters at different frequencies [4].
Its simplified approaches have been then presented by iden-
tifying significant taps [5]. Among many other techniques,
pilot-aided MMSE estimation was also applied in the con-
text of space-time block coding (STBC) either in the time do-
main for the estimation of channel impulse response (CIR)
[12, 13] or in the frequency domain for the estimation of
transfer function (TF) [14]. However channel estimation in
the time domain turns out to be more efficient since the
number of unknown parameters is greatly decreased com-
pared to that in the frequency domain. Focusing on transmit
diversity OFDM transmissions through frequency-selective
fading channels, this paper pursues a time-domain MMSE
channel estimation approach for both SF-OFDM and ST-
OFDM systems. We derive a low complexity MMSE channel
estimation algorithm for both transmiter diversity OFDM
systems based on AR channel modelling. In the development
of theMMSE channel estimation algorithm, the channel taps
are assumed to be random processes. Moreover, orthogonal
series representation based on the KL expansion of a random
process is applied whichmakes the expansion coefficient ran-
dom variables uncorrelated [15, 16]. Thus, the algorithm es-
timates the uncorrelated complex expansion coefficients us-
ing the MMSE criterion.

The layout of the paper is as follows. In Section 2, a gen-
eral model for transmit diversity OFDM systems together
with SF and ST coding, AR channel modelling, and unified
signal model are presented. In Section 3, an MMSE channel
estimation algorithm is developed for the KL expansion co-
efficients. Performance of the proposed algorithm is studied
based on the evaluation of the modified Cramer-Rao bound
of the channel parameters and the SNR and correlation mis-
match analysis together with closed-form expression for the
average SER probability in Section 4. Some simulation exam-
ples are provided in Section 5. Finally, conclusions are drawn
in Section 6.

2. SYSTEMMODEL

2.1. Alamouti’s transmit diversity
scheme for OFDM systems

In this paper, we consider a transmitter diversity scheme in
conjunction with OFDM signaling. Many transmit diversity
schemes have been proposed in the literature offering dif-
ferent complexity versus performance trade-offs. We choose
Alamouti’s transmit diversity scheme due to its simple im-
plementation and good performance [9]. The Alamouti’s
scheme imposes an orthogonal spatio-temporal structure on
the transmitted symbols that guarantees full (i.e., order 2)
spatial diversity.

We consider the Alamouti transmitter diversity coding
scheme, employed in an OFDM system utilizing K subcar-
riers per antenna transmissions. Note that K is chosen as an
even integer. The fading channel between the μth transmit
antenna and the receive antenna is assumed to be frequency
selective and is described by the discrete-time baseband
equivalent impulse response hμ(n) = [hμ,0(n), . . . ,hμ,L(n)]T ,
with L standing for the channel order.

At each time index n, the input serial information sym-
bols with symbol duration Ts are converted into a data vec-
tor X(n) = [X(n, 0), . . . ,X(n,K − 1)]T by means of a serial-
to-parallel converter. Its block duration is KTs. Moreover,
X(n, k) denote the kth forward polyphase component of the
serial data symbols, that is, X(n, k) = X(nK + k) for k =
0, 1, 2, . . . ,K − 1 and n = 0, 1, 2, . . . ,N − 1. Polyphase com-
ponent X(n, k) can also be viewed as the data symbol to be
transmitted on the kth tone during the block instant n. The
transmitter diversity encoder arranges X(n) into two vectors
X1(n) and X2(n) according to an appropriate coding scheme
described in [6, 9]. The coded vector X1(n) is modulated
by an IFFT into an OFDM sequence. Then cyclic prefix is
added to the OFDM symbol sequence, and the resulting sig-
nal is transmitted through the first transmit antenna. Sim-
ilarly, X2(n) is modulated by IFFT, cyclically extended, and
transmitted from the second transmit antenna.

At the receiver side, the antenna receives a noisy super-
position of the transmissions through the fading channels.
We assume ideal carrier synchronization, timing, and perfect
symbol-rate sampling, and the cyclic prefix is removed at the
receiver end.
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Figure 1: Space-frequency coding on two adjacent FFT frequency bins.

The generation of coded vectors X1(n) and X2(n) from
the information symbols leads to corresponding transmit
diversity OFDM scheme. In our system, the generation of
X1(n) and X2(n) is performed via the space-frequency cod-
ing and space-time coding, respectively, which were first sug-
gested in [9] and later generalized in [7, 8].

Space-frequency coding

We first consider a strategy which basically consists of coding
across OFDM tones and is therefore called space-frequency
coding [6–8]. Resorting to coding across tones, the set of
generally correlated OFDM subchannels is first divided into
groups of subchannels. This subchannel grouping with ap-
propriate system parameters does preserve diversity gain
while simplifying not only the code construction but decod-
ing algorithm significantly as well [6]. A block diagram of
a two-branch space-frequency OFDM transmitter diversity
system is shown in Figure 1. Resorting subchannel grouping,
X(n) is coded into two vectors X1(n) and X2(n) by the space-
frequency encoder as

X1(n) =
[
X(n, 0),−X∗(n, 1), . . . ,X(n,K − 2),

− X∗(n,K − 1)
]T
,

X2(n) =
[
X(n, 1),X∗(n, 0), . . . ,X(n,K − 1),

X∗(n,K − 2)
]T
,

(1)

where (·)∗ stands for complex conjugation. In space-
frequency Alamouti scheme, X1(n) and X2(n) are transmit-
ted through the first and second antenna elements, respec-
tively, during the OFDM block instant n.

