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Abstract-Many electricity market models have either mostly 

ignored the demand response to changing prices (e.g., day-ahead 

models with mostly fixed demand), or, at the other extreme, they 

assumed that the full demand response occurred within one 

hour. Moreover, the capital stock adjustment and the forward­

looking nature of consumers are usually omitted. In this paper, 

we propose variational inequality models for electricity markets 

with dynamic demand models where the intertemporal nature of 

consumption (i.e., the current consumption decision affects 

capital stock/habits and thus the future preferences and 

demand) is recognized. It is intended that the proposed models 

would develop a framework for electricity market equilibrium 

models that incorporate the dynamics of the demand side. 

Index Terms--Power system economics, load modeling, demand 

response, variational inequality problem, habit formation, 

capital stock adjustment. 

I. INTRODUCTION 

The deregulation in many electricity markets has allowed 

for competition in only wholesale markets and often, 

regulatory bodies have controlled the consumer prices (e.g., 

flat rates) in retail markets against the price volatility and 

spikes in the wholesale markets. Except for large industrial 

customers equipped with real time meters, participation of the 

demand side in the wholesale market is very small. 

Consequently, many consumers are indifferent to fluctuations 

in electricity prices or uninterested in curtailing power usage 
during price spikes in the wholesale markets. Moreover, this 

does not encourage consumers to reduce peak demand, 

thereby causing supply costs to increase due to extra peak 
. . I generatIOn capacIty . 

Due to the unique physical and operational characteristics 

of electricity production and transmission processes, 

electricity price exhibits different behaviors than other 

financial prices. Since the electricity prices are vital part of 

I Demand response is not only about price spikes but also about 
increasing demand in case of negative prices. It also influences the base load 
capacity (as it offers flexibility) and the transmission system (e.g., 
congestion). 

strategic (e.g., investment planning), tactical (e.g., offers/bids 

in wholesale markets) and operational (e.g., system security) 
decisions in electricity markets, modeling electricity price is 

one of the most critical component in electricity markets. 

There has been a growing literature addressing mainly two 

competing approaches to the problem of modeling electricity 

price processes [1]: 
a) "Fundamental approach" that relies on simulation of 

system and market operation to arrive at market prices; and 

b) "Technical approach" that attempts to model directly 

the stochastic behavior of market prices from historical data 

and statistical analysis. 

The first approach provides more realistic system and 

transmission network modeling under specific scenarios and 

become computationally permissible with large number of 

scenarios that must be considered (for examples see [2, 3]). 

Using the second approach to characterize market prices is, 

therefore, not the focus of this paper. 

In electricity market models using the first approach, 

typically, it is assumed that either hourly electric load is 

fixed, based on short term forecasts, or, at the other extreme, 

full demand response occurs within one hour [4-7]. 

Moreover, the behavioral aspects and dynamics (e.g., habit 

formation, capital stock adjustment) of the demand side are 

usually omitted (except in <;::elebi and Fuller [8] where a habit 

formation model with separable monthly demand functions 

are used). However, the ongoing roll-out of smart meters 

creates opportunities for greater demand-side participation in 

electricity markets. The effective use of this communication 

between suppliers and consumers is expected to deliver 

energy savings, cost reductions, and increased reliability and 

security. Therefore, a target for "smart grids" is that 

electricity market models should be enhanced to account for 

adjustments of electricity consumption levels in response to 

frequently communicated electricity prices. Incorporating 

demand response into the management of the power system is 

one of the important challenges to achieve this target. 

Federal Energy Regularity Commission (FERC) defines 



the demand response as [9]: 
"Changes in electric use by demand-side resources from 

their normal consumption patterns in response to changes in 

the price of electricity, or to incentive payments designed to 

induce lower electricity use at times of high wholesale market 

prices or when system reliability is jeopardized." 

Demand-side participation through demand response can 

increase market efficiency by reducing loads when marginal 

benefits of consumption are less than marginal costs, and by 

increasing consumption when the reverse is the case. One 

way consumers may respond to changes in electricity prices 

is through automation built into smart appliances. Appliance 

manufacturers such as GE, Whirlpool, Samsung, Electrolux 

and LG have been intensely working on developing smart 
appliances (e.g., LG's new line of price responsive appliances 

called Smart THINQ [lO] and Nest's recently announced 

smart thermostat [11] which learns about the preferences of 

the occupants and tracks their status whether they are at home 

or away). According to a report by Zpryme Research and 

Consulting, the smart appliance market is growing 49% 

annually [12]. 

