Paper accepted for presentation at the 2011 IEEE Trondheim PowerTech

Power Flow Using Thread Programming

Hasan DAG
Dept. of Information Technology,
Kadir Has University,
Istanbul, 34083, Turkey
E-mail: hasan.dag@khas.edu.tr

Abstract—Power flow problem, which is one of the most
important applications in power system, is solved using OpenMP
Application Program Interface (API), a thread based program-
ming technique for the shared memory programming environ-
ments. The parallel implementation of power flow is tested on
a shared memory machine with cache-coherent non-uniform
memory access (ccNUMA) architecture. Results are presented
for various power test systems. The thread programming based
power flow program decreases the runtime substantially.

OpenMP lets a user concentrate on his/her own work rather
than the parallel programming details. OpenMP is a set of
compiler directives and requires minimal knowledge regarding
parallel programming. It can easily be used not only on the
shared memory systems but also on the systems with hyper
threading and multi-core technologies as well. Thus, speeding
up any kind of power system related study is now viable without
having to have expensive parallel computers and extensive experi-
ence on theirs programming. Since todays’ and future personal
computers and servers will mostly be based on the multi-core
technologies the proposed method is an alternative to hard-coded
parallel programming.

[. INTRODUCTION

The power flow problem is a well known application in
power systems. It is necessary for control of an existing
system. It is used for obtaining the power system information
in terms of bus voltages and line flows for a given load,
generation, and network configuration. Bus voltages and line
flows can then be used amongst many other studies for both
analyzing the transient stability and for the observation of the
state of the power system at hand. One of the most important
power system problems is the dynamic stability problem, of
which transient stability constitutes one part. Speeding up
the transient stability analysis close to real-time for on-line
purposes has been a desire but both the cost of the computing
hardware and the difficulties of parallel programming have
limited the process. Though there have been many attempts
to parallelize the transient stability problem with considerable
successes [1], [2], [3], [4], [5], the efforts have not reached to
a point where the problem can be solved on-line in real-time.

Since power flow, which is simply a set of non-linear
equations f(x) = 0 to be solved for an z* such that f(z*) = 0,
is the base for most of the power system related studies, there
have been a lot of work either to parallelize or somehow to
come up with a new formulation using characteristics of power
system to get a solution in shorter time as well [6], [7], [8],
[9], [10], [11], [12]. Due to the recent development in the

978-1-4244-8417-1/11/$26.00 ©2011

Giirkan SOYKAN
Informatics Institute
Istanbul Technical University,
Istanbul, 34469, TURKEY
E-mail: gurkan.soykan@be.itu.edu.tr

area of high-performance computing technology, the parallel
programming is one of the ways to decrease the runtime
of the power flow. There are mainly two different parallel
programming models, which are message passing and threads,
to parallelize the power flow. Latter one is used on shared
memory or multi-core systems.

The goal of this study is to show that the parallelization of
the power system studies in general but that of power flow
problem in specific using OpenMP directives on the shared
memory multiprocessor architectures not only can lower the
computing time appreciably but it can also simplify the
parallel processing work. Additionally, there is really no need
for a super computer. The parallelization exploiting thread
programming techniques can be done using PCs with more
than one processor, which are common on todays servers
even on desktops and laptops. Moreover, multi-core technolo-
gies are promising for thread programming usage. Taking
full advantage of these technologies requires multithreaded
implementation for any kind of power system studies.

II. POWER FLOW PROBLEM

Power flow problem is defined as the calculation of bus
voltage magnitudes and bus voltage angles in a given power
system. The solution of the problem corresponds to the steady
state of the system at hand. For any network, which is
composed of n buses, the following equation can be written
as

YV=1I (1)

where Y is the bus admittance matrix, V is the voltage
vector and [is current injection vector. Moreover, the current
injection for any bus can be represented

- P+ 7Qq)”
I = %)

Vi
where P; is real power injection at bus i,); is reactive power
injection at bus i and V;* is conjugate of bus voltage at bus i.
Substituting (1) into (2), the power flow equations are obtained
as

n
Vi Y Yae T e I i= 1 (3)
k=1

P+ 3Q; =

One can split (3) as:

Pi=Viy YaVicos(0; — Op — o) i=1---n (4)
k=1

Qi =Vi Y YigVisin(0; — Op — i) i=1--n (5)

k=1

where V; and Vj, are voltage magnitudes at bus ¢ and bus £,
0; and 0}, are voltage angles for these buses. Y;i Za;y is the
(ik)t" element of the bus admittance matrix. When (4) and (5)
are rewritten as mismatch equations, the following equations
are obtained.

