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Habib Şenol∗, Erdal Panayırcı∗ and Murat Uysal†

∗Department of Electrical-Electronics Engineering, Kadir Has University, 34083, Istanbul, Turkey
Email: { hsenol, eepanay}@khas.edu.tr

†Department of Electrical-Electronics Engineering, Özyeğin University, 34794, Istanbul, Turkey
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Abstract—This paper is concerned with a challenging problem of
channel estimation for amplify-and-forward cooperative relay based
orthogonal frequency division multiplexing (OFDM) systems in the
presence of sparse underwater acoustic channels and of the correlative
non-Gaussian noise. We exploit the sparse structure of the channel
impulse response to improve the performance of the channel estimation
algorithm, due to the reduced number of taps to be estimated. The
resulting novel algorithm initially estimates the overall sparse channel
taps from the source to the destination as well as their locations using the
matching pursuit (MP) approach. The correlated non-Gaussian effective
noise is modeled as a Gaussian mixture. Based on the Gaussian mixture
model, an efficient and low complexity algorithm is developed based
on the combinations of the MP and the space-alternating generalized
expectation-maximization (SAGE) technique, to improve the estimates of
the channel taps and their location as well as the noise distribution
parameters in an iterative way. The proposed SAGE algorithm is
designed in such a way that, by choosing the admissible hidden data
properly on which the SAGE algorithm relies, a subset of parameters
is updated for analytical tractability and the remaining parameters for
faster convergence Computer simulations show that underwater acoustic
(UWA) channel is estimated very effectively and the proposed algorithm
has excellent symbol error rate and channel estimation performance.

I. INTRODUCTION

Underwater wireless communication has received a growing atten-
tion and research has been active for over a decade on designing
the methods for underwater applications. It has been of critical
importance to provide high-speed wireless links with high link
reliability in various underwater applications such as offshore oil
field exploration/monitoring, oceanographic data collection, maritime
archaeology, seismic observations, environmental monitoring, port
and border security among many others.

An underwater acoustic channel presents a communication system
designer with many challenges. The three distinguishing characteris-
tics of this channel are frequency-dependent propagation loss, severe
multipath with much longer delay spreads [1], and low speed of sound
propagation. Relay-assisted cooperative diversity presents a viable
solution for underwater acoustic communication to extend transmis-
sion range and mitigate the degrading effects of fading. Cooperative
diversity also named as user cooperation is a transmission method
which extracts spatial diversity advantages through the use of relays
[2]. The concept of cooperative diversity has been recently applied
to underwater acoustic (UWA) communication and the number of
current studies in this area is very limited [3], [4], [5], [6]. Mainly,
Decode and Forward (DF) and Amplify and Forward (AF) relays
have been adopted in practice for cooperative diversity systems. As
remarked in [7] that the AF operation mode puts less processing
burden on the relay and that AF relay actually outperforms DF relays
under certain conditions.

The orthogonal frequency division multiplexing (OFDM)-based
cooperative communication systems in underwater acoustic channels
assuming various cooperation protocols are promising and seem to be
a primary candidate for next generation UWA systems, due to their
robustness to large multipath spreads [8], [3], [9]. A reliable channel
state information (CSI) is necessary at the destination, to enable high
transmission speeds and high link reliability. However, almost all the
existing works assume that the perfect channel knowledge is available
and there are only few results exists on channel estimation for the

relay networks suggested under quite nonrealistic assumptions [7],
[10]. Given sufficiently wide transmission bandwidth, the impulse
response of the underwater acoustic channel is often sparse as the
multipath arrivals becomes resolvable [1]. Furthermore, the effective
noise entering the system between the source and the destination
through the relay is correlated and non Gaussian. The combination
of sparse structure and correlated non-Gaussian noise type creates a
challenging channel estimation problem for relay based corporation
diversity UWA systems. To the best of our knowledge, the problem
of channel estimation for underwater AF relay channels has not been
addressed satisfactorily in the literature and this motivated our present
work.