The operations of the space-frequency block encoder
can best be described in terms of even and odd polyphase
component vectors. If we denote even and odd component

vectors of X(n) as

Xe(n) =
[
X(n, 0),X(n, 2), . . . ,X(n,K − 4),X(n,K − 2)

]T
,

Xo(n) =
[
X(n, 1),X(n, 3), . . . ,X(n,K − 3),X(n,K − 1)

]T
,

(2)

then the space-frequency block code transmission matrix
may be represented by

Space −→

Frequency ↓
[

Xe(n) Xo(n)
−X∗o (n) X∗e (n)

]

.
(3)

If the received signal sequence is parsed in even and odd
blocks of K/2 tones, Ye(n) = [Y(n, 0),Y(n, 2), . . . ,Y(n,K −
2)]T and Yo(n) = [Y(n, 1),Y(n, 3), . . . ,Y(n,K −1)]T , the re-
ceived signal can be expressed in vector form as

Ye(n) =Xe(n)H1,e(n) +Xo(n)H2,e(n) +We(n),

Yo(n) = −X†
o (n)H1,o(n) +X†

e (n)H2,o(n) +Wo(n),
(4)

where Xe(n) and Xo(n) are K/2 × K/2 diagonal matri-
ces whose elements are Xe(n) and Xo(n), respectively, and
(·)† denotes conjugate transpose. Let Hμ,e(n) = [Hμ(n, 0),
Hμ(n, 2), . . . ,Hμ(n,K − 2)]T and Hμ,o(n) = [Hμ(n, 1),
Hμ(n, 3), . . . ,Hμ(n,K − 1)]T be K/2 length vectors denoting
the even and odd component vectors of the channel attenu-
ations between the μth transmitter and the receiver. Finally,
We(n) andWo(n) are zero-mean, i.i.d. Gaussian vectors with
covariance matrix σ2IK/2.

Space-time coding

In contrast to SF-OFDM coding, ST encoder maps every two
consecutive symbol blocksX(n) andX(n+1) to the following
2K × 2 matrix:

Space −→

Time ↓
[

X(n) X(n + 1)
−X∗(n + 1) X∗(n)

]

.
(5)
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Figure 2: Space-time coding on two adjacent OFDM blocks.

The columns are transmitted in successive time intervals with
the upper and lower blocks in a given column sent simul-
taneously through the first and second transmit antennas,
respectively, as shown in Figure 2. If we focus on each re-
ceived block separately, each pair of two consecutive received
blocks Y(n) = [Y(n, 0), . . . ,Y(n,K − 1)]T and Y(n + 1) =
[Y(n + 1, 0), . . . ,Y(n + 1,K − 1)]T are given by

Y(n) =X(n)H1(n)

+X(n + 1)H2(n) +W(n),

Y(n + 1) = −X†(n + 1)H1(n + 1)

+X†(n)H2(n + 1) +W(n + 1),

(6)

where X(n) and X(n + 1) are K × K diagonal matrices
whose elements are X(n) and X(n + 1), respectively. Hμ(n)
is the channel frequency response between the μth transmit-
ter and the receiver antenna at the nth time slot which is ob-
tained from channel impulse response hμ(n). Finally, W(n)
and W(n + 1) are zero-mean, i.i.d. Gaussian vectors with
covariance matrix σ2IK per dimension.

Having specified the received signal models (4) and (6),
we proceed to explore channel models.

2.2. ARmodels considerations

Channel estimation in transmit diversity systems results in
ill-posed problem since for every incoming signal, extra un-
knowns appear. However, imposing structure on channel
variations render estimation problem tractable. Fortunately
many wireless channels exhibit structured variations hence
fit into some evolution model. Among different models, the
AR model is adopted herein for channel dynamics. Since
only the first few correlation terms are important to finitely
parametrize structured variations of a wireless channel in the
design of a channel estimator, low-order ARmodels can cap-
ture most of the channel tap dynamics and lead to effective
estimation techniques. Thus this paper associates channel ef-
fect in SF/ST-OFDM systems with a first-order AR process.

AR channel model in SF-OFDM

The even and odd component vectors of the channelsHμ,e(n)
andHμ,o(n) between the μth transmitter and the receiver can
be modelled as a first-order AR process. An AR process can
be represented as

Hμ,o(n) = αHμ,e(n) + ημ,o(n), (7)

where α can be obtained from the normalized exponential
discrete channel correlation for different subcarriers in SF-
OFDM case. Moreover, using (7), simple manipulations lead
to the covariance matrix Cημ,o(n) = (1 − |α|2)IK/2 of zero-
mean Gaussian AR process noise ημ,o(n).

AR channel model in ST-OFDM

Similarly, the channel frequency responseHμ(n) between the
μth transmitter and the receiver antenna at the nth time slot
varies accordingly:

Hμ(n + 1) = αHμ(n) + ημ(n + 1), (8)

where α is related to Doppler frequency fd and symbol dura-
tion Ts via α = Jo(2π fdTs) in ST-OFDM. Using (8), we ob-
tain the covariancematrix of zero-meanGaussian AR process
noise ημ(n + 1) as Cημ(n+1) = (1− |α|2)IK .