0=AP =P+ V; Y _ YipVicos(b; — O — i) (6)
k=1

0=AQ;=-Q;+V; Z Y Viesin(0; — 0 — i) @)
=1

For each bus, there are two equations with four variables: bus
real power, bus reactive power, voltage magnitude, and voltage
angle. Two of these variables should be specified to solve the
power flow problem. The system buses are categorized into
three types: slack bus, PV bus, and PQ bus. Active and reactive
powers are specified for a PQ bus. Active power and voltage
magnitude are specified for a PV bus. For a slack bus, which is
also called as a reference bus, voltage magnitude and voltage
angle are specified. In this situation, if the system has (n-1)
PQ buses and a slack bus, the number of unknowns, hence the
number of power flow equations, are 2(n-1).

The Newton Raphson method is generally preferred due to
its quadratic convergence to find a solution for the nonlinear
equations. While using the Newton Raphson method in power
flow problem, the linearization of the power flow equations
produces a linear set of equations of the form,

3 A0 | | AP
AV | | AQ
with a Jacobian of the following structure:
T OAP, .. OAPy, 9AP; OAPy 1
905 90, oVa v,
OAP, OAP, OAP, OAP,
— 90 00 IV v,
J=1| 9Ad, 0ab, 097G, NG,
802 8971 6V2 a‘/n
OAQ, 0AQ, 0AQ, 0AQy,
L o0, 90, oV, ov,

The compact notation of the Jacobian

OAP OAP
I=| &Ky Ao }
90 oV

consists of four submatrices, each of which shows the partial
derivatives of mismatch equations w.r.t. state variables. AP,

AQ, AV, and A6 are defined as

A AV,
Afs AV3
A = . , AV = .
| Af, AV,
i APQ AQ2
APg AQS
| AP, AQ,
and the unknown variables can be updated by
AG; = OF T — gF (8)
AV, = VI v ©)

This linear system of equations is solved by either a
direct method or by an iterative method. In this study, LU
factorization based direct method is used to find the solution
of the linear system. For each Newton Raphson step, L and
U matrices are recomputed. Therefore, the LU factorization
of the Jacobian matrix is the most time consuming stage of
every Newton iteration.

III. THREAD PROGRAMMING WITH OPENMP

In the last decade, the CPU architectures have changed
drastically. They are classified mainly as multiprocessor, hy-
perthreading technology, and multi-core in the development
stage. Fig. 1 shows the configuration of each approach. To
compare these developments, dual processor and dual core
are used in this figure. Dual processor architecture acts as
shared memory. Due to the development of CPU architec-
ture, thread programming is a current issue in programming
techniques. Thread programming is defined as code threading,
which breaks up a programming task into subtasks. Each
subtask is called a thread”. Threads run simultaneously and
independently. Thread programming essentially makes use
of computing of CPU technologies. This necessity increases
enormously by the advent of multi-core processors [13].

Hyperthreading
Technology

Dual Processor Dual Core

Processor Side Bus Processor Side Bus Processor Side Bus

CS: CPU State, EU: Execution Units, IL: Interrupt Logic

Fig. 1. CPU Architectures [13]

Posix threads and OpenMP are generally used as thread
programming techniques on a computer that has shared mem-
ory based architecture. The advantage of low level posix
threads is that it has more flexibility in creating and in killing

of threads. However, it is harder to implement on parallel
environments. OpenMP is a de-facto standard and high level
programming language, which makes it easier to use for
scientific applications [14].

