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Abstract In this article, after giving a necessary and sufficient condition for two Einstein-

Weyl manifolds to be in conformal correspondence, we prove that any conformal mapping

between such manifolds is generalized concircular if and only if the covector field of the

conformal mapping is locally a gradient. Using this fact we deduce that any conformal map-

ping between two isotropic Weyl manifolds is a generalized concircular mapping. Moreover,

it is shown that a generalized concircularly flat Weyl manifold is generalized concircular

to an Einstein manifold and that its scalar curvature is prolonged covariant constant.
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1 Introduction

A geodesic circle in a Riemannian manifold was defined in [1] as a curve whose first curva-

ture is constant and second curvature vanishes identically. Circles and spheres in Riemannian

geometry are defined and studied from the point of view of development by K. Nomizu and K.

Yano in [2].

In a series of papers (cf. [3]), K. Yano gave the foundations of Concircular Geometry, the

geometry in which concircular transformations and spaces admitting such transformations are

considered. Some problems concerning the concircular transformations of Riemannian mani-

folds were also studied in [4, 5].

In [6], as a generalization of a geodesic circle in a Riemannian manifold, by using the pro-

longed covariant differentiation we defined the so-called generalized circle in a Weyl manifold as

a curve whose first curvature is prolonged covariant constant and its second curvature vanishes

identically.

After introducing the notion of generalized circle, it seems natural to study the conformal

mapping of a Weyl manifold upon another which preserves the generalized circles. Such a

conformal mapping is named as a generalized concircular mapping or a generalized concircular

transformation. Then, we can speak of generalized concircular Weyl geometry.

∗Received August 10, 2007; revised February 20, 2009.



1740 ACTA MATHEMATICA SCIENTIA Vol.30 Ser.B

It is well known that any conformal mapping of an Einstein manifold upon another is

a concircular mapping and that an Einstein manifold can be transformed into an Einstein

manifold by a concircular mapping [3, 4]. However, the first part of this statement is not in

general true for Einstein-Weyl manifolds of dim > 2 while the second part holds true, which

will be proved in Theorem 3.1.

In this work, we first give a necessary and sufficient condition in order that two Einstein-

Weyl manifolds of dim > 2 may be in conformal correspondence (Lemma 3.1) and then prove

that any conformal mapping between two Einstein-Weyl manifolds is generalized concircular if

and only if the covector field of the conformal mapping is locally a gradient (Theorem 3.1(a)).

However, an Einstein-Weyl manifold is transformed into an Einstein-Weyl manifold under a

generalized concircular mapping (Theorem 3.1 (b)). In Riemannian geometry, it was proved

that a manifold of constant curvature is transformed into a manifold of constant curvature by

a concircular transformation [3]. In this work, as a corollary to Theorem 3.1,we prove that

any conformal mapping between two isotropic Weyl manifolds is a generalized concircular one

(Corollary 3.1). Finally, within the framework of generalized concircular geometry, we give a

sufficient condition for a Weyl manifold to be generalized concircular to an Einstein manifold

(Theorem 3.2).

2 Preliminaries

A differentiable manifold of dimension n having a conformal class C of metrics and a

torsion- free connection ∇ preserving the conformal class C is called a Weyl manifold, denoted

by Wn(g, w), where g ∈ C and w is a 1-form satisfying the so-called compatibility condition

∇g = 2(g ⊗ w). (1)

Under the conformal re-scaling (re-normalisation)

ḡ = λ2g (λ > 0) (2)

of the representative metric tensor g, w is transformed by the law

w̄ = w + d lnλ. (3)

A quantity A defined on Wn(g, w) is called a satellite of g of weight {p} if it admits a

transformation of the form

Ā = λpA (4)

under the conformal re-scaling (2) of g [7–9].

It can be easily seen that the pair (ḡ, w̄) generates the same Weyl manifold. The process

of passing from (g, w) to (ḡ, w̄) is called a gauge transformation.