In this paper, we simulate consumer prices using monthly 

demand functions rather than hourly in order to bridge the 

"speed of response gap" between suppliers and consumers2. 

Moreover, the demand response is dynamic in the model 

through a dependence of this month's demand on the 

previous month's demand. Note that these models are 
medium-term (six months to several years) and the "lag" 

dependence on the previous month mostly represents the 

consumers' habits as well as adjustment in capital stock. 

The models proposed in this paper address the problem of 

demand response with the inclusion of dynamic demand 

functions in the context of bilateral markets, but the models 

also apply to POOLCO system with a uniform pricing 

mechanism (i.e., no locational marginal prices)3. Within this 

context, the proposed model can be used as a forecasting and 

policy analysis tool (e.g., to assess demand response effects 
and potential market power of large suppliers) by regulatory 

bodies. 

Several studies have estimated the size of potential 

efficiency gains from adoption of time-varying pricing (e.g., 

real-time pricing -RTP and time-of-use - TOU pricing) and 

have performed reasonable sensitivity analysis for their 

simulations. In particular, <;:elebi and Fuller [13] study the 

electricity pricing problem from a more operational 

perspective and propose a model for time-of-use (TOU) 

prices in electricity markets. Consumers make their 

2 The speed of response gap is the difference between the consumers' 
response to changes in price, which is no more frequent than the billing cycle 
allows (e.g., monthly), and the change in marginal costs of production, which 
occurs much more rapidly (e.g., hourly) [8]. 

3 In the presence of arbitrage (that erase any non-cost based differences in 
prices) and a network representation, Cournot competition in a bilateral 
market is equivalent to Cournot competition among generators in a POOLCO 
(i.e., generators sell to a central auction) [6]. Without network representation, 
POOLCO and bilateral market models would be equivalent, too. 

consumption decision by using a predefined demand 

function, i.e., they do not consider the possibility that the 

electricity price may drop in future periods. Borenstein and 

Holland [14] have calculated the long-run efficiency gains of 

3% to 11 % of the energy bill with RTP adoption and 

Borenstein [15] has simulated about a quarter of these gains 
for seasonal TOU pricing. Holland and Mansur [16] have 

found that the short-run efficiency gains are modest (0.24% 

and 2.5% of the total energy bill, respectively) if all 

customers adopt RTP. Moreover, they have analyzed the 

environmental effects ofRTP adoption. 

Our approach in this paper is different in several ways. 

Aforementioned studies specify constant elasticity demand 

functions for each hour, whereas we propose monthly linear 

demand functions. They do not explicitly model the 

behavioral aspects and dynamics (e.g., habit formation, 

capital stock adjustment) of the demand side. Furthermore, 

their analyses are in the context of perfect competition only, 

but they have stated that market power would increase the 

efficiency gains. 

We represent our models using the variational inequality 

framework, which is an effective and convenient way to 
create and manage our models. The variational inequality 

formulations are developed to estimate monthly prices (as 

well as hourly prices can be derived) in different market 

structures, namely, perfect competition, oligopoly (i.e., all 

firms or several large firms compete a la Cournot4) and 
monopoly. The aim is to see the range of price manipulations 

for different structures. The supply side of the model is 

deliberately simplified here, and hence transmission network 

representation is not included. But a network representation 

must be added for nodallzonal pricing systems (e.g., PJM, 

New York, New England, etc.) 

The paper is organized as follows. Section II introduces 

the model components and the dynamic demand functions 

with their underlying assumptions. It also gives a brief review 

about variational inequality problems. The paper concludes 

with Section III, in which directions for future research are 

suggested. 

II. ELECTRICITY MARKET MODELS 

This section presents a multi-firm, multi-period 
equilibrium model in electricity markets with dynamic 
demand functions. <;:elebi and Fuller [8] provide the 
framework to analyze supply and demand sides with different 
time scales of response (e.g., hourly versus monthly), and part 
of this section is mostly following their notation. Section II-D 
is mainly different where demand side with dynamic demand 

4 Cournot oligopoly is the most common framework to model interaction 
among participants in electricity markets. In this framework, a supplier takes 
its rivals' sales and/or production quantities as fixed within its profit 
maximization problem. Other oligopolistic models (e.g., supply function, 
Bertrand, Stackelberg, tacit collusion) can be examined but the Cournot 
model is the most practical [5]. Furthermore, it may be sufficient to simulate 
market prices [17]. 



functions and underlying assumptions are explained in 
details. 