In this paper we provide a new pilot assisted channel estima-
tion technique for relay networks that employ the AF transmission
scheme. Our main contribution in this work is two folds. First,
we exploit the sparse structure of the channel impulse response to
improve the performance of the channel estimation algorithm, due to
the reduced number of taps to be estimated. The resulting algorithm
initially estimates the overall sparse channel taps from the source to
the destination as well as their locations using the matching pursuit
(MP) approach [11]. The correlated non-Gaussian effective noise
is modeled as a Gaussian mixture. Second, based on the Gaussian
mixture model we develop an efficient and low complexity novel
algorithm by combining the MP and the SAGE techniques, called the
MP-SAGE algorithm which relies on the concept of the admissible
hidden data, to improve the estimates of the channel taps and their
location as well as the noise distribution parameters in an iterative
way. We demonstrate that by suitably choosing the admissible hidden
data on which the SAGE algorithm relies, a subset of parameters is
updated for analytical tractability and the remaining parameters for
faster convergence [12].

II. SYSTEM MODEL
We consider an UWA cooperative wireless communication scenario

where the source node S transmits information to the destination
node D with the assistance of relay node R each of which is
equipped with a single pair of transmit and receive antenna. The
cooperation is based on the receive diversity (RD) protocol [13]
with a single-relay amplify-and-forward (AF) relaying with half-
duplex nodes. In our work, we assume that the relay node does
not perform the channel estimation to keep its complexity as low
as possible. As shown in Fig. 1, in the broadcasting phase, the
source node transmits to the destination and the relay nodes. In
the relaying phase, the relay node forwards a scaled noisy version
of the signals received from the source. The channel between each
node pair is assumed to be quasi-static frequency-selective Rician
fading. The channel impulse responses (CIRs) for S → R, R → D

and S → D links are sparse and denoted by h̃
SR

, h̃RD and h̃SD

having maximum discrete-valued multipath delays L̃SR, L̃RD and
L̃SD , respectively. LSR � L̃SR, LRD � L̃RD and LSD � L̃SD
denote the number of non-zero elements of the multipath channels.
Channel coefficients (taps) on each link is a complex Gaussian
random variable with independent real and imaginary parts with mean
µ`/
√

2 and the variance σ2
`/2. Let Ω` = E{|h`|2} = µ2

` + σ2
`
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denotes the power profile of the relevant Rician multipath channel
and

∑L
`=1 Ω` = 1 , L ∈ {LSR, LRD, LSD}. Moreover, Rician κ-

factor for `th tap is the ratio of the power in the mean component
to the power in the diffuse component, i.e. κ` = µ2

`/σ
2
` . Therefore,

each channel tap is given by

h` =

√
κ`Ω`
κ` + 1

(
1 + j√

2

)
+

√
Ω`

κ` + 1
h̆` ,

` = 1, 2, · · · , Ĺ and Ĺ ∈ {LSR, LRD, LSD}, (1)

where h̆` is a complex Gaussian random variable with zero mean and
unit variance.

The additive ambient noise, generated by underwater acoustic
channels has several distinct physical origins each corresponding to
particular frequency range [14]. In this paper, we assume that power
spectral density of the ambient noise is modeled in 10 - 100 KHz
band as a function of frequency in Hz as

N(f) =
f0σ

2
v

π(f2 + f2
0 )

, (2)

where σ2
v is the noise variance, and f0 is chosen as a model

parameter of the colored noise autocorrelation function (f0Ts =
0.01, 0.05, 0.1, etc.). Note that the autocorrelation function of the
ambient noise can be obtained from (2) as

ρ(n− n′) = σ2
v e
−2π|n−n′|f0Ts , (3)

where Ts is the sampling period. Consequently, the complex- valued
additive Gaussian ambient noises on the links S → R, R→ D and
S → D are denoted by vSR = [vSR0 , vSR1 , · · · , vSRN−1]T , vRD =
[vRD0 , vRD1 , · · · , vRDN−1]T and vSD = [vSD0 , vSD1 , · · · , vSDN−1]T re-
spectively. We assume that CIRs remain constant over a period of
one block transmission and vary independently from block to block.

