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Abstract—This paper presents an iterative scheme for joint
timing acquisition, multi-channel parameter estimation, and
multiuser soft-data decoding. As an example, an asynchronous
convolutionally coded direct-sequence code-division multiple-ac-
cess system is considered. The proposed receiver is derived within
the space-alternating generalized expectation-maximization
framework, implying that convergence in likelihood is guaranteed
under appropriate conditions in contrast to many other iterative
receiver architectures. The proposed receiver iterates between
joint posterior data estimation, interference cancellation, and
single-user channel estimation and timing acquisition. A Markov
Chain Monte Carlo technique, namely Gibbs sampling, is em-
ployed to compute the a posteriori probabilities of data symbols
in a computationally efficient way. Computer simulations in flat
Rayleigh fading show that the proposed algorithm is able to handle
high system loads unlike many other iterative receivers.

Index Terms—Expectation maximization algorithms, multiac-
cess communication, Monte Carlo mthods.

I. INTRODUCTION

I N practical wireless communication systems, signals are
affected by physical phenomena such as time-varying

channels, frequency-selective fading, multiple access interfer-
ence, non-Gaussian noise, and loss of synchronization. In a
parametric model, the received signal is represented as a func-
tion of unknown complex channel coefficients and transmission
delays which, if perfectly known at the receiver, would improve
the quality of data symbol estimation by the receiver.

For situations in which the channel parameters are known to
the receiver, Giallorenzi and Wilson derived in [1] the max-
imum-likelihood (ML) data sequence decoder for a convolu-
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tionally coded multiuser system. Its computational complexity,
however, grows exponentially with the number of users and
constraint length, so that a real-time implementation in a dig-
ital signal processor is impossible even for small numbers of
users and small constraint lengths. For code-division multiple-
access (CDMA) systems, Alexander et al. [2] view the con-
catenation of direct-sequence spreading with the asynchronous
multiple-access channel as a special form of a convolutional
code. Following the “turbo principle” [3], the resulting inner
code (due to the spreading sequence) and the outer code (due to
the channel code) can be decoded in an iterative fashion by ex-
changing a posteriori probability (APP) information about the
data symbols. The overall bit-error performance of the receiver
has been shown to be near-optimum for heavily loaded systems
i.e., with loads larger than one, at a computational complexity
that makes its implementation feasible. In Wang and Poor [4],
a soft-input soft-output (SISO) multiuser estimator and a bank
of single-user (SU) channel decoders exchange extrinsic (EXT)
information about the code symbols. For direct-sequence (DS)
CDMA with random spreading, the latter choice is optimum in
the large-system limit [5]. For systems with finite numbers of
users and finite interleaver sizes there are cases in which the SU
channel needs APP values about the code symbols [6].

In turn, the ML or the maximum a posteriori proba-
bility (MAP) delay estimator turns out to be a delay-locked
loop (DLL), provided the data symbols, carrier frequency, and
phase are known [7].

When the channel, symbol timing, and data are unknown,
an often used approach is to iterate among timing acquisition,
channel estimation, interference cancellation and single user
decoding [8]–[10]. Convergence of the overall receiver cannot
be guaranteed as the parameters are estimated in a heuristic
fashion. An optimal receiver that jointly estimates the nuisance
parameters and the data symbols of all users at polynomial com-
putational complexity is sought.