OpenMP is a set of compiler directives and has became
a parallel programming standard implemented on the shared
memory architectures. The most popular distinctive features
of it are being thread based and having explicit parallelism.
The compiler directives are used for the construction of the
parallel regions. They create threads in a given sequential
program. Every OpenMP program begins as a single process
that is a thread. This is called master thread and it executes
the rest of the program sequentially until it encounters the
first parallel region construct. At the beginning of the parallel
region multiple threads are created according to the number of
available processors or cores. Each thread has a thread number,
which is an integer from O to the number of threads minus one.
0 shows the master thread. If any thread terminates within a
parallel region, all threads in that region will terminate. The
number of threads which will be used in the parallel region,
can be controlled by using of the omp_set num_threads()
library function or setting of the omp_num_threads environ-
ment variable. It is important that one of them still behaves
as the master thread. At the end of this parallel region all
threads are terminated except the master. This type of model
is described as the fork-join model. It is shown in Fig. 2.
Fig. 3 also demonstrates OpenMP general code structure in
C programming language. It simplifies loop level parallelism.
In Fig. 3, private and shared are data scope clauses of an
OpenMP directive. private(varl) means that each thread has
its own copy of the varl variable in the parallel region
whereas, shared(var2) demonstrates that the var2 variable is
shared among all threads in the parallel region. That is, each
thread access the same memory locations for var2. The shared
memory architectures provide loop level parallelism without
decomposing data structures [15].

Thread-0 i Thl::ad-O 3
(Master) I ! Thread-0
N | Thread-1 | R
| 1
| 1
\L | Thread-2 i l
| > i
Serial Region . - /' Serial Region
Parallel
Region

Fig. 2. Fork-Join model

OpenMP consists of the following directive types: parallel
region construct, work-sharing constructs, combined parallel
work-sharing constructs, synchronization constructs, and data
environment [16].

OpenMP API exploits thread-level parallelism, which leads
to its widespread use. It is not only used on shared memory
multiprocessor architectures but also on-chip multiprocessor
and on Pentium and Itanium architectures, for which compiler

#include <omp.h>
/*Beginning with master thread*/
main() {

int varl, var2;

/*Beginning of parallel region. Fork a team of thread,
workers and master */
#pragma omp parallel private (varl) shared (var2) {
#pragma omp for
for(;;5) {

} /* All threads join master thread and end of parallel
region */

A Y 4

/*Resume serial code and master thread*/

}
Fig. 3. OpenMP general code structure

and runtime support for OpenMP API is available and on
multi-core architectures [17], [18], [19].

IV. AN OPENMP BASED NEWTON POWER FLOW

The Newton power flow solution consists of the following
steps:

Algorithm 1
1: Read line and bus data from a file
Initialize the bus voltage (OMP)
Construct the bus admittance matrix
Calculate the bus powers (OMP)
Calculate power mismatches (OMP)
Check the convergence of the Newton method. If the
convergence criterion is met, stop the iteration. If not go
to Step 7.
7: Compute the elements of Jacobian matrix (OMP)
8: Compute LU factorization of Jacobian matrix and solve
the linear system to find the voltage corrections (OMP)
9: Compute the new bus voltages (OMP) and return to the
Step 4.

A A

In the Algorithm 1, OMP indicates that the OpenMP direc-
tives are used in that step. The execution time of power flow
solution reduces by using loop-level parallelism in this algo-
rithm. To achieve loop-level parallelism, parallel for directive
can be used in the algorithm. However, in our implementation,
a parallel directive and a for directive, which is a work-
sharing directive, as shown Fig. 4 are used instead of parallel
for directive as shown Fig. 5. If several loops are needed to
parallelize consecutively, one parallel region is created for all
of them. Then, before each loop, for directive is written to
execute the loop in parallel. This implementation brings about
decreasing the execution time. In step 7, reduction clause
is used with for directive. This clause allows safe global
summation for a variable in the parallel region.

In order to find the voltage corrections in step 8, LU
factorization of Jacobian is obtained and the system of linear

4 M

#pragma omp parallel private(i)

{

#pragma omp for
for(i=0; i<N; i++) {

H
#pragma omp for
for(i=0; i<N; i++) {

H

#pragma omp for
for(i=0; i<N; i++) {

)
- J

Fig. 4. The usage of a parallel and a for directives to parallelize three loops

s B

#pragma omp parallel for private(i)
for(i=0; i<N; i++) {

i

#pragma omp parallel for private(i)
for(i=0; i<N; i++) {

H

#pragma omp parallel for private(i)
for(i=0; i<N; i++) {

\- })

The usage of a parallel for directive to parallelize three loops

Fig. 5.

equations is solved. In our implementation, the linear algebra
routines from Sun Performance Library are used to achieve
Step 8. These routines consists of Blas Level 3 and Lapack
[20]. This library is a highly tuned shared memory parallelized
library. In virtue of this parallel property, the routines from the
library are preferred in this implementation.