The model consists of three parts: the independent system 
operator's (ISO's) problem, supply side (e.g., firm Is 
problem) and the demand side. Symbols for the ISO and 
supply side problems are defined in the following list. 
Symbols for the demand side are defined in section II-D. 

Sets 
set of generation facilities: i= 1, ... ,1 
set of periods (months): t= 1, ... , T 
set of hours in period t: h= 1, ... ,H (I) (defined by the market 

regulator) 
set of firms: j=1, ... ,F 

Parameters 
ej�) = operating cost per unit of energy for firm/s facility i in 

period t ($/MWh) 

Ki�) = capacity offlfm/s facility i in period t (MW) 

8�t) = fraction of total energy demand during month t that 
occurs during hour h (see section II-B for explanation of this 
load shape parameter). 

Decision variables 
zX� = the energy flowing from flfm Is facility i to demand 

for hour h in period t (MWh) 

dY) = sales by flfmj in period t (MWh) 

pet) = Prices (e.g., flat rate) in period t ($/MWh) (a function 

of dit) variables, but treated as a parameter by price-taking 

frrms) 

A. ISO's Problem 

In (1), for each period t, the ISO chooses zX� to minimize 

total operating costs of all generation facilities of flfms that 

inject amounts dY), while respecting the fluctuations in 

demand over the hours of periods. The ISO's role in this 
setting is to provide incentives for generating firms to follow 
the historical shape of the load duration curve within the 
hours of demand period t. 

F I H(t) 

ffi;X -I I I ej�)zX� 
f=1 i=1 h=1 

subject to 
I H(t) 

d;(t) - I I ZX� :5 0 
i=1 h=1 

(t) (t) Zfih :5 Kfi 
F F I 

.. (t) "\ d *(t) _ "\ "\ (t) - 0 
Uh L f LLZfih -

f=1 f=1 i=1 
(t) Zfijh � 0 

[dual] 

'ilf 

[ (t)] I1fih 'iI f,i,h 
(1) 

'ilh 

'iI f,i,h 

Here, we assume that each generator firm j reports its 

bilateral contract amount dit) (but not the prices pet)) to the 

ISO before each time period t. Furthermore, it is assumed that 

the ISO is aware of the marginal cost (e.g., eX)) and capacity 

of each generation facility (e.g., KX)) at each time period t. In 

the ISO's problem, the amount of each frrm's sales, dit), is 

treated as fixed (denoted by superscript *) . The flfst set of 
constraints in (1) ensures that electricity supply of flfm j is 
sufficient to meet its sales. The second set of constraints 
contains the capacity constraint for each generation facility 
owned by flfm f The next subsection explains in detail how 
the third set of constraints ensures that generation matches 
demand in every period. 

Here, we also need to explain the meaning and 

measurement of the parameters 8�t) which link the different 
time scales of the supply and demand sides of the model. 
When consumers pay the same price for energy at any hour 
within a period, it is reasonable to suppose that the demand 
variations over hours within the period are related to non­
price causes, such as temperatures, natural lighting, daily 
meal schedules and habits of all kinds that affect electricity 
usage. Such non-price causes must necessarily be 
represented by parameters, not variables to be solved for. 
<;:elebi and Fuller [13] proposed to measure the pattern of 
variation in demand that has been observed in the recent past, 
and to assume that the same pattern (but not the absolute 
values) will repeat in the near future, i.e., within the model's 
time horizon. These parameters for a specific demand period 
can be calculated from historical observations of a previous 
year (see [13] for calculation of these parameters), as the 

fraction, 8�t), of total energy demand in period t, that occurs 

during hour h. Note that I��� 8�t) = 1. 
The third set of constraints in (1) states that the hourly 

generation for all different facilities and all flfms should meet 
the total sales of all frrms at hour h. With this condition, the 
ISO imposes the historical shape of the load duration curve 
within the hours of demand period t. But if prices differ from 
historical ones, then the entire month's load duration curve of 
the solution can have a shape that is different from the 

historical shape. The dual variable A�) (unconstrained in sign) 
for this condition is the penalty/payment for firm Is hourly 
deviations of its sales from the average hourly demand in 
demand period t and hourly deviations of its output 

II=1 zj�� from the average output over all hours in the period 

t. (i.e., deviations from the historical shape of the load 
duration curve). 