The expectation maximization (EM) and space alternating
generalized EM (SAGE) algorithms are iterative methods
that approximate the maximum likelihood solution. Under
certain mild conditions, convergence in likelihood is guaran-
teed [11], [12]. This approach was first applied to multiuser
detection in [13], and later generalized in other works (e.g.,
[14]). For synchronized reception, the EM and SAGE receivers
in [15] iterate among multichannel estimation, interference
cancellation, and (hard) data decoding. Given the channel
coefficients and treating the unknown transmission delays as
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nuisance parameters, the EM receiver in [16] iterates between
synchronization and maximum-likelihood sequence detection
(MLSD) such as the Viterbi algorithm [17]. For the estimation
problem at hand, the delay estimation problem is nonlinear.
The delay-estimation problem becomes multi-linear when a
multi-resolution expansion is applied to the received signal
instead [18]. In contrast, when the roles of estimation parameter
and nuisance parameters are interchanged, the EM receiver in
[19] iterates between single-user a posteriori data decoding,
such as the Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm [20],
ML channel coefficient estimation and timing acquisition.
Straightforward extension of [18] to multiuser transmission,
however, results in an algorithm consuming a nonpolynomial
number of operations in the number of users. To overcome this
problem, Iltis et al. consider in [21] the product of (uncoded)
data and channel coefficients as estimation parameters and the
users’ transmission delays as nuisance parameters. Monte Carlo
simulations in Rayleigh fading for slightly loaded systems, i.e.,
with loads less than one, indicate that the proposed EM receiver
is robust to channel estimation errors.

This paper presents a novel algorithm for joint multiuser
soft-decoding, multichannel estimation, and synchronization
based on the SAGE framework at polynomial computational
complexity. To meet this challenge, we adopt Bayesian Monte
Carlo methodologies in the SAGE framework. Here, an efficient
Markov chain Monte Carlo (MCMC) technique [22] called
Gibbs sampling [23] is used to compute the expected log-APPs
of all the users’ data symbols exactly in an adaptive fashion.
Direct computation of these APPs involves a nonpolynomial
number of floating point operations (FLOPs). In contrast to
other MCMC techniques, such as the Metropolis–Hastings
algorithm, the Gibbs sampler does not require calibration, its
convergence rate is higher in the low SNR-regime, and the
acceptance probability is always one. In the limiting regime,
these Monte Carlo EM/SAGE algorithms and their standard
counterparts have the same convergence properties [24].

The rest of the paper is organized as follows. Section II
presents the system model. As an example we consider
DS-CDMA transmission. Section III provides background
information on the SAGE and the Monte Carlo SAGE al-
gorithms and the derivation of the latter for joint estimation
of coded data, channel coefficients, and transmission delays.
Implementation issues such as initialization are discussed in
Section III-E. The performance of the proposed scheme is ana-
lyzed in Section IV. We investigate the convergence rate, derive
a modified Cramér–Rao bound for the estimated parameters,
and give numerical examples.

Notation: In the following, the superscripts and de-
note conjugate and conjugate transpose, respectively, of the ar-
gument; and denote the real and imaginary parts of a
complex argument, respectively. Column vectors and matrices
are represented by boldface lowercase and uppercase letters, re-
spectively; denotes a column vector with the elements
in the argument as its entries. The symbol denotes the

-dimensional all-zero matrix; whereas represents the
identity matrix of size . Finally, is an indicator func-
tion that takes the value 1 if its argument is true and the value 0
otherwise.

II. SYSTEM DESCRIPTION

We consider an asynchronous convolutionally coded
DS-CDMA system with active users. The information bit se-
quence of user is encoded with a user-in-
dependent encoder of rate , mapped into the data sequence

, , , fed
into the user specific symbol interleaver with interleaving
depth , and multiplexed with random preamble symbols.
Hence, the block length equals symbols. Each
interleaved symbol is then modulated with a time-varying
random signature waveform of duration , such that each
symbol consists of chips with duration where

is an integer, and transmitted over a quasi-static flat block
fading channel. Notice that the average number of information
bits per code symbol is . The received
signal is the noisy sum of all users’ contributions, delayed
by the propagation delays , where the subscript

denotes the label of the th user. After down-converting
the received signal to baseband and passing it through an
integrate-and-dump filter with integration time ,

, samples over an observation frame of
symbols are stacked into a signal column-vector . Assuming
that sampling is chip-synchronous without knowledge of the
individual transmission delays, the vector can be expressed as

(1)

In this expression the matrix contains
the signature sequences of all the users:

where has the form

and the spreading code vector is
given by

The vector contains the sampled
spreading code of user in signaling interval with en-

ergy . The diagonal channel matrix
in (1) is given by with

. The th user’s channel coefficient is assumed
to be a circularly symmetric complex Gaussian random variable
with zero mean and variance , and its transmission delay is
assumed to be uniformly distributed. The code symbol vector

takes the form , where the
vector contains the th user’s code symbols, i.e.,

with denoting
the symbol transmitted by the th user during the th signalling
interval. Finally, the column vector contains
complex, circularly symmetric white Gaussian noise having
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covariance matrix . We assume that the vectors
, , and

and their components are independent. The receiver does not
know the data sequences, the (complex) channel coefficients,
or the transmission delays.