V. TEST RESULTS

To show the effectiveness and ease of use of OpenMP, we
apply it to power flow problem using some of the standard test
systems and some synthesized systems. All simulations are
conducted on a SunFire 12K high-end-server, which has 16-
900 MHz and 16-1200 MHz Ultra-SPARC III Cu processors
with a total of 64 GB RAM on a shared memory architecture.

The optimized sequential power flow code is parallelized
using OpenMP directives. We do not employ sparse matrix
techniques for the power flow problem and we use Sun
Performance Library when solving the Az = b system as
part of the Newton-Raphson method. For the rest of the
problem, OpenMP directives are inserted into the serial code to
parallelize. Test networks used are some IEEE standard test

cases (118 and 300 buses) and some synthesized networks
(686, 864, 1400 and 1944 buses) [10].

The performance of parallel implementation is denoted by
speedup which is the ratio of the runtime of the serial solution
to that of the parallel solution. The value of speedup, Spd,
is expected to be between O to n, which is the number of
processors used. IEEE standard test cases results are left out
from table because they are not big enough to show the
performance of parallelization. Parallel power flow speedup
results are shown in Table I.

TABLE I
ABSOLUTE SPEEDUP FOR DIFFERENT TEST CASES

Number of Processors
Case Name 2 4 8
SYN686 1.67 | 2.61 3.66
SYN864 1.67 | 2.83 4.28
SYN1400 1.82 | 3.12 5.13
SYN1944 1.85 | 3.36 5.67

In addition to speedup, parallel efficiency can also be used
to show the performance of parallel implementation. For n
processors case, it is defined as:

Spd

E=—.
n

(10)

The value of efficiency is expected to between O to 1. The
parallel efficiency is affected by the amount of overhead. The
overhead, due to OpenMP constructs, depends on the number
of processors used [21]. When the number of processors is
increased, the overhead also increases. The increased overhead
leads to a decrease in parallel efficiency. Parallel efficiencies
for our implementation are given in Table II.

Table II shows that when the problem is kept constant but
the number of processors is increased the efficiency decreases
as well. This is due to overheads, such as thread creation,
collection of results, process id checking etc. Much larger
systems need to be solved in order to utilize processing units
at hand with larger efficiencies.

TABLE II
EFFICIENCY FOR DIFFERENT TEST CASES

Number of Processors
Case Name 2 4 8
SYN686 0.84 | 0.65 0.46
SYNS864 0.84 | 0.71 0.54
SYN1400 091 | 0.78 0.64
SYN1944 093 | 0.84 0.71

Fig. 6 is plotted using Table I. It shows how the size of test
system affects the performance of parallel power flow. The
speedup is getting closer to the ideal speedup for large cases.

VI. CONCLUSION

The results show that the parallelization of the Newton-
Raphson power flow using OpenMP directives is quite ef-
fective. This work was performed on a shared memory mul-
tiprocessor architecture. However, the Pentium and Itanium

Absolute speedup

8 T T T T T T
SYN1944 ——
SYN1400 -------
2L SYN864 |
SYN686 ------
6 - -
5 - 4
4+ |
3 - 4
2 - -
1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9

The number of processors

Fig. 6. Absolute speedup factors

architectures also provide the same opportunity. Nowadays,
because of rapid growth of the usage of multi-core processors
in current computers, the usage of OpenMP API is the simplest
parallel techniques to reveal the compute power of processors.
Therefore, the Intel C++ and Fortran compilers, which support
the OpenMP directives on Linux and Windows platforms,

can

be used to solve power flow problem. Hence, low-cost

parallelization of other types of power system studies, such
as contingency analysis, state-estimation, transient stability
analysis etc., is now possible. Low-cost refers to the cost of
both hardware and human power (programming effort).

(1]

[2]

[3]

[4]

REFERENCES

D. J. Tylavsky, A. Bose, F. L. Alvarado, R. Betancourt, K. Clements,
G. Heydt, G. Huang, M. Ilic, M. LaScala, M. Pai, C. Pottle, S. Talukdar,
J. VanNess, F. Wu, “Parallel processing in power system computation,”
IEEE Transactions on Power Systems, vol. 7, no. 2, pp. 629-637, May
1992.