B. Supply Side: Firm!'s Problem 

The supply side of the model, formulated in (2), maximizes 
flfm Is profit 7ff' i.e., the total revenues of flfm j minus the 

total operating cost of flfm/s hourly generation by different 
technologies of production (e.g., nuclear, hydro, coal, gas/oil, 
indexed by i) to meet its sales in different demand periods 
(e.g., months indexed by t) plus the ISO's penalty/payment 
due to variations from hourly average demand and hourly 
average output in demand period t. Various market structures 
are modeled within this framework. The perfect competition 
structure - with flfms treating pet) as a parameter beyond their 
control- serves as a reference case, as it would lead to the 
most efficient market performance. On the other hand, the 



monopoly structure represents the worst outcome of 
exercising market power. In between is the Nash-Cournot 
structure where either all firms or some large firms act a la 
Cournot. In the monopoly and Nash-Cournot structures, firms 
see their knowledge of the dependence of pet) on total market 
demand, as detailed in section II-E. 

As explained in [13], the supply model can be extended to 
be more realistic as long as each firm's model remains as a 
linear program (e.g., a linearized DC power network, line 
limits and ramping constraints can be included at the expense 
of problem size) or more generally as a convex program. 

max 1f = '\' pet) - '\' oCt) A·(t) it) 
T [ H(t) 1 

dz f L L h h f . 
t=1 h=1 

T I H(t) 
_ '\' '\' '\' [ (t) _ ,.(t)] (t) 

L L L Cfi /lh Zfih 
t=1 i=1 h=1 

subject to 
I H(t) 

d(t) - '\' '\' z(t) < 0 f LL f,h -i=1 h=1 
"itt 

(t) (t) \.I " h zfih ::; Kfi v t, ,t 

m "h zfih ;::: 0 "it t, ,t 

[dual] (2) 

[ (t)] I1fih 

In firm Is problem, it is presumed that the ISO's 

penalty/payment term, A�), is fixed (denoted by superscript 

*) . There is no discounting but it could be included for longer 
time horizons. The first set of constraints ensures that 
electricity supply of firm f is sufficient to meet its sales to 
demand period t; at an optimal solution, these constraints are 
binding equalities. The second set of constraints contains the 
capacity constraint for each generation facility owned by firm 
f It should be noted that the ISO's and [!Tm/s problem have 

the common variable, zj;�, which, in equilibrium, are 

equivalent as shown in section II-E. 

C. Demand Side 

The dynamics of demand side can be modeled in many 

ways but the default assumption in both empirical and 

theoretical demand analysis is constant tastes and, more 
generally, constant demand parameters. However, habit 

formation models allow demand parameters to depend in a 

specified way on previous levels of consumption [18]. 

In analyzing the dynamics of demand, Taylor and 

Houthakker [19] have used both complete demand system 

and single equation analysis. They use unobserved "state 

variables" that depend on lagged values of consumption. In 

their single equation analysis, they incorporate state variables 
directly into the demand equations without derivation from an 

underlying utility function or preference ordering. By 
contrast, they incorporate state variables into the utility 

function in their complete system analysis and derive the 

implied demand functions from this system. In both cases, 
they interpret the state variables as representing either a 

"stock of habits" or a "stock of consumer durables" 

depending on whether the coefficient of the state variable in 

the demand equation is posItIve or negative. Thus, 

Houthakker and Taylor use state variables to generate 

dynamic demand equations corresponding to both habit 

formation and consumer durables for both single equation 

and complete demand system analyses [20]. Nevertheless, 

compared to the complete demand system approach, single 

equation demand analysis may seem ad hoc and old­

fashioned. But, the state variable and lagged consumption 

specifications provide empirically tractable dynamic demand 

models [19]. Despite the empirical success of dynamic 

demand models, however, the static specification remains the 

default assumption in both theoretical and empirical demand 

analysis. 