III. MONTE CARLO SAGE JOINT PARAMETER ESTIMATION

A. Motivation

The task is to obtain a model-based estimate of an (unob-
served) parameter vector given some observed vector with
joint probability density function (pdf) . In this case, the
MAP point estimate of yields

When the model includes latent variables, it is often impossible
to determine the MAP-estimate in closed form. We therefore
resort to suboptimal methods.

B. The SAGE Algorithm

In previous applications, the SAGE algorithm has been exten-
sively used to iteratively approximate the maximum-likelihood
(cf. [25]) and MAP (cf. [26]) estimates of a continuous-valued
parameter vector with respect to observations . In the SAGE
algorithm, only the parameter components in a subset of ,
indexed by , are updated. The remaining parameter compo-
nents of , indexed by the complement of , are not re-es-
timated. The SAGE algorithm postulates the existence of some
hypothetical discrete-valued data that would aid in the esti-
mation of but is not part of . The data is said
to be admissible hidden with respect to [25]. Given the cur-
rent th estimate , the so-called expectation (E)-step computes
the -function

(2)
Then, the maximization (M)-step seeks to find the
estimate

The objective function is nondecreasing at each iteration. Notice
that the computational complexity of the E-step in (2) is still
NP-hard due to the discrete nature of unless the problem has
special structure that alleviates this complexity.

C. The Monte Carlo SAGE Algorithm

To make the computation of the expectation in (2) feasible,
we propose to use the MCMC technique to obtain the so-called
Monte Carlo SAGE algorithm (cf. [24]). MCMC is a statistical
technique that allows generation of a large number of er-

godic pseudo-random samples from the current

approximation to the conditional pdf at SAGE
iteration . These samples are used to approximate the expecta-
tion in (2) by a sample-mean.

Widely used MCMC algorithms are the Metropolis-Hastings
algorithm [27], [28] and Gibbs sampling [29]. Here, we con-
sider only the latter, mainly because of its faster convergence
rate [29]. Suppose that the dimension of is .
Having initialized randomly, the Gibbs sampler iterates
the following loop:

for

for

Draw sample from

;

Compute ;

end

end

The first “burn-in” samples are not taken into account.
From the strong law of large numbers, it follows under mild
conditions on the th entry of that [30]

with probability one. Following this approach, the Monte Carlo
E-step yields

D. Receiver Design

We now return to the specific model of (1). To obtain a SAGE-
based receiver architecture that iterates between soft-data and
channel estimation, one might choose the parameter vector to
be .
At iteration , the parameters for user
are updated. For the observation , it can easily be shown
that is admissible hidden for .

We start with the log-likelihood function

(3)

From (1), it follows that

(4)

where .
1) The Q-Function: Substituting (4) into (3) yields after

some algebraic manipulations for the E-step in (2):

with the branch definition

(5)
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the interference term

the soft-data symbols

(6)

and the soft-product of two data symbols

(7)

, where the lag is within the range .
2) Monte-Carlo Implementation of the Symbol a posteriori

Probabilities: For simplicity of notation, let denote the
vector containing the code symbols of all users but those of user

i.e., . The APPs of in (6) can be evaluated as

(8)

. Incorporating the code’s trellis, the conditional
probability may be written as

(9)

The normalization constant is resolved from the boundary
condition .
Suppose, the th user’s symbol interleaver implements the per-
mutation function , with .
Conversely, the th user’s symbol de-interleaver implements the
reverse function , with , . Then,
from (4), the logarithm of the transition probability in
(9) from state at time instant to state at time instant

is given by

with the interference term

(10)

at sample index . For notational simplicity, we have defined
. The “forward“ and “backward” prob-

abilities in (9) are given by and
, respectively, with boundary con-

ditions [20]

.