M. A. Pai, P. W. Sauer, A. Y. Kulkarni, “A preconditioned iterative solver
for dynamic simulation of power systems,” International Symposium on
Circuits and Systems, pp. 1279-1281, April/May 1995.

M. A. Pai, A. Y. Kulkarni, “A simulation tool for transient stability
analysis suitable for parallel computation,” 4th IEEE Conference on
Control Applications, pp. 1010-1013, September 1995.

A. Padilha, H. Dag, F. L. Alvarado, “Transient stability analysis on
newtork of workstations using PVM,” The 4th IEEE International
Conference on Electronics Circuits and Systems, December 1997.

(51

(6]

[7

—

[91

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

J. Shu, W. Xue, W. Zheng, “A parallel transient stability simulation for
power systems” IEEE Transactions on Power Systems, vol. 20, no. 4,
pp. 1709-1717, November 2005.

J. Q. Wu, A. Boje “Parallel solution of large sparse matrix equations
and parallel power flow” IEEE Transactions on Power Systems, vol. 10,
no. 3, pp. 1343-1349, August 1995.

A. Semlyen, F. de Leon, “Quasi-newton power flow using partial
jacobian updates,” IEEE Transactions on Power Systems, vol. 16, no. 3,
pp. 332-339, August 2001.

F. Tu, A. J. Flueck, “A message passing distributed memory parallel
power flow algorithm,” IEEE Power Engineering Society Winter Meet-
ing, vol. 1, pp. 211-216, January 2002.

F. de Leon, A. Semlyen, “Iterative solvers in the newton power flow
problem:preconditioners, inexact solutions and partial jacobian updates,”
IEE Proceedings Generations Transmission and Distribution, vol. 149,
no. 4, pp. 479-484, July 2002.

H. Dag, A. Semlyen, “A new preconditioned conjugate gradient power
flow,” IEEE Transactions on Power Systems, vol. 18, no. 4, pp. 1248—
1255, November 2003.

Y. Chen, C. Shen, “A jacobian-free newton-GMRES(m) method with
adaptive preconditioner and its application for power flow calcula-
tions,”IEEE Transactions on Power Systems, vol. 21, no. 3, pp. 1096—
1103, August 2006.

Y. Zhang, H. Chiang, “Fast newton-FGMRES solver for large-
scalepower flow study,” IEEE Transactions on Power Systems, vol. 25,
no. 4, pp. 769-776, May 2010.

C. Szydlowski, “Multithreated technology and multi-core processors,”
infrastructure Processor Division Intel Corporation, 2005 May 01.

M. Bull, “An introduction to openmp,” Hpc - Europa Surgery Presenta-
tion at HLRS, 2006 February 25.

L. Dagum, R. Menon, “ Openmp: An industry-standard api for shared -
memory programming, ” IEEE Computational Science and Engineering,
vol. 5, no. 1, pp. 46-55, May 1998.

R. C. et al., Parallel Programming in OpenMP. London: Academic
Press, 2001.

M. Sato, “Openmp : Parallel programming api for shared memory multi-
processors and on-chip multiprocessors,” 15th International Symposium
on System Synthesis, pp. 109-111, October 2002.

M. G. X. Tian, S. Shah, D. Armstrong, E. Su, P. Petersen, “Compiler and
runtime support for running openmp programs on pentium- and itanium-
architectures,” Proceedings of the Eighth International Workshop on
High-Level Parallel Programming Models and Supportive Environments,
pp. 47-55, April 2003.

C. Terboven, D. an Mey, S. Sarholz, “Openmp on multicore architec-
tures,” Proceedings of the 3rd International workshop on OpenMP:A
Practical Programming Model for the Multi-Core Era, pp. 54—64, June
2007.

R. V. D. Pas, “Course notes,” 2003, notes in Sun high performance
education in Istanbul Technical University.

A. Prabhakar, V. Getov, B. Chapman, “Performance comparisons of ba-
sic OpenMP constructs,” Lecture Notes in Computer Science, vol. 2327,
pp-293-296, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