2.3. Unifying SF-OFDMand ST-OFDM signalmodels

The transmitter diversity OFDM schemes considered here
can be unified into one general model for channel estima-
tion. Considering signal models (4) and (6) with correspond-
ing AR models (7) and (8), we unify SF-OFDM and ST-
OFDM in the following equivalent model:

[
Y1

Y2

]

=
[

X1 X2

−X†
2 X†

1

][
H1

H2

]

+

[
W1

W2

]

. (9)
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For convenience, we list the corresponding vectors and ma-
trices for SF-OFDM as

[
Y1

Y2

]
=
[

Ye(n)
Yo(n)/α

]
,

[
X1 X2

−X†
2 X†

1

]

=
[

Xe(n) Xo(n)
−X†

o (n) X†
e (n)

]

,

[
H1

H2

]
=
[
H1,e(n)
H2,e(n)

]
,

[
W1

W2

]
=
[

We(n)

1/α
[
Wo(n)−X†

o (n)η1,o(n) +X†
e (n)η2,o(n)

]

]
,

(10)

where W1 ∼ N (0, σ2IK/2),W2 ∼ N (0, σ2 + 2(1− |α|2)/
|α|2IK/2). Similarly for ST-OFDM,

[
Y1

Y2

]
=
[

Y(n)
Y(n + 1)/α

]
,

[
X1 X2

−X†
2 X†

1

]

=
[

X(n) X(n + 1)

−X†(n + 1) X†(n)

]

,

[
H1

H2

]
=
[
H1(n)
H2(n)

]
,

[
W1

W2

]

=
[

W(n)
1/α
[
W(n+1)−X†(n+1)η1(n+1)+X†(n)η2(n+1)

]

]

.

(11)

Note thatW1 ∼ N (0, σ2IK ) andW2 ∼ N (0, σ2 +2(1−|α|2)/
|α|2IK ).

Relying on the unifying model (9), we will develop a
channel estimation algorithm according to the MMSE crite-
rion and then explore the performance of the estimator. An
MMSE approach adapted herein explicitly models the chan-
nel parameters by the KL series representation since KL ex-
pansion allows one to tackle the estimation of correlated pa-
rameters as a parameter estimation problem of the uncorre-
lated coefficients.

3. MMSE ESTIMATION

Pilots-symbols-assisted techniques can provide information
about an undersampled version of the channel that may be
easier to identify. In this paper, we therefore address the prob-
lem of estimating channel parameters by exploiting the dis-
tributed training symbols.

3.1. MMSE estimation of themultipath channels

Since both SF and ST block-coded OFDM systems have sym-
metric structure in frequency and time, respectively, the pi-
lot symbols should be uniformly placed in pairs. Specifically,
we also assume that even number of symbols are placed be-
tween pilot pairs for SF-OFDM systems. Based on these pi-
lot structures, (9) is modified to represent the signal model

corresponding to pilot symbols as follows:
[
Y1,p

Y2,p

]

︸ ︷︷ ︸
Yp

=
[
X1,p X2,p

−X†
2,p X†

1,p

]

︸ ︷︷ ︸
Xp

[
H1,p

H2,p

]

︸ ︷︷ ︸
Hp

+

[
W1,p

W2,p

]

︸ ︷︷ ︸

,

Wp

(12)

where (·)p is introduced to represent the vectors correspond-
ing to pilot locations.

For a class of QPSK-modulated pilot symbols, the new
observation model can be formed by premultiplying both

sides of (12) byX
†
p:

X
†
pYp =X

†
pXpHp +X

†
pWp. (13)

Since X
†
pXp = 2I2Kp , and letting Ỹp = X

†
pYp and W̃p =

X
†
pWp, (13) can be rewritten as

Ỹp = 2Hp + W̃p (14)

namely,
[
Ỹ1,p

Ỹ2,p

]

= 2

[
H1,p

H2,p

]

+

[
W̃1,p

W̃2,p

]

, (15)

where

Ỹ1,p =X†
1,pY1,p −X2,pY2,p,

Ỹ2,p =X†
2,pY1,p +X1,pY2,p,

W̃1,p =X†
1,pW1,p −X2,pW2,p,

W̃2,p =X†
2,pW1,p +X1,pW2,p,

(16)

and note that W̃1,p ∼ N (0, σ2IKp) and W̃2,p ∼ N (0, σ2IKp)
where σ2 = (σ2(1 + |α|2) + 2(1− |α|2))/|α|2. By writing
each row of (16) separately, we obtain the following obser-
vation equation set to estimate the channels H1,p andH2,p:

Ỹμ,p = 2Hμ,p + W̃μ,p μ = 1, 2. (17)

Since our goal is to develop channel estimation in time do-
main, (17) can be expressed in terms of hμ by using Hμ,p �
Fhμ in (17). Thus we can conclude that the observationmod-
els for the estimation of channel impulse responses hμ are

Ỹμ,p = 2Fhμ + W̃μ,p, μ = 1, 2, (18)

where F is a Kp × L FFT matrix generated based on pilot in-
dices and Kp is the number of pilot symbols per one OFDM
block.

Since (18) offers a Bayesian linear model representa-
tion, one can obtain a closed-form expression for the MMSE
estimation of channel vectors h1 and h2. We should first
make the assumptions that impulse responses h1 and h2
are i.i.d. zero-mean complex Gaussian vectors with covari-
ance Ch, and h1 and h2 are independent from W̃1,p ∼
N (0, σ2IKp) and W̃2,p ∼ N (0, σ2IKp) and employ PSK pi-
lot symbolassumption to obtain MMSE estimates of h1 and
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h2 [17]:

ĥμ =
(

2F†F +
σ2

2
C−1h

)−1
F†Ỹμ,p, μ = 1, 2. (19)

Under the assumption that uniformly spaced pilot symbols
are inserted with pilot spacing interval Δ and K = Δ × Kp,
correspondingly, F†F reduces to F†F = KpIL. Then according
to (19), and F†F = KpIL, we arrive at the expression

ĥμ =
(
2KpIL +

σ2

2
C−1h

)−1
F†Ỹμ,p, μ = 1, 2. (20)