Moreover, in (9) is the set of state pairs in the trellis
such that . Notice that the algorithm in (9) computes
APP values for the coded data symbols while the BCJR algo-
rithm in [20] provides APP values for the uncoded information
bits.

Having computed the sequence of probabilities
, , the Gibbs sampler draws

the vector , computes the corresponding indicator func-
tions in (8) at epoch for the sequence , and sets .

3) Monte-Carlo Implementation of the Joint Symbol a poste-
riori Probabilities: Direct computation of the joint APPs in (7)
for the interleaved symbols and is infeasible, as the
receiver does not have access to the state information at joint
signaling interval and .

To obtain a guess of the joint APPs though, (7) is first ex-
panded as

.

(11)

Then the Gibbs sampling theorem is applied to approximate the
conditional APP in (11) given the user constraints only, plus the
single-user APP given the code constraints. The latter we al-
ready have solved in (8). We will see that above method sup-
ports very high system loads.

For ,

(12)

, , and .
Incorporating the user constraints only, the conditional symbol
posterior in (12)
can be factored as

(13)
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Fig. 1. Joint trellis for two uncoded users � and � in the Monte Carlo SAGE
scheme with � � � � � .

The normalization constant results from the boundary condi-
tion .

The definition of the probabilities , , and is analogous to
that of , , and in Section III-D-2). From (4) and the block-
diagonal structure of , the logarithm of the transition
probability in (13) yields

Note that the interference term , defined in (10), depends
on the sample index , while does not i.e.,

(14)

For the problem at hand, the trellis has five states
, , and 16 state transitions denoted

by

(15)

as shown in Fig. 1. Notice that the system is causal.
For , the statements (12)–(15) are the same but with

interchanged indexes and .
From the sequence of joint probabilities

, in (11), the Gibbs sampler
draws the matrix with

as its th row,
and computes the corresponding indicator functions in (12) at
epoch .

When no symbol interleavers are present, the MCMC imple-
mentation of the joint APPs in (11) yields

(16)

Fig. 2. Joint trellis for two coded users � and � with � � � � � and � �
�� � �.

and . The computa-
tion of (16) requires the evaluation of the joint probability

which again
can be factored as

where is the set of state pairs in the joint
trellis so that . The joint trellis

for the user and user codes is the Shannon-
product of the individual trellis [31]. The normaliza-
tion constant results from the boundary condition

.

The definition of the probabilities , , and is similar to that
of , , and in Section III-D-2). Exploiting the block-diag-
onal structure of again, it follows for the logarithm
of the transition probability that

.

The interference terms and are defined in (10)
and (14), respectively. The joint trellis is illustrated in Fig. 2
for two users and with generator matrix in
octal notation. The trellis has 16 states with

denoting the state of user at time interval in binary
notation, , and 64 state transitions denoted by

. It can be clearly seen that
incorporates user and coding constraints.
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4) The M-Step: The M-step of the SAGE algorithm is re-
alized by first maximizing (5) with respect to the transmission
delays :

(17)

Then by inserting (17) into (5), taking derivatives with respect
to the ’s, setting the results equal to zero, and solving yields

(18)

5) Uncoded Transmission: To obtain a low-complex Monte
Carlo implementation of the SAGE scheme, when channel
coding is not present i.e., , samples from the symbol
posterior with ,
can be used to approach the APP in (6), i.e.,

(19)

After some algebra, the symbol posterior can be expressed as

(20)

with the interference term defined in (10). Similarly, the
joint symbol posterior [4]

with can be used to approximate the APP
in (7) according to

(21)

To evaluate (21), we need to compute the conditional probability
density

Fig. 3. Block diagram of the MCMC-SAGE scheme.

with the abbreviated notation

The APPs in (21) are given in (19).
According to (17) and (18), this so called MCMC-SAGE

scheme updates user at iteration . First, the
MCMC-SAGE scheme iteratively approaches the vector esti-
mate of the users’ data symbols and its measurement error
covariance matrix by using the Monte Carlo steps in (8) and
(12), respectively. Based on these new estimates, a guess of the

th user’s interference is computed and stripped away from the
received signal in (5). Then, the cleaned signal is fed into a cor-
relator bank that matches the input signal with time-shifted
versions of the th user’s signature waveform . The largest
output signal is selected by subsequent channel estimator pro-
viding and . A block diagram of the MCMC-SAGE
receiver is shown in Fig. 3.