For capital stock adjustment models, Taylor and 

Houthakker's dynamic demand model ([19] and same titled 

2nd edition of their book in 1970) may be used, although, 
estimation of the parameters and nonlinear nature of their 

demand equations are drawbacks for using their model. But, 

an advantage of their demand system is that it is derived from 

an additive quadratic utility function. 

Phlips [21] presents the results from estimating a complete 

system of demand equations (using Taylor and Houthakker's 

additive quadratic model and linear expenditure system), for 

eleven United States expenditure categories, allowing for 

habit formation, capital stock adjustment, and depreciation, 

taking into account the necessary or unnecessary character of 

commodities. He concludes that the linear expenditure system 

is a better vehicle of empirical analysis than the additive 

quadratic modeL 
The theoretical difficulty with habit formation arises in 

models of "naive" as opposed to "rational" habit formation 

[22]. With naive habit formation, in each period the consumer 

chooses a one-period consumption pattern to maximize a one­

period utility function, thus, ignores intertemporal allocation. 

The advantage of "naive" habit formation models is their 

tractability. <;elebi and Fuller [8] employ this naive habit 

formation model in TOU pricing models under different 

market structures. In their demand models, it is assumed that 

maximizing successive one-period utility functions is rational 

only if preferences are separable over time (i.e., if the 

marginal rates of substitution involving consumption within 

each period are independent of consumption in other periods). 

The problem is that naive habit model assumes that 

individuals fail to recognize the influence of current 

consumption on their future) [20]. However, models of 

rational habit formation avoid this difficulty, but encounter 

others. With rational habit formation, individuals correctly 

recognize that their current consumption affects future 

behavior. As Pollak [18] discussed: 

"A further complication in rational habit formation models 

arises from the need to make explicit assumptions about the 

individual's ability to "commit" or "pre-commit" to a 

lifetime consumption plan. At one extreme, if an individual 

can pre-commit without cost, and if the individual accepts 

the primacy of current preferences, then the optimal lifetime 



consumption plan is one which maximizes the intertemporal 

utility function reflecting current preferences. Under these 

assumptions, rational habit formation is equivalent to 

maximizing a non-separable intertemporal utility function. 

At the other extreme, if pre-commitment is impossible, then 

the optimal plan is one that takes full account of the effect 

of current decisions on future preferences. Under this 

assumption, the optimal plan is the optimal feasible plan, 

where feasibility takes full account of future decisions that 

are nonoptimal from the perspective of current tastes. 

Intermediate cases in which pre-commitment is costly are 

even more complex. " 

On the other hand, the complete demand system analysis 

has the theoretical advantage of its consistency with 

preference maximization. However, the theory implies 

consistency with preference maximization for individual level 

data (and household level data with some additional 

assumptions) [18]. Hence, using preference maximization to 

structure the analysis of aggregate demand data requires 

postulating the existence of a "representative consumer" or 

making some other very special assumption to exercise the 

aggregation problem and ensure that market demand 

functions behave as individual demand functions. Another 

major disadvantage of the complete demand system analysis 

is that, when the number of "goods" is large, it may require 

estimating too many parameters. But, parametric size is 

manageable for demand systems corresponding to additive 
utility functions5; for example, the linear expenditure system 

or the additive quadratic model used by Taylor and 
Houthakker contains 2n - 1 parameters, where n is the 

number of goods. 

Pollak and Wales's [20] "habit formation" assumptions 

imply that consumption in the previous period influences 

current preference and demand, but that consumption in the 

more distant past does not. This assumption may be 

generalized by allowing the necessary quantity of each good 

to depend on a geometrically weighted average of all past 

consumption of that good (e.g., distributed lag). A 

fundamental assumption of the habit formation model is that 

the individual does not take account of the effect of his 

current purchase on his future preferences and future 

consumption. On the contrary, capital stock adjustment 
models must explicitly recognize the intertemporal nature of 

consumption (i.e., current consumption also affects the future 

preferences and demand). 