R

DS

SRSR
v,h

~
RDRD

v,h
~

SDSD
v,h

~

Fig. 1. Single-relay transmission model
We now now consider an OFDM based UWA relay system with N

subcarriers. At the transmitter, K out of N subcarriers are actively
employed to transmit data symbols and nothing is transmitted from
the remaining N − K carriers. The time-domain transmitted signal
is denoted as

s(n) =
1

N

K−1∑
k=0

d(k) ej2πnk/N , (4)

where n and k are the discrete-time and the discrete-frequency indices
during the mth OFDM symbol, respectively. d(k) stands for the
frequency domain data symbol transmitted at discrete time m over
the kth OFDM subchannel. To avoid inter-symbol interference (ISI)
a cyclic prefix is added between adjacent OFDM blocks. After FFT
and removing the cyclic prefix, time domain received data block in
the broadcasting phase (1st time slot) at the relay and the destination
nodes are given as

y
R

1,n =

L̃
SR∑
l=1

h̃
SR

l sn−l+v
SR

n and y
D

1,n =

L̃
SD∑
l=1

h̃
SD

l sn−l+v
SD

n , (5)

respectively, where sn = 1
N

∑N
k=1 dk e

j2πnk/N is the time-domain
signal sample transmitted from the S node at nth discrete time and
dk is the data symbol transmitted over the kth subchannel. In the
relaying phase (2nd time slot), the time domain received signal at
the destination node is

y
D

2,n =
1

γ

L̃
RD∑
l=1

h̃
RD

l y
R

1,n−l + v
RD

n (6)

where γ =
√∑N

n=1E{|y
R

1,n|2} is the normalization factor. To
ensure that the power budget is not violated, the relay node normalizes
the receive signal y

R

1,n , n = 1, 2, · · · , N by γ. Inserting (5) into (6),
the vector form of (6) can be expressed as

y
D

2 = Γ h̃ + v , (7)

where y
D

2 = [y
D

2,0, y
D

2,1, · · · , y
D

2,N−1]T is the time-domain received
vector on the destination node in the relaying phase, Γ = 1

γ F−1D F,
with F being the FFT matrix whose kth row and nth column entry
[F]k,n = e−j2πnk/N and D is a diagonal matrix having the data
symbols {dk}N−1

k=0 on its main diagonal. h̃ = h̃
SR

~ h̃
RD

and

v = h̃
RD

~ v
SR

+ v
RD

=
1

γ
F−1D

H̃
RDF v

SR

+ v
RD

(8)

denote the cascaded sparse multipath channel and additive noise on
S → R → D link, respectively, where ~ is the N -sample circular
convolution operator and D

H̃
RD represents a diagonal matrix whose

main diagonal vector is H̃
RD

= F h̃
RD

.
It is obvious from (8) that the ambient noise v is non-Gaussian and

colored. Thus, without going further toward the channel estimation
step, the observation model in (7) can be reduced to the one with
additive white non-Gaussian noise by the use of a noise-whitening
filter, based on the singular value decomposition (SVD) of the co-
variance matrix of v, Σv = UΥU†, where U is an N×N complex
valued unitary transformation matrix, Υ is an N×N diagonal matrix
with positive real entries and (·)† denotes the conjugate transpose
operator. Consequently, the colored noise can be transformed into
a white noise through the linear transformation Ψv = w, where
w = [w1, w2, · · · , wN ]T is a non-Gaussian white noise vector with
identity covariance matrix and Ψ = Υ−1/2U† is termed as whitening
matrix. Multiplying (7) by Ψ from the left we obtain the following
observation model

y = Ah̃ + w ∈ CN×1 , (9)

where y = Ψ y
D

2 and A = Ψ Γ ∈ CN×N is the convolution matrix
generated from data symbols. Note that even though the components
of w in (9) are uncorrelated due to the whitening process, they
are still dependent non-Gaussian random variables. However, as we
can observe from (8), the distribution of the ambient noise v is
closed to Gaussian. Consequently, {wk}’s may be assumed to be
independent and identically distributed (i.i.d.) non-Gaussian samples
of the additive noise w.

In this work, we are mainly interested in estimation of h̃ in (9)
where h̃ ∈ CN is a complex valued, sparse multipath channel vector
with non-zero entries, h1, h2, · · · , hL (L � N ) and the associated
random channel tap positions, η1, η1, · · · , ηL. The received signal in
(9) can be rewritten as

y =

L∑
`=1

aη`h` + w , (10)

where, aη` is the η` th column vector of the matrix A corresponding
to the `th multipath channel tap position. Note that the matrix A is
known by the receiver completely since it contains only pilot symbols
during the training phase in a given frame.

