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1 Introduction

Edge searching (or graph searching) is an extensively studied graph theoretical
problem. Its origins date back to the late 1960s in works of Parsons [10] and Breisch
[3]. It was first faced by a group of spelunkers who were trying to find a person lost
in a system of caves. They were interested in the minimum number of people they
needed in the searching team and an optimal search strategy.
Assume that we want to secure a system of tunnels from a hidden intruder who
is trying to avoid us and has unbounded speed. We model this system as a finite
connected graph G = (V, E) where junctions correspond to vertices and tunnels
correspond to edges. We will launch a group of searchers into the system in order
to catch the intruder. We assume that every edge of G is contaminated initially and
our aim is to clean the whole graph by a sequence of steps. At each step we are
allowed to do one of these moves: (1) Place a searcher at a vertex, (2) Remove
a searcher from one vertex and place it on another vertex (a “jump”), (3) Slide
a searcher from a vertex along an edge to an adjacent vertex. Note that placing
multiple searchers on any vertex is allowed. We don’t pose any restriction on the
number of searchers used.
If a searcher slides along an edge e = uv from u to v, then the edge e is cleaned if
either (i) another searcher is stationed at u, or (ii) all other edges incident to u are
already clean. An edge search strategy is a combination of the moves so that the
state of all edges being simultaneously clean is achieved, in which case we say that
the graph is cleaned. The least number of searchers needed to clean the graph is
the (edge) search number of the graph and is denoted s(G). The problem becomes
cleaning (or searching) the graph using the fewest searchers. In this respect, we are
interested in the optimal search strategies, those that use only s(G) searchers.
For a given graph, it is a natural question to ask the following: What is the smallest
value of s(G) = k with which we can clean the graph? and How can we clean the
graph using the minimum possible number of searchers?
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Notice that even once an edge is cleaned, it may not necessarily be true that it will
remain clean until the end of the search strategy. In other words, an edge can be
cleaned at some step and at a later step it can get contaminated again. If a searcher is
stationed at a vertex v, then we say that v is guarded. If a path does not contain any
guarded vertex, then it is called an unguarded path. If there is an unguarded path
that contains one endpoint of a contaminated edge and one endpoint of a cleaned
edge e, then e gets recontaminated. Hence, a clean edge remains clean as long as
every path from it to a contaminated edge is blocked by at least one searcher.
The edge search problem has many variants based on, for instance, how searchers
move or how the edges are cleaned. Due to its closeness with the layout problems,
the problem is related to widely utilized graph parameters such as pathwidth [5],
bandwidth [6] and cutwidth of a graph which arises in VLSI design [4]. The prob-
lem and its variants are related to many applications such as network security [1]
and robotics [8].
The NP-completeness of the Edge Searching problem and its variations invoked
interest in solving these problems on special classes of graphs. In this note, we are
going to consider edge searching of the Ciculant Graphs. This family of graphs
play a significant role in many discrete optimization problems [2,9]. On a related
pursuit evasion game, the cops and robber game, the cop number of the circulant
graph with connection set of size s is fund to be at most 2 s+1

2 3 in [7]. Here we give
an upper bound on the edge search number of the circulant graphs of prime order
and conjecture that this can be made small.

2 Searching Circulant Graphs

We consider edge searching of circulant graphs of prime order and state our con-
jecture. Let (G, +) be a finite group with identity element 0. Let S ⊆ (G\{0}) such
that S = −S, that is a ∈ S if and only if −a ∈ S. Recall that −a denotes the
inverse of a in (G, +). The Cayley graph on a group G with connection set (or gen-
erating set) S, denoted as Cay(G,S), is the graph that is constructed as follows: (1)
Each element of G corresponds to a vertex vi, and, (2) There exists an edge joining
vi and vj if and only if vi = vj + a where a ∈ S.

Fig. 1. The circulant graphs circ(17; 3, 4) and circ(17; 1, 7)
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A special class of Cayley graphs is those on cyclic groups. A circulant graph,
denoted as circ(n, S), is the Cayley graph Cay(Zn, S) where Zn is the abelian group
of integers modulo n.
Let p be a prime number and consider the circulant graph circ(p, S) where S ⊆
(Zp\{0}). Notice that G = circ(p, S) is a Hamiltonian cycle when |S| = 2 and 3 ≤
p; thus s(G) = 2. Nevertheless the calculation of the search number of circ(p, S)
gets complicated rapidly as the size of the set S increases.
For brevity, we denote a circulant graph G = circ(p, S) with connection set S =
{a,−a, b,−b} as circ(p; a, b) where 1 ≤ a < b ≤ p−1

2 .

Theorem 2.1 If p is a prime number and 1 ≤ a < b ≤ p−1
2 , then

s(circ(p; a, b)) ≤ 2b + 1.

Proof (sketch) Place the 2b searchers on the following vertices: v1, v2, . . . , vb and
vn−b+1, vn−b+2, . . . , vn. Label these searchers as σ1, σ2, . . . , σ2b respectively. Place
σ2b+1 on v1 and clean all the edges with end vetices in {vn−b+1, vn−b+2, . . . , vn, v1,
v2, . . . , vb}. The only contaminated edge incident to v1 is v1vb+1, thus let σ1 slide
along this edge and clean v1. Next let σ1 clean all the edges with end vetices in
{vn−b+1, vn−b+2, . . . , vn, v2, . . . , vb, vb+1}. Now σ2 can slide along v2vb+2 and clean
v2. We clean v1, v2, . . . , vb in the same way. We repeat this shifting of searchers
on v1, v2, . . . , vb to vb+1, vb+2, . . . , v2b for every group of b consequtive vertex and
clean the whole graph.
The upper bound in Theorem 2.1 is tight for some graphs (for instance, when G =
circ(5; 1, 2)). On the other hand, this bound will be big when b is large. We claim
that this number can be made as small as twice the root of the order of the graph
plus one.
In order to consider isomorphic circulant graphs, we use multiplication in Zp. Let
f : {1, 2, . . . , p} → {1, 2, . . . , p} so that f(n) = (n − 1)a + 1 where 1 ≤ a <
p−1
2 . It is a simple observation that f is an isomorphism between circ(p; a, b) and

circ(p; 1, c) where 1 ≤ a < b ≤ p−1
2 and c = ba−1.

Furthermore, we can show that for any k ≥ 1, circ(p; 1, c) . circ(p; k, ck).

The following conjecture gives a bound on the product of an element of Zp and a
positive integer less then the ceiling of the root of p.
Conjecture 4 For every prime p and every integer i = 1, 2, . . . , p−1

2 , there exists
an integer j, 1 ≤ j ≤ 2√p3 such that either

ij ≤ 2√p3 (mod p), or, p − ij ≤ 2√p3 (mod p).

An ongoing Maple code that mininimizes the maximum desired product shows
that Conjecture 4 holds for up to the 6000th prime. Thus by Theorem 2.1 and the
isomophisms we’ve given, the following is true for the first 6000 primes:

s(circ(p, S)) ≤ 22√p3 + 1 (2.1)

for every circulant graph, circ(p, S), where S ⊆ (Zp\{0}), |S| ≤ 4.
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This is a very good bound considering the size of the graph and the existing upper
bounds on edge search number.
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