As it can be seen from (20) MMSE estimation of h1 and h2
for SF-OFDM and ST-OFDM systems still requires the inver-
sion of C−1h . Therefore it suffers from a high computational
complexity. However, it is possible to reduce complexity of
the MMSE algorithm by expanding multipath channel as a
linear combination of orthogonal basis vectors. The orthog-
onality of the basis vectors makes the channel representa-
tion efficient and mathematically convenient. KL transform
which amounts to a generalization of the DFT for random
processes can be employed here. This transformation is re-
lated to diagonalization of the channel correlation matrix by
the unitary eigenvector transformation,

Ch = ΨΛΨ†, (21)

whereΨ = [ψ0,ψ1, . . . ,ψL−1], ψ l’s are the orthonormal basis
vectors, and gμ = [gμ,0, gμ,1, . . . , gμ,L−1]T is zero-mean Gaus-
sian vector with diagonal covariance matrix Λ = E{gμg†μ}.

Thus the vectors h1 and h2 can be expressed as a lin-
ear combination of the orthonormal basis vectors, that is, as
hμ = Ψgμ where μ is the multipath channel index. As a result,
the channel estimation problem in this application is equiva-
lent to estimating the i.i.d. complex Gaussian vectors g1 and
g2 which represent KL expansion coefficients for multipath
channels h1 and h2.

3.2. MMSE estimation of KL coefficients

Substituting hμ = Ψgμ in unified observation model (18), we
can rewrite it as

Ỹμ,p = 2FΨgμ + W̃μ,p, μ = 1, 2, (22)

which is also recognized as a Bayesian linear model, and re-
call that gμ ∼ N (0,Λ). As a result, the MMSE estimator of
KL coefficients gμ is

ĝμ = Λ
(
2KpΛ +

σ2

2
IL

)−1
Ψ†F†Ỹμ,p

= ΓΨ†F†Ỹμ,p, μ = 1, 2,

(23)

where

Γ = Λ
(
2KpΛ +

σ2

2
IL

)−1

= diag
{

2λ0
4Kpλ0 + σ2

,
2λ1

4Kpλ1 + σ2
, . . . ,

2λL−1
4KpλL−1 + σ2

}

(24)

and λ0, λ1, . . . , λL−1 are the singular values of Λ.

MMSE estimator of g requires 4L2+4LKp+2L real multi-
plications. From the results presented in [18], ML estimator
of gμ which requires 4L2 + 4LKp real multiplications can be
obtained as

ĝμ = 1
2Kp

Ψ†F†Ỹμ,p, μ = 1, 2. (25)

It is clear that the complexity of the MMSE estimator in (20)
is reduced by the application of KL expansion. However, the
complexity of the ĝμ can be further reduced by exploiting
the optimal truncation property of the KL expansion [15].
A truncated expansion gμr can be formed by selecting r or-
thonormal basis vectors from all basis vectors that satisfy
ChΨ = ΨΛ. Thus, a rank-r approximation to Λr is defined
as Λr = diag{λ0, λ1, . . . , λr−1, 0, . . . , 0}.

Since the trailing L− r variances {λgl}L−1l=r are small com-
pared to the leading r variances {λgl}r−1l=0 , the trailing L − r
variances are set to zero to produce the approximation. How-
ever, typically the pattern of eigenvalues for Λ splits the
eigenvectors into dominant and subdominant sets. Then the
choice of r is more or less obvious. The optimal truncated KL
(rank-r) estimator of (23) now becomes

ĝμr = ΓrΨ
†F†Ỹμ,p, (26)

where

Γr = Λr

(
2KpΛr +

σ2

2
IL

)−1

= diag
{

2λ0
4Kpλ0 + σ2

,
2λ1

4Kpλ1 + σ2
, . . . ,

2λr−1
4Kpλr−1 + σ2

, 0, . . . , 0
}
.

(27)

Thus, the truncated MMSE estimator of gμ (26) requires
4Lr + 4LKp + 2r real multiplications.

3.3. Estimation ofHμ,o(n) andHμ(n + 1)

For the Bayesian MMSE estimation of the channel param-
eters Hμ,o(n) and Hμ(n + 1) for SF-OFDM and ST-OFDM,
respectively, the unified signal model in (9) can be rewritten
by exploiting AR representation in (7) and (8) as

[
Y1

Y2

]

= 1
α

[
X1 X2

−X†
2 X†

1

][
H1+

H2+

]

+

[
W1+

W2+

]

. (28)

The corresponding vectors for SF-OFDM can be listed as

[
H1+

H2+

]

=
[
H1,o(n)
H2,o(n)

]
,

[
W1+

W2+

]
=
[
We(n)− 1/α[Xe(n)η1,o(n)−Xo(n)η2,o(n)]

1/αWo(n)

]

.

(29)
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Moreover for ST-OFDM,
[
H1+

H2+

]
=
[
H1(n + 1)
H2(n + 1)

]
,

[
W1+

W2+

]
=
[
W(n)−(1/α)[X(n)η1(n+1)−X(n+1)η2(n+1)]

(1/α)W(n+1)

]
.

(30)

Note that W1+ ∼ N (0, (σ2 + 2(1− |α|2)/|α|2)I) and W2+ ∼
N (0, σ2/|α|2I). According to the unified model in (28), cor-
responding pilot model in (12), and Hμ+ = FΨgμ+ , the ob-
servation model becomes

Ỹμ,p = 2
α
FΨgμ+ + W̃μ+,p, μ = 1, 2, (31)

where

W̃1+,p =X†
1,pW1+,p −X2,pW2+,p,

W̃2+,p =X†
2,pW1+,p +X1,pW2+,p,

(32)

and note that W̃μ+,p ∼ N (0, σ2I). Thus, the estimation of the
KL coefficient vector gμ+ is

ĝμ+ = Γ̃Ψ†F†Ỹμ,p, μ = 1, 2, (33)

where

Γ̃ = Λ
(

2
α∗

KpΛ +
α

2
σ2IL

)−1

= diag
{

2α∗λ0
4Kpλ0 + |α|2σ2 ,

2α∗λ1
4Kpλ1 + |α|2σ2 , . . . ,

2α∗λL−1
4KpλL−1 + |α|2σ2

}
.