We model the white, non-Gaussian noise samples wn, n =
1, 2, · · · , N in (9) as an i.i.d. M -term Gaussian mixture as follows

p(wn) =

M∑
m=1

λm
πσ2

m

e−|wn|
2/σ2

m , (11)

where p(wn|νn = m) , 1
πσ2
m
e−|wn|

2/σ2
m , νn ∈ {1, 2, · · · ,M} is

the nth random mixture index that identifies which term in Gaussian
mixture pdf in (11) produced the additive noise sample wn and
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p(νn = m) = λm is the probability that wn is chosen from the
mth term in the mixture pdf, with

∑M
m=1 λm = 1. In (11), σ2

m

denotes the variance of the mth Gaussian mixture.

III. SPARSE MULTIPATH CHANNEL ESTIMATION WITH
MP-SAGE ALGORITHM

We now propose a new iterative algorithm, called the MP-SAGE
algorithm, based on the SAGE and the MP techniques for channel
estimation employing the signal model given by (9). The SAGE
algorithm, proposed by Fessler et al. [15] provides updated estimates
for an unknown parameter set Θ iteratively as follows. At iteration (i)
only a subset of ΘS indexed by S = S[i] is updated while keeping
the parameters in the complement set ΘS fixed.

The MP algorithm is an iterative procedure which can sequentially
identify the dominant channel taps and estimate the associated tap
coefficients by choosing the the column aη` of A in (9) which best
aligned with the residual vector until all the taps are identified. The
detail description of the MP algorithm is given in Sec. III-C. Finally
our proposed MP-SAGE algorithm implements the MP algorithm at
each SAGE iteration step by updating, all the dominant channel taps
and the associated tap coefficients sequentially. The details of the
MP-SAGE algorithm is presented below:

The unknown parameter set to be estimated in our problem is

Φ = {h,η,α} , (12)

where h = [h1, h2, · · · , hL]T , η = [η1, η2, · · · , ηL]T and α ={
λ1, · · · , λM , σ2

1 , · · · , σ2
M

}
.

The first step in deriving the MP-SAGE algorithm for estimating
Φ based on the received vector y is the specifications of ”complete
data” and ”admissible hidden data” sets whose pdfs are characterized
by the common parameters set Φ. To obtain a receiver architecture
that iterates between soft-data and channel estimation in the MP-
SAGE algorithm, we decompose Φ into L+ 1 subsets, representing
the parameters, h, η and α, as follows.

• The first L subsets of Φ are chosen as Φ` = {h`, η`},
` = 1, 2, · · · , L. For each subset we define Φ̄` = Φ \ Φ` =
{h̄`, η̄`,α}, h̄` = h \h` and η̄` = η \ η`, where \ denotes the
exclusion operator.

• The (L + 1)st subset of Φ is chosen as by ΦL+1 = α and
Φ̄L+1 , Φ \ΦL+1 = Φ \α = {h,η}

At the SAGE iteration (i), only the parameters in one set are
updated, whereas the other parameters are kept fixed, and this
process is repeated until all parameters are updated. According to
the above parameter subset definitions, each iteration of the SAGE
algorithm for our problem has two steps:

1) Φ`, ` = 1, 2, · · · , L is updated with the MP-SAGE algorithm
while ΦL+1 is fixed.

2) ΦL+1 is updated with the SAGE algorithm while
Φ`, ` = 1, 2, · · · , L is fixed.

We now derive the MP-SAGE algorithm below by also specifying
the corresponding admissible hidden data and complete data sets.

A. Estimation of Φ` = {h`, η`}, ` = 1, 2, · · · , L
A suitable approach for applying the MP-SAGE algorithm for

estimation of Φ` is to decompose the nth sample of the receive
signal in (10) into the sum

yn = x(`)n + x̄(`)n , (13)

where

x(`)n = an, η` h` + wn and x̄(`)n =

L∑
`′=1, `′ 6=`

an, η`′ h`′ (14)

and an, η` denotes nth element of the aη` . We define the admissible
hidden data as χ` = {x(`),ν}, where x(`) = [x

(`)
1 , x

(`)
2 , · · · , x(`)N ]T

and ν = [ν1, ν2, · · · , νN ]T .

