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Abstract— Transient Stability analysis, which is one of the
most important tasks of power system dynamic security analysis,
determines the dynamic behaviour of the power system after a
large disturbance. Differential and algebraic equations (DAEs)
model the nonlinear dynamic power system. The conventional
time domain solution process uses a Newton method to simul-
taneously solve the differential equations, discretized via an
implicit integration method, alongside the non-linear algebraic
network equations. Direct or iterative methods can be used to
solve the resulting set of sparse linearized algebraic equations.
A well-known and faster solution algorithm used in some popu-
lar transient stability packages is the Very Dishonest Newton
Method (VDHN), which uses a current balance form and a
very infrequent LU factorization in the solution of the algebraic
equations. In order to prevent any trouble arising from VDHN in
today’s complex power system models, an exact Newton method
with a Preconditioned Generalized Minimal Residual (GMRES)
iterative method forms the basis of this paper. A new incomplete
LU based preconditioner is proposed to achieve solution speeds
comparable to that of the VDHN method. Results are given for
a power system with 1169 buses, 392 generators, 2855 branches.
Thanks to the proposed incomplete LU based preconditioner, a
full Newton method approach with preconditioned GMRES can
be used in the simulation of transient stability behavior with
negligible impact on the solution speed.

I. INTRODUCTION

The analysis of power system stability discovers the power
system’s response to any disturbance. Power system stability
is classified into two main categories: rotor angle stability,
which is an ability to maintain synchronism, and voltage
stability, which is an ability to maintain steady acceptable
voltage [1]. Angle stability is usually categorized according
to the severity of a disturbance. It is called either small signal
stability under small disturbances or transient stability under
large disturbances. The objective of transient stability analysis
is to determine the dynamic behaviour of an electric power
system after a large disturbance. Transient stability analysis is
indispensable in terms of power system planning and power
system operations.

In this analysis, a differential algebraic model is used to
describe the electric power system. That model consists of
differential and algebraic equations (DAEs). They are shown
as

Ẋ = f (X ,Y ) (1)

0 = g(X ,Y ) (2)

Equation (1) represents the dynamic devices and equation
(2) shows the algebraic equations of synchronous machines
and power system network. So, X is called as a vector
of state variables and Y is called as a vector of algebraic
variables. In the solution of DAEs, firstly differential equations
are discretized by implicit or explicit methods. Then non-
linear algebraic equations are obtained. These equations and
algebraic equations can be solved separately or simultaneously
at each time step. Because of numerical stability, Simultaneous
implicit method is preferred. Newton Raphson method can
be used to solve non-linear algebraic equations due to its
quadratic convergence. Sparse linear system in the Newton
method is solved by LU factorization direct method in many
production grade programs. Very Dishonest Newton Method
(VDHN) has been used in these programs so as to obtain faster
solution.

Iterative methods are alternative solution techniques for
the solution of sparse linear system in transient stability
analysis [2]. There are two categories in the iterative methods:
stationary and non-stationary iterative methods [3]. Many
researchers have applied iterative methods to the simulation
of power system dynamics [4], [5], [6]. Nonstationary iter-
ative methods cover Krylov subspace based methods, which
have been widely discussed in the numerical analysis litera-
ture. The most robust and generic method in the family of
Krylov subspace solvers is the Generalized Minimal Residual
(GMRES) method. The GMRES was proposed in 1986 for
nonsymmetric systems[7]. Preconditioning is a necessary step
to accelerate the convergence process of the iterative solvers.
Preconditioned GMRES with ILU preconditioner was applied
to transient stability simulation of a power system [5]. In-
complete LU based dishonest preconditioner and Incomplete
LU (ILU) preconditioner were compared in simulations by
using 10-generator, 39-bus system. GMRES with dishonest
preconditioner demonstrated better result than GMRES with
ILU preconditioner. The variant of GMRES and some pre-
conditioning techniques were used to simulate the transient
stability of the system [4]. Techniques were tested on the
3-generator, 9-bus system and 16-generator, 68-bus system.
The different iterative methods which can handle unsymmetric



matrices are used by a dishonest preconditioner [6]. Tests
were run on 10-generator, 39-bus system. GMRES was shown
to be the most robust of all the method. Also dishonest
preconditioner, ILU preconditioner with different strategies,
produced better performance for all iterative methods used. In
[5], [6], the preconditioner was recomputed depending on the
threshold value of GMRES iterations and some parameters. In
our case, it is recomputed only three times. The computation
of preconditioner is not dependent to the size of power system.

In this paper, a new preconditioner, the incomplete LU
based factorization, is constructed. VDHN approach with
LU factorization and substitution schemes is replaced by a
Newton method with preconditioned GMRES(m). The pro-
posed preconditioner ensures the usage of a complete Newton
approach. Large scale power system data was used to show the
performance of the Newton method with preconditioned GM-
RES(m). The combination prevents any trouble arising from
VDHN approach in today’s large power system. According
to the integration time step, the convergence problem might
occur in the VDHN approach.