(34)

Note that, choosing α = 1 results in Hμ,o = Hμ,e and
Hμ(n + 1) = Hμ(n), respectively, which significantly simpli-
fies the channel estimation task in transmit diversity OFDM
systems.

The performance analysis issues elaborated in the next
section only consider the Bayesian MMSE estimator of gμ for
Hμ,e(n) and Hμ(n). However extensions for gμ+ are straight-
forward.

4. PERFORMANCE ANALYSIS

In this section, we turn our attention to analytical per-
formance results. We first exploit the performance of the
MMSE channel estimator based on the evaluation of mod-
ified Cramer-Rao lower bound, Bayesian MSE together with
mismatch analysis. We then derive the closed-form expres-
sion for the average SER probability of MRRC.

4.1. Cramer-Rao lower bound for random
KL coefficients

In this paper, the estimation of unknown random parameters
gμ is considered via MMSE approach; the modified Fisher in-
formation matrix(FIM) therefore needs to be taken into ac-
count in the derivation of stochastic CRLB [19]. Fortunately,

the modified FIM can be obtained by a straightforwardmod-
ification of J(gμ) FIM as

JM
(
gμ
)

� J
(
gμ
)
+ JP
(
gμ
)
, (35)

where JP(gμ) represents the a priori information. Under the

assumption that gμ and W̃μ,p are independent of each other

and W̃μ,p is a zero mean, from [19] and (31) the conditional
PDF is given by

p
(
Ỹμ,p | gμ

) = 1
πKp
∣
∣CW̃μ,p

∣
∣

× exp
{− (Ỹμ,p − 2FΨgμ

)†
C−1
W̃μ,p

× (Ỹμ,p − 2FΨgμ
)}

(36)

from which the derivatives follow as

∂ ln p
(
Ỹμ,p | gμ

)

∂gTμ
= 2
(
Ỹμ,p − 2FΨgμ

)†
C−1
W̃μ,p

FΨ,

∂2 ln p
(
Ỹμ,p | gμ

)

∂g∗μ ∂gTμ
= −4Ψ†F†C−1

W̃μ,p
FΨ,

(37)

where the superscript (·)∗ indicates the conjugation opera-
tion. Using CW̃μ,p

= σ2IKp , Ψ
†Ψ = IL, and F†F = KpIL, and

taking the expected value yields the following simple form:

J(gμ) = −E
[
∂2 ln p

(
Ỹμ,p | gμ

)

∂g∗μ ∂gTμ

]

= −E
[
− 4Kp

σ2
IL

]

= 4Kp

σ2
IL.

(38)

Second term in (35) is easily obtained as follows. Consider
the prior PDF of gμ(n) as

p(gμ) = 1
πL|Λ| exp

{− g†μΛ
−1gμ

}
. (39)

The respective derivatives are found as

∂ ln p
(
gμ
)

∂gTμ
= −g†μΛ−1,

∂2 ln p
(
gμ
)

∂g∗μ ∂gTμ
= −Λ−1.

(40)

Upon taking the negative expectations, second term in (35)
becomes

JP(gμ) = −E
[
∂2 ln p(gμ)

∂g∗μ ∂gTμ

]

= −E[−Λ−1
]

= Λ−1.

(41)
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Substituting (38) and (41) in (35) produces for the modified
FIM the following:

JM
(
gμ
) = J

(
gμ
)
+ JP
(
gμ
)

= 4Kp

σ2
IL +Λ−1

= 2
σ2

(
2KpIL +

σ2

2
Λ−1
)

= 2
σ2

Γ−1.

(42)

Inverting the matrix JM(gμ) yields

CRLB
(
ĝμ
) = J−1M

(
gμ
)

= σ2

2
Γ.

(43)

4.2. BayesianMSE

From the performance of the MMSE estimator for the Bayesian
linear model theorem [17], the error covariance matrix is ob-
tained as

Cεμ =
(
Λ−1 + (2FΨ)†C−1

W̃μ,p

(
2FΨ

))−1

= σ2

2

(
2KpIL +

σ2

2
Λ−1
)−1

= σ2

2
Γ.

(44)

Comparing (43) with (44), the error covariance matrix of
the MMSE estimator coincides with the stochastic CRLB of
the random vector estimator. Thus, ĝμ achieves the stochastic
CRLB.

We now formalize the Bayesian MSE of the full-rank es-
timator which is actually an extension of previous evaluation
methodology presented in [20, 21]:

BMSE
(
ĝμ
) = 1

L
tr
(
Cεμ
)

= 1
L
tr
(
σ2

2
Γ
)
= 1

L

L−1∑

i=0

σ2λi
σ2 + 4Kpλi

,
(45)

where, substituting σ2 = 1/SNR in σ2, σ2 = 1 + |α|2/
|α|2 SNR+2(1− |α|2)/|α|2, and tr denotes trace operator on
matrices.