E. Initialization

A user specific preamble of symbols, embedded in
every user’s data block, is used to initialize the MCMC-SAGE
scheme. Starting from and , the timing
and channel coefficients are updated alternatively according to
(17) and (18) in successive order until either convergence is
achieved or the number of stages is two. In one stage, every
user is updated once i.e., one stage corresponds to iterations.
The final parameter estimates are assigned to and
respectively. The initial estimate of the data vector is set
randomly.
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IV. PERFORMANCE ANALYSIS

A. Convergence Rate

The convergence rate affects both the length of the burn-in
period and the efficiency of the posterior estimation based on
Monte Carlo samples. Low convergence rate results in inac-
curate estimates in the empirical a posteriori probabilities and
joint a posteriori probabilities in (11) and (8), respectively, com-
puted by means of the Monte Carlo samples. In the following
subsections, the convergence properties of the MCMC algo-
rithms in general settings are established and a technique to
compute the convergence rate of the MCMC-SAGE scheme ex-
actly is given. Showing that the computations of the exact con-
vergence rate is mathematically intractable for practical cases,
an approximate technique is then presented to compute the con-
vergence rate based on Gaussian approximation which reduces
the computational complexity substantially.

1) Exact Convergence Rate of the Gibbs Sampler: We now
construct a Markov transition rule in the MCMC algorithm pre-
sented in Section III-C so that its limiting distribution is the de-
sired posterior distribution. For simplicity of notation we drop
the indexes and used for the SAGE iterations and for the user

, respectively. That is, is denoted by . For ease of ex-
position we also assume that the channel coding is not present.
However, the results can be easily extended to the coded case.

Let the ergodic pseudo-random samples
be generated by

the th user, as explained in
Section III-D, from a discrete-time Markov source,
where . The

distinct states of the Markov chain are denoted
by the -tuple ,

, and state
transitions of the chain are governed by the transition
probabilities ,

, from which an Markov
probability transition matrix is formed. We also
define the -step transition probability matrix as

where .
A Markov chain is said to be irreducible if its state space is

a single communicating class; in other words, if it is possible to
reach any state from other state. Formally, state is accessible
from state if there exists an integer such that .
Similarly, a Markov state is said to be aperiodic if the greatest
common divisor of the set is 1. That is the returns
to state can occur at irregular times. Clearly, if a state is
aperiodic and the chain is irreducible, then every state of the
Markov chain is aperiodic [32].

We now state the following convergence result without proof.
A proof can be found in [33]. Suppose a discrete-time Markov
chain is irreducible and aperiodic and , ,

denotes the th column vector of . Then for every ,
converges to the stationary probability distribution

geometrically. That is, there exist and
such that for ,

implying that . On the other hand can be

determined as follows. The Jordan decomposition [34] of the
Markov transition matrix is

(22)

where, is a nonsingular matrix and
’s with are referred to

Jordan blocks corresponding to , the
eigenvalues of , respectively. Since the transition probability
matrix is nonnegative, it is shown by the Perron–Frobenius
theorem [35] that the largest eigenvalue of is unity in absolute
value, that is , and has the multiplicity of one if
is irreducible and, furthermore, if is aperiodic.
It is clear from (1) that
and consequently as , the limit of approaches its
stationary distribution with convergence rate .

For the uncoded case, the transition probability matrix for
the Markov chain generated by the user , , can
be obtained from the Gibbs sampler as follows:

(23)

The conditional probabilities on the right-hand side of (23) are
given by (20). Notice that the computation of the transition ma-
trix in (22) is bounded by operations which makes a
practical implementation impossible. Hence, we rely on sub-op-
timal methods.