To perform the E-Step of the MP-SAGE algorithm, the conditional
expectation is taken over χ` given the observation y and given that
Φ equals its estimate calculated at ith iteration:

Q`(Φ`|Φ(i)) = E
{

log p(χ`|Φ`, Φ̄
(i)
` )
∣∣y,Φ(i)}

∼
N∑
n=1

δ(i)n

(
2R
{
x̂
(`)
n

(i)

a∗n,η`h
∗
`

}
− |an,η`h`|

2
)
, (15)

where R(·) and (·)∗ denote the real part and the conjugate operators,

respectively, and x̂(`)n
(i)

is defined as

x̂
(`)
n

(i)

, E
{
x(`)n |νn, yn,h(i),η(i),α(i)} .

Recalling (13) it follows that

x̂
(`)
n

(i)

= yn −
L∑

`′=1,`′ 6=`

a
n,η

(i)

`′
h
(i)

`′ , (16)

and δ(i)n in (15) is defined as

δ(i)n , E{νn|yn,h(i),η(i),α(i)}

{ 1

(σ2
νn)

(i)

}
=

M∑
m=1

1

(σ2
m)(i)

p(i)νn(m) , n = 1, 2, · · · , N. (17)

Keeping in mind p(νn = m|α(i)) = λ
(i)
m , the posterior probability

density function of the random mixture index νn at ith iteration,
p
(i)
νn(m), is evaluated as follows

p(i)νn(m), p(νn=m | yn,h(i),η(i),α(i))

=
λ
(i)
m e

−
∣∣yn− L∑

`=1
a
n,η

(i)
`

h
(i)
`

∣∣2/(σ2
m)(i)/(

π(σ2
m)(i)

)
M∑

m′=1

λ
(i)

m′ e
−
∣∣yn− L∑

`=1
a
n,η

(i)
`

h
(i)
`

∣∣2/(σ2
m′)

(i)/(
π(σ2

m′)
(i)
) . (18)

The vector form of (15) can be written as follows

Q`(Φ`|Φ(i))=2R
{
a†η`D

(i)
δ x̂(`)

(i)
h∗`
}
− a†η`D

(i)
δ aη` |h`|

2 , (19)

where from (16) x̂(`)
(i)

= [x̂
(`)
1

(i)

, · · · , x̂(`)N
(i)

]T = y −
L∑

p=1,p 6=`
a
η
(i)
p
h
(i)
p

and D
(i)
δ is a diagonal matrix with entries δ(i)1 , δ

(i)
2 , · · · , δ(i)N which

are calculated from (17).

In the M-step of the MP-SAGE algorithm, the estimates of Φ` =
{h`, η`} are updated at the (i+ 1)st iteration according to

Φ
(i+1)
` = arg max

Φ`

Q`(Φ`|Φ(i)) , (20)

where Q`(Φ`|Φ(i)) is given by (19). So, taking the derivative of
Q`(Φ`|Φ(i)) with respect to h∗` and equating to zero, we find the
final SAGE estimates of (η`, h`) at (i+ 1)st iteration as follows:

η
(i+1)
` =arg max

η`

∣∣a†η`D(i)
δ x̂(`)

(i)∣∣2
a†η`D

(i)
δ aη`

, η` ∈ {1, 2, · · · , N},

η` /∈ {η(i+1)
1 , · · ·, η(i+1)

`−1 } ,

h
(i+1)
` =

a†
η
(i+1)
`

D
(i)
δ x̂(`)

(i)

a†
η
(i+1)
`

D
(i)
δ a

η
(i+1)
`

. (21)
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Based on the above result, {η`, h`} can be sequentially estimated
for ` = 1, 2, · · · , L, incorporating the previous estimates in the MP-
SAGE mode as follows:

Step 1) For i = 0, determine the initial estimates {η(0)` , h
(0)
` }, ` =

1, 2, · · · , L, from the MP algorithm as described in Sec. III-C.
Step 2) For i ← (i + 1), and ` = 1, 2, · · · , L, compute

{η(i+1)
` , h

(i+1)
` } from (21), replacing x̂(`)

(i)
with the residual vector

r
(i)
` of the MP algorithm. It can be shown that, the residual vector

can be computed recursively as

r
(i)
` = r

(i)
`−1 − (a

η
(i)
`

h
(i)
` − a

η
(i+1)
`−1

h
(i+1)
`−1 ) (22)

where r
(i)
0 = x̂(1)

(i)
and a

η
(i)
0

= 0, h
(i)
0 = 0 for all (i).