Following the results presented in [20, 21], BMSE(ĝμ)
given in (45) can also be computed for the truncated (low-
rank) case as follows:

BMSE(ĝμr ) =
1
L

r−1∑

i=0

σ2λi
σ2 + 4Kpλi

+
1
L

L−1∑

i=r
λi. (46)

Notice that the second term in (46) is the sum of the powers
in the KL transform coefficients not used in the truncated
estimator. Thus, truncated BMSE(ĝμr ) can be lower bounded

by (1/L)
∑L−1

i=r λi which will cause an irreducible error floor
in the SER results.

4.3. Mismatch analysis

In mobile wireless communications, the channel statistics
depend on the particular environment, for example, in-
door or outdoor, urban or suburban, and change with time.
Hence, it is important to analyze the performance degrada-
tion due to a mismatch of the estimator with respect to the
channel statistics as well as the SNR, and to study the choice
of the channel correlation and SNR for this estimator so that
it is robust to variations in the channel statistics. As a perfor-
mance measure, we use Bayesian MSE (45).

In practice, the true channel correlations and SNR are
not known. If the MMSE channel estimator is designed to
match the correlation of a multipath channel impulse re-
sponse Ch and SNR, but the true channel parameters h̃μ have

the correlation Ch̃ and the true �SNR, then average Bayesian
MSE for the designed channel estimator is extended from
[21] as follows

(i) SNR mismatch:

BMSE(ĝμ) = 1
L

L−1∑

i=0
λiσ̃

2 4Kpλi + σ4/σ̃2

(4Kpλi + σ2)2
, (47)

where

σ2 = 1 + |α|2
|α|2 SNR +

2(1− |α|2)
|α|2 ,

σ̃2 = 1 + |α|2
|α|2�SNR +

2(1− |α|2)
|α|2 .

(48)

(ii) Correlation mismatch:

BMSE(ĝμ) = 1
L

L−1∑

i=0

λ̃iσ
2 + 4Kpλi

(
λ̃i + λi − 2βi

)

σ2 + 4Kpλi
, (49)

where λ̃i is the ith diagonal element of Λ̃ = Ψ†Ch̃Ψ, and βi
is ith diagonal element of the real part of the crosscorrelation
matrix between g̃μ and gμ.

4.4. Theoretical SER for SF/ST-OFDM systems

Let us define Y = [Y1 Y∗2 ]T and cast (9) in a matrix/vector
form:
[
Y1

Y∗2

]

︸ ︷︷ ︸
Y

=
[
H1 H2

H†
2 −H†

1

]

︸ ︷︷ ︸
H

[
X1

X2

]

︸ ︷︷ ︸
X

+

[
W1

W∗
2

]

︸ ︷︷ ︸

,

W

(50)

where Hμ = diag(Hμ). By premultiplying (50) by H
†
the

signal model for maximal ratio receive combiner (MRRC)
can be obtained as
[
Y̆1

Y̆2

]

=
[
‖H1 ‖2 + ‖H2 ‖2 0

0 ‖H1 ‖2 + ‖H2 ‖2
]

×
[
X1

X2

]

+

[
W̆1

W̆2,

]

,

(51)
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where

Y̆1 =H†
1 Y1 +H2Y∗2 ,

Y̆2 =H†
2 Y1 −H1Y∗2 ,

W̆1 =H†
1 W1 +H2W∗

2 ,

W̆2 =H†
2 W1 −H1W∗

2 .

(52)

Thus, at the output of MRRC the signal for kth subchan-
nel is

Y̆μ(k) =
(∣∣H1(k)

∣
∣2 +

∣
∣H2(k)

∣
∣2)Xμ(k) + W̆μ(k). (53)

Assuming that Hμ(k) = ρμe− jθμ ,
(
W̆μ(k) | ρ1, ρ2, θ1, θ2

) ∼
N (0, σ̆2), where σ̆2 = (ρ21+ρ

2
2)σ

2, and the faded signal energy
at MRRC Ĕs = (ρ21 +ρ

2
2)

2Es. Thus, the symbol error probabil-
ity of QPSK for given ρ1, ρ2, θ1, θ2 is

Pr
(
e | ρ1, ρ2, θ1, θ2

)

= 2Q

(√
Ĕs
σ̆2

)

−Q2

(√
Ĕs
σ̆2

)

= 2Q

(√

(ρ21 + ρ22)
Es
σ2

)

−Q2

(√

(ρ21 + ρ22)
Es
σ2

)

= 2Q
(√

(ρ21 + ρ22) SNR
)
−Q2

(√
(ρ21 + ρ22) SNR

)
.

(54)

Bearing in mind that Pr(e|ρ1, ρ2, θ1, θ2) does not depend on
θ1 and θ2, note that

Pr
(
e | ρ1, ρ2

)

=
∫∫ π

−π
Pr
(
e, θ1, θ2 | ρ1, ρ2

)
dθ2dθ1

=
∫∫ π

−π
Pr
(
e | ρ1, ρ2, θ1, θ2

)
p
(
θ1
)
p
(
θ2
)
dθ2dθ1

= Pr
(
e | ρ1, ρ2, θ1, θ2

)
∫∫ π

−π
p
(
θ1
)
p
(
θ2
)
dθ2dθ1

= Pr
(
e | ρ1, ρ2, θ1, θ2

)
.

(55)

We then substitute (55) in the following equation:

Pr(e) =
∫∫∞

0

∫∫ π

−π
p
(
ρ1, ρ2, θ1, θ2

)

× Pr
(
e | ρ1, ρ2, θ1, θ2

)
dθ2dθ1dρ2dρ1

=
∫∫∞

0

∫∫ π

−π
p
(
ρ1, ρ2, θ1, θ2

)

× Pr
(
e | ρ1, ρ2

)
dθ2dθ1dρ2dρ1

=
∫∫∞

0
p
(
ρ1, ρ2

)
Pr
(
e | ρ1, ρ2

)
dρ2dρ1.