II. TRANSIENT STABILITY ANALYSIS

Transient stability analysis is concerned with the effects on
generator synchronism due to a large disturbance such as loss
of an huge load or loss of generators. A differential algebraic
model is used to describe the power system in this simulation
method. Dynamic devices are modeled as a set of differential
equations and the power system network is modeled as a set
of algebraic equations. The differential-algebraic equations are

Ẋ = f (X ,V,u), X(0) = X0 (3)

I1(X ,V ) = YNV, V (0) =V0 (4)

Equation (3) can be discretized by trapezoidal integration
method. Then, equations (5) and (6) are written.

F(Xn+1,Vn+1), Xn+1−Xn−
h
2 [ f (Xn+1,Vn+1)+ f (Xn,Vn)] = 0 (5)

G(Xn+1,Vn+1), YNVn+1− I1(Xn+1,Vn+1) = 0 (6)

where h is an integration time step. Using the rectangular
coordinate representation of I1, V and YN as I1

e, V e and Ye
N

in equations (5) and (6), one can obtain

F(Xn+1,V e
n+1), Xn+1−Xn−

h
2 [ f (Xn+1,V e

n+1)+ f (Xn,V e
n )] = 0 (7)

H(Xn+1,V e
n+1), Ye

NV e
n+1

−I1
e(Xn+1,V e

n+1) = 0 (8)

where YN, I1
e, V e, Ye

N and H are defined as

YN = GN + jBN,V e =

[
V r

V i

]
, I1

e =

[
Ir
1

Ii
1

]
Ye

N =

[
GN −BN
BN GN

]
, H(X ,V ) =

[
Re(G(X ,V ))
Im(G(X ,V ))

]
,

The linear equations are

J(k)n+1∆X (k)
n+1 =−Fn+1

(k) (9)

the unknown variables updated are

X (k+1)
n+1 = X (k)

n+1 +∆X (k)
n+1 (10)

where
F =

[
F
H

]
,X =

[
X
V

]
[

F
H

]
=−

[
∂F
∂X

∂F
∂V e

∂H
∂X

∂H
∂V e

][
∆X
∆V e

]
The Jacobian has the following structure:

J =

[
∂F
∂X

∂F
∂V e

∂H
∂X

∂G
∂V e

]
=

[
JA JB
JC JD

]
JD is written

JD =

[
GN −BN
BN GN

]
−

[
∂Ir

1
∂V r

∂Ir
1

∂V i
∂Ii

1
∂V r

∂Ii
1

∂V i

]
(11)

Equation (11) is composed of two parts denoted by Ye
N and

Ye
D respectively.

Ye
N =

[
GN −BN
BN GN

]
and Ye

D =−

[
∂Ir

1
∂V r

∂Ir
1

∂V i
∂Ii

1
∂V r

∂Ii
1

∂V i

]
Then, equations (12) and (13) are obtained from equation (9)

∆Xn+1 =−JA
−1 [Fn+1 +JB∆V e

n+1
]
. (12)

J1V e
n+1

(k+1) = Ie
1
(k)+(Ye

D−JCJ−1
A JB)V e

n+1
(k)

+JCJ−1
A Fn+1

(k) (13)

J1 is defined as:

J1 = JD−JCJ−1
A JB. (14)

State variables and algebraic variables are obtained from
equations (12) and (13). Equation (13) can be solved by using
either direct method or iterative method.

There are two categories in the iterative methods: stationary
and nonstationary iterative methods [3]. Nonstationary itera-
tive methods cover Krylov subspace based methods, which
have been widely discussed in the numerical analysis litera-
ture. The most robust and generic method in the family of
Krylov subspace solvers is the Generalized Minimal Residual
(GMRES) method. GMRES method converges in a finite num-
ber of iterations but its cost increases step by step. Therefore,
it is usually restarted after m iterations to reduce the cost
both computationally and storage wise. GMRES(m) method
attempts to solve the Ax = b linear system by minimizing the
residual r defined by

r(x) = b−Ax. (15)

Depending on the spectral property of A matrix, precon-
ditioning is a required step for the solution process. The
original system is transformed into a new system which



has a more favorable eigenvalue distribution for the Krylov
subspace solvers. Thus, the number of GMRES iterations can
be decreased in the solution process. There are three different
ways of implementing preconditioning: left preconditioning,
right preconditioning and two-sided preconditioning [8]. If a
matrix M approximates the coefficient matrix A, they can be
shown as below:

• Left preconditioning
M−1Ax = M−1b
ALx = bL

• Right preconditioning
(AM−1)(Mx) = b
ARxR = b

• Left and Right preconditioning (M = M1M2)
(M−1

1 AM−1
2 )(M2x) = M−1

1 b
ALRxLR = bLR

Right preconditioning is a general approach in applying GM-
RES. The preconditioned GMRES(m) algorithm has been
described in Figure 1

1) r0 = b−Ax0, k = 0, ρ = ‖r‖2, v1 = r0/ρ

g = ρ(1,0,0, ...) ∈ Cm+1

2) While ρ > errtol and k < m do
• k = k+1
• vk+1 = AM−1vk
• for j = 1, ...,k

– h j,k = vH
j vk+1

– vk+1 = vk+1−h j,kv j

• hk+1,k = ‖vk+1‖2
• vk+1 = vk+1/hk+1,k
• Apply and create Givens Rotations

– If k > 1 apply Qk−1 to the kth column of H
– v =

√
(|hk,k|2 + |hk+1,k|2)