Step 3) If ` = L go to the next SAGE iteration step.
Step 4) continue the SAGE iterations until convergence. END

B. Estimation of ΦL+1 = α = {λ1, · · · , λM , σ2
1 , · · · , σ2

M}
We define the complete data as χL+1 = {y,ν} to estimate the

mixture parameters α = {λ1, · · · , λM , σ2
1 , · · · , σ2

M}. Now, let us
derive the MP-SAGE algorithm.

To perform the E-Step of the MP-SAGE algorithm, the conditional
expectation is taken over χL+1 given the observation y and given
that Φ equals its estimate calculated at ith iteration can be expressed
as follows

QL+1(ΦL+1 |Φ
(i)) =

N∑
n=1

M∑
m=1

p(i)νn(m)
[

log
(λm
σ2
m

)
− 1

σ2
m

∣∣∣yn − L∑
`=1

a
n,η

(i)
`

h
(i)
`

∣∣∣2 ] , (23)

where p(i)νn(m) is given in (18).

In the M-step of the SAGE algorithm, the estimates ΦL+1 = α are
updated at the (i+1)st iteration according to the following constraint
maximization problem:

Φ(i+1)
L+1

= arg max
Φ
L+1

QL+1(ΦL+1 |Φ
(i)) (24)

subject to :
M∑
m=1

λm=1 , λm > 0 , m = 1, 2, · · · ,M .

The optimization problem in (24) can be decoupled into two
minimization problems. The first one is a convex minimization
problem with a constraint and the other is a simple minimization
problem without constraint. These problems are given as

1)

min
λ1,··· ,λM

−
N∑
n=1

M∑
m=1

p(i)νn(m) log(λm) (25)

subject to :
M∑
m=1

λm = 1 , λm > 0 , m = 1, 2, · · · ,M

2)

min
σ2
1 ,··· ,σ

2
M

N∑
n=1

M∑
m=1

p(i)νn(m)
[
log(σ2

m)+
1

σ2
m

∣∣∣yn− L∑
`=1

a
n,η

(i)
`

h
(i)
`

∣∣∣2] (26)

Solving the first problem in (25) using a convex optimization
technique with lagrangian we have

λ(i+1)
m =

1

N

N∑
n=1

p(i)νn(m) , m = 1, 2, · · · ,M. (27)

where p(i)νn(m) is given in (18). Keeping in mind (27), it is straight-
forward to show that the solution of the minimization problem in (26)
is

(σ2
m)(i+1)=

1

Nλ
(i+1)
m

(
y−

L∑
`=1

a
η
(i)
`

h
(i)
`

)†
D

(i)
P (m)

(
y−

L∑
`=1

a
η
(i)
`

h
(i)
`

)
, (28)

where D
(i)
P (m) is a diagonal matrix with entries

p
(i)
ν1 (m), p

(i)
ν2 (m), · · · , p(i)νN (m).

Note that, as seen from (21), the positions of the dominant channel
taps are identified and the associated channel tap coefficients are
estimated sequentially during the estimation of Φ` = {h`, η`}, ` =
1, 2, · · · , L, of the SAGE algorithm within the MP framework. More
clearly, at (i+ 1)st step of the SAGE algorithm, the columns of A

C. Initialization of the Algorithm

1) Initialization of Φ(0) = {η(0)` , h
(0)
` , ` = 1, 2, · · · , L}: We

apply the matching pursuit (MP) algorithm to determine Φ(0) consid-
ering the observation model in (9). As a first step in the MP algorithm,
the column in the matrix A = [a1,a2, · · · ,aN−1] which is best
aligned with the residue vector r0 = y is found and denoted aη1 .
Then the projection of r0 along this direction is removed from r0 and
the residual r1 is obtained. The algorithm proceeds by sequentially
choosing the column which is the best matches until termination
criterion is met. At the `th iteration, the index of the vector from
A most closely aligned with the residual vector r`−1 is obtained as
follows

η
(0)
` = arg max

j

|a†jr`−1|2

a†jaj
,

j=1, 2, · · · , N and j /∈{η(0)1 , η
(0)
2 , · · ·, η

(0)
`−1} , (29)

and the channel tap at position η(0)` is

h
(0)
` =

a†
η
(0)
`

r`−1

a†
η
(0)
`

a
η
(0)
`

. (30)

The new residual vector is computed as r` = r`−1 − h(0)
` a

η
(0)
`

.
2) Initializations of the Gaussian-mixture parameters
{λ(0)

m , (σ2
m)(0),m = 1, 2, · · · ,M} : The empirical pdf of the

Gaussian mixture noise in (11) is obtained first by means of the
samples generated from the Gaussian distribution of the random
vectors vSR,vRD,hRD , representing the additive Gaussian noise
and the channel impulse response on the links S → R→ D, having
known covariance matrices. The Gaussian-mixture parameters are
then determined by solving the following constrained optimization
problem numerically.