(56)

Since channelsH1 andH2 are independent, ρ1 and ρ2 are also
independent, p(ρ1, ρ2) = p(ρ1)p(ρ2). Thus (56) takes the fol-
lowing form:

Pr(e) =
∫∫∞

0
p
(
ρ1
)
p
(
ρ2
)
Pr
(
e | ρ1, ρ2

)
dρ2dρ1

=
∫∫∞

0
4ρ1ρ2e−

(
ρ21+ρ

2
2

)

×
(
2Q
(√(

ρ21 + ρ22
)
SNR

)

−Q2
(√(

ρ21 + ρ22
)
SNR

))
dρ2dρ1.

(57)

If we now apply ρ1 = ζ cos(α) and ρ2 = ζ sin(α) transfor-
mations, we arrive at the following SER expression for ST-
OFDM and SF-OFDM systems:

Pr(e) =
∫∞

0

∫ π/2

0
2ζ3 sin(2α)e−ζ

2

×
(
2Q
(√

ζ2 SNR
)
−Q2

(√
ζ2 SNR

))
dαdζ

=
∫∞

0
2ζ3e−ζ

2
(
2Q
(√

ζ2 SNR
)
−Q2

(√
ζ2 SNR

))
dζ

= 3
4
−
(
1
2
+
1
π
arctan

(
γ2
))

γ32γ3 − γ22γ1

(58)

or by neglecting theQ2(·) term in (58) we get simplified form
as

Pr(e) = 1− γ32 γ3, (59)

where

γ1 = 1
2π(SNR+1)

,

γ2 =
√

SNR
SNR+2

,

γ3 = SNR+3
SNR

.

(60)

5. SIMULATIONS

In this section, we investigate the performance of the
pilot-aided MMSE channel estimation algorithm proposed
for both SF-OFDM and ST-OFDM systems. The diversity
scheme with two transmit and one receive antenna is consid-
ered. Channel impulse responses hμ are generated according
to Ch = (1/K2)F †CHF where CH is the covariance matrix
of the doubly-selective fading channel model. In this model,
Hμ(k)’s are with an exponentially decaying power-delay pro-
file θ(τμ) = C exp(−τμ/τrms) and delays τμ that are uniformly
and independently distributed over the length of the cyclic
prefix. C is a normalizing constant. Note that the normal-
ized discrete channel correlations for different subcarriers
and blocks of this channel model were presented in [3] as
follows:

c f (k, k′)

= 1− exp
[− L

[
1/τrms + 2π j(k − k′)/K

)]

τrms
(
1− exp

(−L/τrms
))(

1/τrms + 2π j
(
k − k′

)
/K
) ,

ct(n,n′) = Jo
(
2π(n− n′) fdTs

)
,

(61)

where Jo is the zeroth-order Bessel function of the first kind
and fd is the Doppler frequency.

The scenario for SF-OFDM simulation study consists of
a wireless QPSK OFDM system. The system has a 2.344MHz
bandwidth (for the pulse roll-off factor a = 0.2) and is di-
vided into 512 tones with a total period of 136microseconds,
of which 5.12microseconds constitute the cyclix prefix (L =
20). The uncoded data rate is 7.813Mbits/s. We assume that



10 EURASIP Journal on Applied Signal Processing

10−4

10−3

10−2

A
ve
ra
ge

m
ea
n
-s
qu

ar
e
er
ro
r
(M

SE
)

0 5 10 15 20 25

Average SNR (dB)

Theoretical stochastic CRLB for τrms = 5
MMSE simulation for τrms = 5
Theoretical CRLB
MLE simulation for τrms = 5
MMSE simulation for τrms = 9
MMSE simulation for τrms = 9

Figure 3: Performance of the proposed MMSE and MLE together
with BMSE and CRLB for ST-OFDM.

the rms width is τrms = 5 samples (1.28microseconds) for
the power-delay profile. Keeping the transmission efficiency
3.333 bits/s/Hz fixed, we also simulate ST-OFDM system.

5.1. Mean-square-error performance of
the channel estimation

The proposed MMSE channel estimators of (23) are imple-
mented for both SF-OFDMand ST-OFDM, and compared in
terms of average Bayesian MSE for a wide range of signal-to-
noise ratio (SNR) levels. Average Bayesian mean-square er-
ror(BMSE) is defined as the norm of the difference between
the vectors g = [gT1 , g

T
2 ]

T and ĝ, representing the true and the
estimated values of channel parameters, respectively. Namely,

MSE = 1
2L
‖g− ĝ‖2. (62)

5.2. MMSE approach

We use a pilot symbol for every ten (Δ = 10) symbols. The
MSE at each SNR point is averaged over 10 000 realizations.
We compare the experimental MSE performance and its the-
oretical Bayesian MSE of the proposed full-rank MMSE es-
timator with maximum likelihood (ML) estimator and its
corresponding Cramer-Rao lower bound (CRLB) for SF and
ST-OFDM systems. Figures 3 and 4 confirm that MMSE esti-
mator performs better than ML estimator at low SNR. How-
ever, the two approaches have comparable performance at
high SNRs. To observe the performance, we also present the
MMSE and ML estimated channel SER results together with
theoretical SER in Figures 5 and 6. Due to the fact that spaces
between the pilot symbols are not chosen as a factor of the
number of subcarriers, an error floor is observed in Figures
3, 4, 5, and 6. In the case of choosing the pilot space as a factor
of number of subcarriers, the error floor vanishes because of
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Figure 4: Performance of the proposed MMSE and MLE together
with BMSE and CRLB for ST-OFDM.
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Figure 5: Symbol error rate results for SF-OFDM.

the fact that the orthogonality condition between the subcar-
riers at pilot locations is satisfied. In other words, the curves
labeled as simulation results forMMSE estimator andML es-
timator fit to the theoretical curve at high SNRs. It also shows
that theMMSE-estimated channel SER results are better than
ML-estimated channel SER especially at low SNR.