2) Convergence Rate of the Gibbs Sampler by Gaussian Ap-
proximation: Suppose no channel coding is employed. If we
assume that in (1) is approximately Gaussian with mean zero
and unit covariance matrix then is also multivariate
Gaussian with mean and covariance matrix . It can be easily
shown that and .

Under the Gaussian assumption the rate of convergence can
be obtained as follows [36]. Let where is
the lower triangular part of matrix , and is upper trian-
gular with null diagonal elements. Further, let
where . Then, it can be shown that the Markov
chain induced by the Gibbs sampling has a normal transition
density with mean and covari-
ance Thus, is a multivariate AR(1) process.
It follows that the rate of the convergence of the Gibbs sampling
algorithm is , the spectral radius of the matrix . An upper
bound to the spectral radius is given as follows. For each

where the Frobenius norm of a complex-valued matrix

is defined as . Consequently,

.

B. Modified Cramér–Rao Bound for the Estimated Parameters

The task is to derive the Cramér–Rao bound (CRB) on the
variances of any unbiased estimates of the parameter vector
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based on the observation . It is shown in [37] that for ,
, where is the Fisher

information matrix whose th component is defined by

As depends on the nuisance parameter vector , as well,
should first be averaged over the random data vector

i.e., . This task, however, is
cumbersome to solve. To circumvent this drawback, we resort
to the so-called modified CRB (MCRB) [38] that relies on the
definition of the modified Fisher information matrix

For the joint likelihood function in (4), one gets after some ma-
nipulation

(24)

. On taking the expectations with respect
to the data after taking the partial derivatives in (24) with
respect to and , for different regions of and values,
under the assumption that the data sequences are independent
and equally likely and the fact that , for

; , the modified Fisher infor-
mation matrix becomes diagonal whose th component can
be evaluated as

(25)

with the abbreviated notation
. The final result for the

MCRBs on the estimates of the channel coefficients and the
transmission delays is obtained by inverting the diagonal
matrix in (25) as follows:

(26)

(27)

. The Gabor bandwidth of the th user’s
spreading code waveform, , is given by

and is the Fourier transform of . Note
that the Gabor bandwidth tends to infinity for rectangular-
shaped (continuous-time) chip waveforms.

C. Numerical Examples

To illustrate the performance of the MCMC-SAGE scheme,
we consider a CDMA system with random spreading. All users
employ terminated convolutional codes with generator

Fig. 4. MSE performance versus SNR in quasi-static Rayleigh block-fading for
various effective system loads �: � � �, ��� ���� ����, � � �, � � ���,
� � 	
��, CC(5,7).

matrix . Data blocks of length code bits
comprising pilot bits are fed into a symbol interleaver
of size 3200 bits and sent over asynchronous quasi-static
flat-Rayleigh fading channels. The receiver processes
samples per chip.1 The Gibbs sampler draws samples
per SAGE iteration. The number of burn-in samples is set to 0.

For comparison purpose, the performance of a so-called
minimum mean-square error (MMSE) separate decoding and
channel estimation (MMSE-SDE) scheme has been added
to the plots as well. The MMSE-SDE scheme comprises an
MMSE channel estimator, a separate linear MMSE equalizer
[40], neglecting code constraints, and a separate max-logMAP
data decoder, neglecting user constraints. As the MMSE
channel estimate is a function of the (unknown) code timing,
we proceed as follows. First, a sequence of -dimensional
MMSE channel estimates is computed based on the preamble
symbols, and the received signal for different delay values of
user 1 while the delays of the other users are kept zero. Based
on the strongest delay for user 1, the procedure is repeated for
user 2 and so on and so forth until the last user is reached.