J(λ1,· · ·,λM , σ21 ,· · ·,σ2M)=

Ns∑
j=1

∣∣∣∣pemp(wj)− M∑
m=1

λm
πσ2

m

e−|wj |
2/σ2

m

∣∣∣∣2
with constraints

∑M
m=1 λm = 1 and ∀m, λm > 0, where Ns is the

number of noise samples.

IV. SIMULATION RESULTS
The simulation parameters are chosen as in Table-I. The initial

estimates of the multipath channel positions and taps used in MP-
SAGE algorithm are determined by the reduced complexity MP algo-
rithm. The channel multipath delays are chosen randomly within the
cyclic prefix duration. The initial estimates of the multipath channel
positions are employed in the best linear unbiased estimator (BLUE)
as well. In our simulations, we employ the pilot pattern in which
all subcarriers in a given time slot are dedicated to pilot symbols.
Consequently, Figs. 2 and 3 show MSE and SER performance curves
of the MP, BLUE and MP-SAGE algorithms for binary phase shift-
keying (BPSK), quadrature phase shift-keying (QPSK) and 16-ary
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Fig. 2. MSE performance comparisons of the MP-SAGE and MP-BLUE
algorithms
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Fig. 3. SER performance comparisons of the MP-SAGE and MP-BLUE
algorithms

quadrature amplitude modulation (16QAM) signaling format. As seen
from these curves, the MP-SAGE algorithm, having excellent channel
estimation and the symbol error rate performances outperforms the
MP and BLUE estimators. We also conclude from these curves
that our MP-SAGE algorithm exhibits a superior performance in the
estimation of channel tap positions and the additive Gaussian mixture
parameters that model the pdf of the correlative non-Gaussian ambient
noise. Particularly, as seen from Fig.3 that our estimation algorithm
has approximately 3 dB performance gain over the BLUE estimator
at SER= 10−3 when QPSK signaling is employed.

TABLE I
SIMULATION PARAMETERS

Number of Subcarriers (N ) 256
Channel Bandwidth (BW ) 3 KHz
Sampling Frequency (fs) BW
Sampling Frequency (fc) 12 KHz
Number of Multipath Delays 4
Multipath Powers (Ω) [0.25 0.5 0.15 0.1]
Rician Factor (κ) 3 dB
foTs 0.01
Number of Gaussian Mixtures (M ) 5
Number of OFDM Frame Length (Nf ) 2
Number of iterations 5

We also investigate and compare the effect of Doppler mismatch
on the system performance. Fig. 4 exhibits the robustness of the MP-
SAGE algorithm to the doppler mismatch as well as the superiority to
the MP-BLUE algorithm even under the effects of doppler mismatch.
In Fig. 4, the performance of the proposed algorithm is examined
under a doppler mismatch with the multipath doppler velocities
are generated from a Thikhonov distribution having the support set
[−∆v,+∆v]. Fig. 4 shows that the proposed MP-SAGE algorithm
is quite robust to the changes of doppler velocity for BPSK, QPSK
and 16QAM modulation types for velocities up to 0.2 meter/sec.

V. CONCLUSIONS
In this work we have presented a novel channel estimation algo-

rithm for AF cooperative relay based OFDM systems in the presence
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Fig. 4. SER performance of the MP-SAGE algorithm under the effects of
doppler mismatch

of sparse underwater acoustic channels and of the correlative non-
Gaussian noise modeled with a finite Gaussian mixture pdf. The
proposed algorithm is based on the SAGE and the MP techniques. The
MP algorithm was combined with the SAGE algorithm in such a way
that at each SAGE iteration step, the nonzero taps and the locations of
the sparse channel taps were determined and associated channel taps
estimated by the MP algorithm. Finally, the computer simulations
have shown that UWA channel is estimated very effectively and
the proposed algorithm has excellent symbol error rate and channel
estimation performance, and is robust to the effects of doppler
mismatch.
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