SNR designmismatch

In order to evaluate the performance of the proposed full-
rank MMSE estimator to mismatch only in SNR design, the
estimator is tested when SNRs of 10 and 30 dB are used in
the design. The MSE curves for a design SNR of 10, 30 dB are
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Figure 6: Symbol error rate results for ST-OFDM.
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Figure 7: Effects of SNR mismatch on MSE for SF-OFDM.

shown in Figures 7 and 8. The performance of the MMSE es-
timator for high-SNR (30 dB) design is better than low-SNR
(10 dB) design across a range of SNR values (0–28 dB). This
result confirms that channel estimation error is concealed in
noise for low-SNR whereas it tends to dominate for high-
SNR. Thus, the system performance degrades especially for
low-SNR design.

Correlationmismatch

To analyze full-rank MMSE estimator’s performance further,
we need to study sensitivity of the estimator to design errors,
that is, correlation mismatch. We therefore designed the es-
timator for a uniform channel correlation which gives the
worst MSE performance among all channels [20, 22] and
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Figure 8: Effects of SNR mismatch on MSE for ST-OFDM ( fd =
100Hz).
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Figure 9: Effects of correlation mismatch on MSE for SF-OFDM.

evaluated for an exponentially decaying power-delay profile.
The uniform channel correlation between the attenuations
can be obtained by letting τrms →∞ in (61), resulting in

c f (k) = 1− exp
(
2π jLk/K

)

2π jk/K
. (63)

Figures 9 and 10 demonstrate the estimator’s sensitivity to
the channel statistics in terms of average MSE performance
measure. As can be seen from Figures 9 and 10 only small
performance loss is observed for low SNRs when the estima-
tor is designed for mismatched channel statistics. This justi-
fies the result that a design for worst correlation is robust to
mismatch.



12 EURASIP Journal on Applied Signal Processing

10−4

10−3

10−2

A
ve
ra
ge

m
ea
n
-s
qu

ar
e
er
ro
r
(M

SE
)

0 5 10 15 20 25

Average SNR (dB)

Theoretical: true correlation for MMSE estimator
Theoretical: true correlation for ML estimator
Simulated: true correlation for MMSE estimator
Simulated: correlation mismatch for MMSE estimator

Figure 10: Effects of correlation mismatch on MSE for ST-OFDM
( fd = 100Hz).
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Figure 11: MSE as a function of KL expansion coefficients for SF-
OFDM.

Performance of the truncated estimator

The truncated estimator performance is also studied as a
function of the number of KL coefficients. Figures 11 and 12
are plotted for L = 40, τrms = 5 samples and L = 40, fd =
100Hz, respectively. Figures 11 and 12 present the MSE re-
sult of the truncated MMSE estimator for SNR = 10, 20, and
30dB. If only a few expansion coefficients are employed to
reduce the complexity of the proposed estimator, then the
MSE between channel parameters becomes large. However,
if the number of parameters in the expansion is increased,
the irreducible error floor still occurs.
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Figure 12: MSE as a function of KL expansion coefficients for ST-
OFDM ( fd = 100Hz).

6. CONCLUSION

We consider the design of low-complexityMMSE channel es-
timators for SF/ST-OFDM systems in unknown wireless dis-
persive fading channels. We first derive the MMSE estimator
based on the stochastic orthogonal expansion representation
of the channel via KL transform. Based on such represen-
tation, we show that no matrix inversion is needed in the
MMSE algorithm. Therefore, the computational cost for im-
plementing the proposed MMSE estimator is low and com-
putation is numerically stable. Moreover, the performance of
our proposed method was first studied through the deriva-
tion of stochastic CRLB for Bayesian approach. Since the
actual channel statistics and SNR may vary within OFDM
block, we have also analyzed the effect of modelling mis-
match on the estimator performance and shown both analyt-
ically and through simulations that the performance degra-
dation due to such mismatch is negligible for low-SNR val-
ues. Obvious directions for future work include developing
sequential MMSE, Kalman filtering, and sequential Monte-
Carlo-based approaches to track channel variations.
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[16] E. Panayırcı and H. A. Çırpan, “Channel estimation for space-
time block coded OFDM systems in the presence of multi-
path fading,” in Proceedings of IEEEGlobal Telecommunications
Conference (GLOBECOM ’02), vol. 2, pp. 1157–1161, Taipei,
Taiwan, November 2002, A17.

[17] S.M. Kay, Fundamentals of Statistical Signal Processing: Estima-
tion Theory, Prentice Hall, Englewood Cliffs, NJ, USA, 1993.

[18] M. Morelli and U. Mengali, “A comparison of pilot-aided
channel estimation methods for OFDM systems,” IEEE Trans-
actions on Signal Processing, vol. 49, no. 12, pp. 3065–3073,
2001.

[19] H. L. Van Trees, Detection, Estimation and Modulation Theory,
Part I, Wiley Interscience, New York, NY, USA, 1993.

[20] O. Edfors, M. Sandell, J.-J. Van de Beek, S. K. Wilson, and P. O.
Borjesson, “OFDM channel estimation by singular value de-
composition,” IEEE Transactions on Communications, vol. 46,
no. 7, pp. 931–939, 1998.
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