An important feature of the dynamic (e.g., lagged) demand 
formulation is that demand in a period is also dependent of 
future prices. This strongly suggests that, to be consistent 

5 As Pollak pointed out [18]: "When the number of goods (that is, 

consumption categories) is large, additivity is implausible. For example, 
additivity of the direct utility function holds if and only if the marginal rate of 

substitution involving each pair of goods depends only on the quantities of 

those two goods and is independent of the quantities of all other goods. For 
narrowly defined consumption categories, this condition is unlikely to hold: 

the marginal rate of substitution of bread for butter is unlikely to be 

independent of the quantity of jam. " 

with lagged demand, we must assume that consumers have 
"foresight" as in the stock adjustment model. In this paper, 
we have employed the habit formation assumptions in the 
demand models with a "foresight" nature of consumers. We 
emphasize both the habit formation model and the capital 
stock adjustment. We assume that consumers are making 
their decisions for each period dependent on past and the 
future consumption levels. 

The demand side is represented by demand equations that 
use the prices and lagged demand as independent variables. A 
distributed lag model can represent the dynamics of demand 
side in time. One form of a one commodity model is the 
linear distributed lag model: 

(3) 
where 
aCt) = factors representing non-price effects at period t (e.g., 
weather conditions, socio-demographic factors) 
d(t) = total demand for electricity in period t where d(t) = 

I/=1 djt) and djt) is the sales of fIrmfin period t. 

d(t-l) = lagged demand where d(t-l) = I/=1 dY-l) 
pet) = electricity price in period t (i.e., flat rate) 

bet) = price coefficients (i.e., own-price only) for period t, 

where bet) < o. 
eCt) = lag coeffIcients for period t, where eCt) > o. 

In a real world application, a careful econometric study 
would be needed, to establish the best functional form, and its 
parameters. Equation (3) can also be extended to a multi­
commodity case where each commodity is the electricity 
demand in different times of day (e.g., demand blocks in 
TOU pricing: on-peak, mid-peak, off-peak). Note that an 
alternative but very similar procedure for incorporating 
dynamics into demand analysis is to allow demand function 
parameters to depend directly on lagged consumption, i.e., 
a'Ct) = aCt) + eCt)dCt-l), and the general form of demand 
functions are in the linear form (see [22] for further 
discussion): 

d(t) = a,(t) + b(t)p(t). (4) 

D. Variational Inequality (VI) Approach 

The models proposed in this paper are represented and 
solved by the variational inequality (VI) problem approach 
[23]. In general, a fInite dimensional VI problem is defIned as 
follows: 

VJ(F, K): Find a vector x* EKe Rn, such that: 
F(x*? (x - x*) � 0, \;Ix E K (5) 

where F is a given continuous function from K to Rn and K is 
a nonempty, closed and convex set [23]. 

To aid readers who are familiar with Mep models, but not 
VI problems, we fIrst formulate the perfect competition 
model as a Mep, followed by the VI form and a justifIcation 
for the equivalence of the two forms. The oligopoly and 
monopoly models are presented only in the VI form. 

In (6), we formulate the perfect competition model as a 
Mep, by writing out the necessary Karush-Kuhn-Tucker 
(KKT) conditions for the ISO's and fIrm Is problems along 
with the demand equation. 



MCP ' Find d(t) z(t) pet) pet) /I(t) l(t) that satl'sfy . f 'f'h' 'f ''"I ih,lLh 
H(t) 

dit) :2: 0 1. _pet) + I 8�t) A�) + pjt) :2: 0 v f, t 

h=1 
zXh :2: 0 1. cX) -pjt) + I1j�;, - A�) :2: 0 v f, i, h, t 

I H(t) 

pjt) :2: 0 1. dit) -I I zXh � 0 v f, t 

i=1 h=1 (t) (t) (t) I1fih :2: 0 1. Zfih � Kfi V f, i, h, t 
F F I 

A�) free 1. 8�t) I dit) -I I zXh = 0 V h, t 
f=1 f=1 i=1 

F F 

I dit) = aCt) + b(t)p(t) + e(t) I djt-1) V t 
f=1 f=1 

(6) 

The fIrst four conditions in (6) are the necessary KKT 
conditions for fIrm Is problem. The second to fIfth 
conditions in (6) are the necessary KKT conditions for the 
ISO's problem (i.e., second to fourth conditions are common 
for the ISO's and frrm Is problem). The last equation is the 
linear distributed lagged demand equation. Note that the fIrst 
condition does not include the extra term for the marginal 
revenue of frrm f (i.e., recognizing that pet) is a function of 

I/=1 di?) that appears in monopoly and Cournot models. 