– ck = |hk,k|/v; sk =−ηhk+1,k/v; η = hk,k/|hk,k|
hk,k = ckhk,k− skhk+1,k; hk+1,k = 0

– g = Gk(ck,sk)g
• ρ = |gk+1|

3) Set ri, j = hi, j for 1≤ i, j ≤ k
Set wi = gi for 1≤ i≤ k
Solve the upper triangular system Ryk = w

4) x = x0 +M−1Vkyk

Fig. 1. The preconditioned GMRES(m) algorithm for A ∈ Cnxn.

III. A NEW PRECONDITIONER

Due to slow convergence property of the iterative methods,
preconditioning is a vital ingredient for the solution process.
Any preconditioner should have the following fundamental
features.

• The construction and the storage of preconditioner should
not be expensive.

• The preconditioner should be a good approximation to
inverse of A.

• The preconditioned system should be easier than original
linear system to solve.

Preconditioners can be categorized as implicit and explicit
forms. M is defined as M = LU in implicit preconditioning
method. L and U are approximation of the exact L and U
factors. Incomplete factorization methods are represented as
implicit preconditioners, which are suitable for right precon-
ditioning.

A new incomplete LU based preconditioner is designed for
GMRES(m) in the solution of equation (13). Ye

D, which is
used in equation (13), can be decomposed into two parts: Ye

Dn
and Ye

Ds. Former is a constant part whereas Ye
Ds is a inconstant

part. If J1 is rewritten

J1 = Ye
N +Ye

D−JCJA
−1JB (16)

then substituting Ye
D as two parts into J1

J1 = Ye
N +Ye

Dn +Ye
Ds−JCJA

−1JB (17)

Equation (17) consists of two parts termed as respectively J11
and J12.

J11 = Ye
N +Ye

Dn

J12 = Ye
Ds−JCJ−1

A JB

By neglecting the J12 from J1 , the remaining part, J11, is used
as a new incomplete LU based preconditioner. The technique
is to decompose J11 to a lower and an upper triangular factors
and to use these factors as a preconditioner in GMRES(m)
method.

IV. TEST RESULTS

A 392-generator, 624-load, 2855-branch, 1169-bus system
was tested to study the performance of two different im-
plementations that cover the solution of equation (13) with
VDHN method by using LU direct method and Newton
method by using with preconditioned GMRES(m) method. A
three phase fault was used for the transient stability simulation.
The fault occurred at 0.4 seconds and was cleared at 0.6 sec-
onds. The total simulation time was 2 seconds. The integration
time step was 0.01 seconds. The GMRES restart parameter m
was 4 in the case of the 1169 bus system simulation. In table
I, these methods are compared in terms of total number of
Newton iterations and serial solution time. The total number
of Newton iterations in the LU based solution is bigger than in
the preconditioned GMRES(m) based solution. The usage of
VDHN method causes a decrease in the simulation time but at
the same time it leads to an increase in the number of Newton
iterations. In today’s large power systems, this approach can
pose a risk in terms of power system control. If equation
(13) is solved with an exact Newton method, the undesirable
increase of the total number of Newton iterations will not
happen. In this situation, Exact Newton with LU method
brings a slower solution for transient stability simulation. To
prevent a slowdown in the solution time, Newton method with
preconditioned GMRES(m) method was used in the solution
algorithm. Both the quality of the preconditioner and the initial



TABLE I
THE COMPARISON OF LU BASED AND PRECONDITIONED GMRES(M)

BASED LINEAR SOLVER.

1169 bus LU preconditioned GMRES(m)

system based based

Newton iterations 570 528

Simulation time (seconds) 6.56 6.77

guess for the GMRES(m) method determine the number of
GMRES iterations for each Newton iteration at each time
step in the time domain simulation. In table II, the maximum
number of GMRES iterations taken in any one of the Newton
steps is given for three different periods, which are pre-fault
period, fault period and post-fault period.

TABLE II
THE MAXIMUM NUMBER OF GMRES ITERATIONS FOR THE 1169 BUS

SYSTEM.

Period GMRES maximum iterations

Pre-fault 1

Fault 3

Post-fault 3

V. CONCLUSION

In this paper, a simultaneous implicit method was used to
simulate power system transient stability behavior. The core
of this approach is the solution of the linearized equations
via Newton’s method. A VDHN method with LU factoriza-
tion is popular in commercial simulation packages due to
the typically faster solution process. However, convergence
problems could cause the VDHN method to slow down. This
paper presented an alternative approach with an exact Newton
method and GMRES. The advantages over the VDHN method
are that the simulation time does not increase significantly,
while eliminating the potential for convergence problems. A
new incomplete LU based preconditioner was designed to
satisfy the simulation time constraint. For the 392-generator,
624-load, 2855-branch, 1169-bus system, it was observed that
the proposed approach can be better than the VDHN method
for large scale power systems.
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