Fig. 4 shows the average mean-square-error (MSE) of the
channel estimates and transmission delay estimates as a
function of the effective SNR with the ef-
fective system load as parameter. The normalized
transmission delays are uniformly distributed in .
Starting from a gap of larger than 20 dB with respect to the
MCRB (26) at , the MSE of approaches the MCRB up
to 3.0 dB (5.0 dB) for at 10 dB. For the
MMSE-SDE scheme, the gap is larger than 20 dB with respect
to the MCRB over the entire range of SNR. For the MSE of ,
the MCMC-SAGE is capable of finding the correct transmission
delays already at over the entire range of SNR, indicating
that the MCMC-SAGE scheme is robust against delay estima-
tion errors. The MMSE-SDE scheme does the same for small

1The value	 � � is a widely used compromise among time resolution, delay
estimate error variance, and computational complexity [39].
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Fig. 5. MSE performance versus transmission delays in quasi-static Rayleigh
fading for various effective system loads �. The normalized transmission delays
are uniformly distributed on ��� ���� ���� � �. Parameters: � � �,
� � �, � � 	��, � � 
���, CC(5,7), �� � 10 dB.

Fig. 6. Supported effective system load � in quasi-static flat Rayleigh block-
fading: � � �, ��� ���� �	
�, � � 	��, � � 
���, CC(5,7), �� �
10 dB.

loads but has difficulties with handling high loads
.

In Fig. 5, the MSE of the channel estimates is plotted
versus the maximum transmission delay ,

and with
the system load as parameter. All users are received with
average SNR 10 dB. The receiver is not synchronized. It
can be seen that the performance of the MCMC-SAGE scheme
is roughly independent of as tends to .

The average bit error rate is plotted in Fig. 6 versus
the effective system load of for 10 dB when no syn-
chronization information is available at the receiver. Notice that
averaging is performed over all the realizations of the channel
coefficients, transmission delays, and the users. When the load
is increased, the MCMC-SAGE receiver performs nearly opti-
mally until a load threshold . Beyond , the increasing
cross-correlations among different users overwhelm the receiver
and the average bit error rate tends to values near 0.5.
A theoretical justification of this effect can be found in [41].

Fig. 7. a) Convergence rate of the Gibbs sampler by Gaussian approximation;
b) Convergence behavior of the MCMC-SAGE scheme: flat Rayleigh block-
fading, � � 	, � � �, ��� �����	
�, � � 	��, � � 
���, CC(5,7).

For the cut-off error rate at the traditional erroneous rejection
level of at most 1%, the MCMC-SAGE scheme supports

, while the MMSE-SDE scheme manages
. When the number of pilot symbols is increased to

i.e., 5% overhead, the proposed MCMC-SAGE supports
. It can be seen that the proposed scheme is

capable of handling extreme system loads in contrast to previ-
ously published schemes for joint multiuser estimation and syn-
chronization [21].

Fig. 7(a) shows a box-plot of the Gibbs sampler’s conver-
gence rate by Gaussian approximation versus the effective
SNR for . It can be seen that the median value of the spec-
tral radius is for 0 dB (low SNR) and for

(high SNR). The poor performance at high SNR mainly
arises from the ambiguity of the system. Note that

for all , , and . With increasing SNR the gap
between the two modes becomes larger, making it more diffi-
cult for the MCMC to move from one mode to the other [42].
The convergence behavior of the overall MCMC-SAGE scheme
is depicted in Fig. 7(b) for the same settings. With increasing
SNR the iterative MCMC-SAGE scheme converges more often
to a global maximum of the likelihood function with fewer it-
erations [6]. For 6 dB and 10 dB, respectively, the
MCMC-SAGE scheme requires 10.4 and 6.3 stages to converge.

V. SUMMARY

A computationally efficient algorithm has been proposed for
joint time acquisition, multi-channel estimation, and multiuser
soft-data decoding based on the SAGE algorithm. At each itera-
tion the joint a posteriori probabilities of all users’ data symbols
are forwarded to one particular user’s joint channel coefficient
and timing estimator and vice versa. A Gibbs sampling tech-
nique from Markov Chain Monte Carlo statistical signal pro-
cessing is used to compute the joint a posteriori probability.
Exact analytical expressions have been obtained for the esti-
mates of transmission delays and the channel coefficients. Con-
vergence in likelihood is guaranteed for the proposed algorithm.
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Monte Carlo simulations for asynchronous coded DS/CDMA
over flat Rayleigh fading channels show that the proposed
Monte Carlo SAGE scheme supports the remarkable system
load of for a small, say 5%, pilot overhead, taking into
account the rate of the channel codes.
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