Because all frrms are price takers in a perfect competition 
structure, this condition only has the pet) term as the marginal 
revenue term. Also note that the third and fIfth conditions in 
(6) are linearly dependent at a solution, where the third 
constraints are binding (i.e., summing the third condition over 
all frrms f equals the sum of the fIfth condition over all hours 
h) and one combination of t, f in the third set of constraints 
can be dropped from (6). 

When dit) > 0 (implying zXh > 0 from the third condition), 

the fIrst two conditions in (6) become equalities and we can 
derive the following condition by summing them: 

H(t) 

pet) -I 8�t) A�) + A�) = cX) + I1j�;, (7) 

h=1 
The left hand side can be understood as the hourly price; let 

it be denoted by p�t). All frrms receive this hourly price 

whereas consumers are paying the period t's price (p(t)) in 
the models. Note that frrms have adequate revenue when 
(t) b (t) (t) (t) f 

. I h zfih > 0, ecause Ph -Cfi = I1fih :2: O. I we multlp y t e left 

hand side of (7) by 8�t) and sum over all hours h, we derive 
(t) 

the condition, pet) = I��1 8�t) p�t). This is the weighted 

average condition imposed in [13] (without the discount 

factor), which relates the hourly marginal cost p�t) to 

consumer TOU price pet) in the perfect competition case. 
This also ensures that the revenue requirement of all frrms for 
demand in period t is met by revenue collected from 
consumers. 

Related to this is the fact that the penalties/payments 
imposed by the ISO sum to zero, over all fIrms, within every 
period t: 

Thus the ISO's penalty/payment scheme shifts money 
around among fIrms, but does not directly involve consumers. 

We can also formulate (6) as a VI problem. The feasible 
set for the VI problem is defIned as follows: 

K= 

I H(') 
d(t) _ � � /t) < 0 f LL f,h-

i=l h=l 
/t) < K(t) fih - fi 
(t) > 0 d(t) (t) (t) zfih -f ,Zfih'P F F I 
<"(t)�d(t)_ �� (t)-o Uh L f L L zfih -

f�l f�l i�l 

't/ f,t 

't/ f,i,h,t 

't/ f,i,h,t 

't/ h, t 

F F L dft) = act) + b(t)p(t) + /t) L dj'-l) 't/ t 
f�l f�l 

Note that pet) variables are implicitly defmed by the dY) 
variables. Instead, an explicit inverse demand function can be 
used for a more compact formulation without pet) variables, 
but for ease of readability of the formulation, the pet) 
variables are used. 

In the feasible set K, the frrst four constraints are from the 
ISO's and frrm/s problems and the last equation is the linear 
distributed lagged demand function. 

The VI problem for the perfect competition model is as in 
(8). To relate (8) to the general VI form (5) , the vector x 
contains the variables dY),zXh and pet) for all f, i, hand t, 
and the elements of the vector-valued mapping F(x) are as 

follows: _pet) is the element of F that corresponds to dit); 
ci�) is the element of F that corresponds to zXh; and the 

element of F that corresponds to pet) is zero. Note that for 

dY) and zXh, the corresponding elements of F are the partial 

derivatives of the objective function of frrm Is problem (2) 

(i.e., the A�t) terms are cancelled out.) 

Find (dit)*,zXh*,P(t)*) E K such that 

T F 

-I I p(t)* ( dit) -dit) * ) 
t=1 f=1 

T F I H(t) 

� � � � (t) ((t) (t)* ) + 
LLLL Cfi zfih -zfih :2: 0 
t=1 f=1 i=1 h=1 

V (d(t) z(t) pet)) E K f ' flh' 

(8) 



The VI problem (8) in primal variables has the KKT 
conditions listed in (6) and hence is equivalent to the MCP 
(6) (see [23, 24] for discussion of the KKT conditions for VI 
problems). 

There is a minor technicality in the derivation of (6) from 
the KKT conditions of (8). Let vet) be the dual variable of the 
distributed lagged demand equation in the definition of K. 
The KKT conditions which correspond to the pet) variables 
are b(t)v(t) = O. Because bet) < 0, it follows that vet) = 0 for 
all t. Therefore, vet) and b(t)v(t) = 0 can be dropped from the 
list of KKT conditions of the VI problem, giving rise to the 
MCP (6). 