The curvature tensor, covariant curvature tensor, the Ricci tensor and the scalar curvature

of Wn(g, w) are respectively defined by

(∇k∇l −∇l∇k)v
p = vjW

p
jkl , (5)

Whjkl = ghp W
p
jkl , (6)
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Wij = W
p
ijp = ghkWhijk, (7)

W = gij Wij . (8)

From (5) it follows that

W
p
jkl = ∂kΓ

p
jl − ∂lΓ

p
jk + Γp

hkΓ
h
jl − Γp

hlΓ
h
jk, ∂k =

∂

∂xk
, (9)

where Γi
kl are the coefficients of the Weyl connection ∇ given by

Γi
kl =

{
i

kl

}
− (δi

kwl + δi
lwk − gklg

imwm), (10)

in which

{
i

kl

}
are the coefficients of the Levi-Civita connection.

By straightforward calculations it is easy to see that the antisymmetric part of Wij has

the property

W[ij] = n∇[iwj], (11)

where brackets indicate antisymmetrization.

The prolonged (extended) covariant derivative of the satellite A of weight {p} in the di-

rection of the vector X is defined by

∇̇XA = ∇XA− pw(X)A (12)

from which it follows that ∇̇X g = 0 for any X [7, 9].

A satellite of g is called prolonged covariant constant if its prolonged covariant derivative

vanishes identically.

A Riemannian manifold is called an Einstein manifold if its Ricci tensor is proportional to

its metric.

A Weyl manifold is said to be an Einstein-Weyl manifold if the symmetric part of the Ricci

tensor is proportional to the metric g ∈ C [10, 11], and hence

W(ij) =
W

n
gij . (13)

We call a manifold an isotropic manifold if at each point of the manifold the sectional

curvature is independent of the plane chosen [12].

In [6], as a generalization of geodesic circles in a Riemannian manifold, we defined the

so-called generalized circles by means of prolonged covarinat differentiation as follows.

Definition 2.1 [6] Let C be a smooth curve belonging to the Weyl manifold Wn(g, w)

and ξ1 be the tangent vector to C at the point P , normalized by the condition g(ξ1, ξ1) = 1.

C is called a generalized circle in Wn(g, w) if there exist a vector field ξ2, normalized by the

condition g(ξ2, ξ2) = 1 and a positive prolonged covarinat constant scalar function κ1 of weight

{−1} along C, such that

∇̇ξ1
ξ1 = κ1ξ2, ∇̇ξ1

ξ2 = −κ1ξ1. (14)

According to the Frenet formulas

∇̇ξ1
ξm = −κm−1ξm−1 + κmξm+1, m = 1, 2, · · · , n; κ0 = κn = 0
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given in [7], the equations (14) imply that C is a generalized circle if and only if the first

curvature κ1 of C is prolonged covariant constant and the second curvature κ2 is zero along C.

Namely,

∇̇ξ1
κ1 = ∇ξ1

κ1 + κ1w(ξ1) = 0, κ2 = 0. (15)

We note that equations (15) are invariant under a conformal re-scaling of the metric g.

A conformal mapping of a Weyl manifold upon another Weyl manifold is called general-

ized concircular if it preserves the generalized circles [6]. Concerning generalized concircular

mappings we have the following two theorems.

Theorem 2.1 [6] The conformal mapping τ : Wn(g, w)→W̃n(g̃, w̃) will be generalized

concircular if and only if

Pkl = φ gkl, Pkl = ∇lPk − PkPl +
1

2
gklg

rsPrPs, (16)

where

P = w − w̃ (17)

is the covector field of the conformal mapping of weight zero and φ is a smooth scalar function

of weight {−2} defined on Wn(g, w).

Theorem 2.2 [6] The tensor Z of type (1, 3) whose components are given by

Z
p
jkl = W

p
jkl −

W

n(n− 1)
(δp

l gjk − δ
p
kgjl) (18)

is invariant under a generalized concircular mapping of Wn(g, w). Such a tensor is called the

generalized concircular curvature tensor of Wn(g, w). Contraction on the indices p and l in (18)

gives the generalized concircularly invariant tensor

Z
p
jkp = Zjk = Wjk −

W

n
gjk. (19)

3 Conformal and Generalized Concircular Mappings of Einstein-Weyl

Manifolds

In this section, we first study the conformal mappings of Einstein-Weyl manifolds and prove

a lemma which will be needed in our subsequent work. Let τ be a conformal mapping of the

Weyl manifold Wn(g, w) upon another Weyl manifold W̃ (g̃, w̃). It is clear that the case n = 1 is

of no interest. By straightforward calculations it can be shown that every 2-dimensional Weyl

manifold is an Einstein-Weyl manifold and that any two 2-dimensional Weyl manifolds can be

locally mapped conformally upon each other. So, in what follows we assume that n > 2.