We only provide the VI formulations for other market 
structures, for ease of representation. It is straightforward to 
derive their equivalent MCP formulations as in the perfect 
competition case. The other market structures have the same 
feasible set K. The VI problem for the Nash-Cournot model is 
formulated as follows: 

Find ( dit)*, zX�*, p(t)* ) E K such that 

T F 

-L L (p(t)* 
+ e;t) * ) ( dit) -dit) * ) 

t=1 f=1 
T F I H(t) 

'" '" '" '" (t) ((t) (t)* ) + 
LLLL Cfl Zflh -Zflh ;::: 0 
t=1 f=1 1=1 h=1 

W (d(t) z(t) pet) ) E K v f ' flh' 

(9) 

where the term p(t)* + e;t)* is the marginal revenue for firm f 

in period t, and e;?* is the "extra" marginal revenue term. 

This marginal revenue term is derived from the partial 

derivative of the objective function in (2), with respect to d?), 
when the firm is aware of the price-quantity relation of the 
distributed lagged demand equation: 

anf _ (t) + ap(t) d(t) + ap(t+l) d(t+1) = (t) + e(t) 
ad(t) -

p 
ad(t) f ad(t) f p f f f f 

where [
ap(t)] = (b(t))-1 

and [
ap(t+l)] = _e(t+l) (b(t+l) )-l

. ad(t) ait) f f 
Note that the penalties/payments imposed by the ISO are 

neither included in the VI formulation (9) nor in the marginal 
revenue term, because they sum to zero, over all firms. 

Lastly we can defme a VI problem for the monopoly 
structure: 

Find ( dit)*, zX�*, p(t)* ) E K such that 

-t, t (p"" + t:;:;} dj" -dj"' ) 

T F I H(t) 
+ L L L L cX) (zX� - zi��* ) ;::: 0 

(10) 

t=l f=1 1=1 h=1 
W (d(t) z(t) pet) ) E K v f ' flh' 

Note that f' is an alias index for t, and that all firms are 
owned by the monopolist. 

For each VI problem (8) to (9), the expression in the 
inequality is an estimate of the change in the negative of 
profits (summed over all firms) due to feasible deviations 

from equilibrium, using marginal revenues of the firms as 
measured at equilibrium. Therefore, at equilibrium, no firm 

. 
h 

. .  . 
bl d(t) d (t)· sees any advantage m c angmg Its vana es f an zflh m a 

feasible way. For the monopoly model (10), the monopolist 
firm sees no advantage in deviating from the equilibrium 
solution, i.e., the solution is a local maximum of profit (and a 
global maximum, due to convexity). 

Instead of flat pricing, some consumers may prefer TOU 
prices, or regulatory bodies in electricity markets may choose 
to implement a TOU pricing scheme. In this case, consumers' 
prices vary by time of day, and they may or may not vary by 
month. We can add demand blocks as introduced in <;:elebi 
and Fuller [13] to model TOU prices that differs by time-of­
use demand blocks (e.g., off-peak, mid-peak, on-peak 
denoted by indexj in their paper). In fact, the market models 
presented in this paper are equivalent to having a single 
demand block (e.g., j with one element only) of <;:elebi and 
Fuller's [8] market equilibrium models with TOU pricing. 
For our purposes in this paper, we do not present the TOU 
pricing model and rather focus on the "foresight" behavior 
(i.e., habit formation and capital stock adjustment) of 
consumers. 

III. CONCLUSIONS & FUTURE RESEARCH 

In this paper, we propose variational inequality models for 
electricity markets with dynamic demand models where the 
intertemporal nature of consumption (i.e., the current 
consumption decision affects capital stock and thus the future 
preferences and demand) is recognized. It is intended that the 
proposed models would develop a framework for electricity 
market equilibrium models that incorporates the dynamics of 
the demand side. 

By introducing a linearized DC network, line limits, and 
ramp limits, a more realistic model can be built and the 
impact of transmission network (e.g., the effect of location) 
can be examined in detail, such as the market power issues in 
load pockets [5, 25]. However, the problem size grows with 
this added realism and a need for algorithms to solve large 
scale equilibrium problems arises. In such a case, 
decomposition methods (e.g., Dantzig-Wolfe [2] or Benders 
decomposition [3] for VI problems) may surmount 
difficulties that may arise in computation of equilibrium. 
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