At corresponding points of Wn(g, w) and W̃ (g̃, w̃) we can make [8, 9]

g = g̃. (20)

It is clear that the covector field P = w − w̃ of τ is of zero weight.

Let∇ and ∇̃ be the connections ofWn(g, w) and W̃ (g̃, w̃) and let the connection coefficients

be denoted by Γi
jk and Γ̃

i
jk, respectively. Then, by (10) and (20), we have

Γ̃i
jk = Γi

jk + δi
jPk + δi

kPj − gimPmgjk. (21)
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Replacing Γi
jk in (9) by Γ̃

i
jk in (21), we obtain the curvature tensor of W̃ (g̃, w̃) as [6]

W̃
p
jkl = W

p
jkl + δ

p
l Pjk − δ

p
kPjl + gjkgpmPml − gjlg

pmPmk + 2δp
j∇[kPl], (22)

where ∇[kPl] is the antisymmetric part of ∇kPl and

Pkl = ∇lPk − PkPl +
1

2
gklg

rsPrPs. (23)

Contraction on the indices p and l in (22) gives

W̃jk = Wjk + (n− 2)Pjk + gjkglmPml + 2∇[kPj] (24)

in which we have used the relation gjkgkm = δm
j . Remembering that gmkP[mk] = 0, we may

conclude that

gmkPmk = gmkP(mk). (25)

In view of (24) and (25) we obtain

W̃(jk) = W(jk) + (n− 2)P(jk) + gjkglmP(ml). (26)

Multiplying (26) by g̃jk = gjk and summing up, and using the fact that g̃jkW̃(jk) =

W̃ , gjkW(jk) = W , we obtain W̃ = W + 2(n− 1)gjkP(jk), from which it follows that

gjkP(jk) =
W̃ −W

2(n− 1)
. (27)

By virtue of (27), (26) becomes

W̃(jk) = W(jk) + (n− 2)P(jk) +
W̃ −W

2(n− 1)
gjk. (28)

Suppose now that W (g, w) and W̃ (g̃, w̃) are Einstein-Weyl manifolds. Then, since

W(jk) =
W

n
gjk, W̃(jk) =

W̃

n
g̃jk,

(28) transforms into

(n− 2)

[
P(jk) −

W̃ −W

2n(n− 1)
gjk

]
= 0 (29)

or, for n > 2, we get

P(jk) =
W̃ −W

2n(n− 1)
gjk (n > 2). (30)

Conversely, suppose that Wn(g, w) is an Einstein-Weyl manifold and that the condition

(30) is satisfied. Then, from (28) we obtain

W̃(jk) −
W̃

n
g̃jk = W(jk) −

W

n
gjk = 0

showing that W̃n(g̃, w̃) is also an Einstein-Weyl manifold. We have thus proved

Lemma 3.1 Let Wn(g, w) and W̃n(g̃, w̃) be two Einstein-Weyl manifolds of dim > 2

which are in conformal correspondence. Then, the condition P(jk) =
W̃−W

2n(n−1)gjk holds true.
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Suppose that Wn(g, w) is an Einstein-Weyl manifold and that the condition P(jk) =
W̃−W

2n(n−1)gjk

is fulfilled. Then, the conformal transformation of Wn(g, w) is the Einstein-Weyl manifold

W̃n(g̃, w̃), g̃ = g.

K. Yano [3] and Y. Tashiro [4] proved, among other things, the following theorem for

(Riemannian) Einstein manifolds.

Theorem (a) If an Einstein manifold is conformal to another Einstein manifold, then

such an Einstein manifold must admit a concircular transformation.

(b) An Einstein manifold is transformed into an Einstein manifold by a concircular trans-

formation.

We now generalize this theorem to Einstein-Weyl manifolds.

Thereom 3.1 (a) Let Wn(g, w) and W̃n(g̃, w̃) be two Einstein-Weyl manifolds and let

τ be a conformal mapping of Wn(g, w) into W̃n(g̃, w̃). Then, τ is a generalized concircular

mapping if and only if the covector field P of τ is locally a gradient.

(b) An Einstein-Weyl manifold is transformed into an Einstein-Weyl manifold under any

generalized concircular mapping.

Proof of (a) Necessity. Suppose that τ is generalized concircular. Then, by (16), the

tensor Pij is symmetric and consequently its antisymmetric part P[ij] becomes zero. On the

other hand, from (23) we obtain

P[ij] = ∇[jPi] =
1

2
(∂jPi − ∂iPj) = 0,

which implies that P is locally a gradient.

To prove the sufficiency of the condition, let us assume that the covector field P of τ is

locally a gradient. Then we have P[ij] = 0 and so the tensor Pij becomes symmetric. Since

Wn(g, w) and W̃n(g̃, w̃) are supposed to be conformal, by Lemma 3.1, we obtain

P(ij) = Pij =
W̃ −W

2n(n− 1)
gij ,

which, according to Theorem 2.1, states that Wn(g, w) must admit a generalized concircular

mapping with φ = W̃−W
2n(n−1) .

Proof of (b) Let Wn(g, w) be an Einstein-Weyl manifold and let it be transformed

into the Weyl manifold Ŵn(ĝ, ŵ) by the generalized concircular mapping τ̂ . Since the gener-

alized concircular tensor Z
p
jkl, defined by (18), and its contracted tensor Zjk are generalized

concircularly invariant, we have from (19) that

Zjk = Ẑjk ⇒ Ŵjk −
Ŵ

n
ĝjk = Wjk −

W

n
gjk,

from which it follows that

Ŵ(jk) −
Ŵ

n
ĝjk = W(jk) −

W

n
gjk. (31)

Since Wn(g, w) is supposed to be an Einstein-Weyl manifold, the right-hand member of (31)

vanishes. Consequently, Ŵjk −
Ŵ
n

ĝjk = 0, showing that Ŵn(ĝ, ŵ) is also an Einstein-Weyl

manifold.

As a corollary to the above theorem we may state
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Corollary 3.1 Any conformal mapping between two isotropic Weyl manifolds of dim > 2

is a generalized concircular mapping.

Proof According to Theorem 2.1, proved in [13], any isotropic Weyl manifold is Einstein-

Weyl and its covector field (the 1-form ω) is locally a gradient. Then, by the first part of

Theorem 3.1, the result follows.

In [13], a sufficient condition for a Weyl manifold to be locally conformal to an Einstein

manifold was given in terms of sectional curvatures. Within the framework of generalized

concircular Weyl geometry, we now give another sufficient condition for a Weyl manifold to be

locally generalized concircular to an Einstein manifold.

Theorem 3.2 A generalized concircularly flat Weyl manifold is generalized concircular

to an Einstein manifold and its scalar curvature is prolonged covariant constant.

Proof Let the Weyl manifold Wn(g, w) be generalized concircularly flat. Then, according

to (18), we have

Z
p
jkl = W

p
jkl −

W

n(n− 1)
(δp

l gjk − δ
p
kgjl) = 0.

Contraction on the indices p and l gives

Z
p
jkp = Zjk = Wjk −

W

n
gjk = 0 (32)

or, equivalently,

W(jk) −
W

n
gjk = −R[jk] = −n∇[jwk] (33)

in which we have made use of (11). Then, (33) reduces to W(jk) −
W
n

gjk = 0, ∇[jwk] = 0,

stating that Wn(g, w) is an Einstein-Weyl manifold and that w is locally a gradient. By a

conformal re-scaling w can be made zero. Therefore, Wn(g, w) is generalized concircular to an

Einstein manifold. By using the generalized Einstein tensor for Wn(g, w) it was proved in [13]

that the scalar curvature of Wn(g, w) is prolonged covariant constant.
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