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Abstract 
 

In this paper, a transfer matrix factorization based synthesis 
algorithm for resistively terminated low-pass LC ladder 
networks is presented. In the algorithm, component value of 
the extracted element and the reflection factor of the 
remaining network are well formulated in terms of 
reflection factor coefficients of the whole network. An 
example is presented to exhibit the application of the 
proposed synthesis algorithm. 

 
1. Introduction 

 
The modern filter synthesis, given a prescribed insertion-loss 

between a resistive source and a resistive load, is a classical 
procedure presented in many textbooks on network synthesis 
[1]-[3]. The method consists of, given the insertion-loss 

function, determining the squared-magnitude 2)( ωρ j  of the 

reflection coefficient )( pρ , then getting a stable )( pρ , and, 
finally, deriving the corresponding driving-point impedance 

)( pZ . From this )( pZ , a lossless network terminated by a 
resistance can be found, satisfying the prescribed insertion-loss. 

For some special data, the resulting )( pZ  can be developed 
in continued-fraction expansion, thus yielding a network in 
ladder form. Some work in the past obtained explicit formulas 
for the elements in ladder form for some configurations of the 
poles and zeros of )( pρ  [4]-[8]. For example, Orchard [8] has 
given explicit formulas for the elements allowing finite 
frequencies of infinite loss but starting with the driving-point 
impedance of the unterminated lossless filter. 

In this paper, to describe the networks, Belevitch notation of 
the scattering parameters ( )( ph , )( pg  and )( pf  polynomials) 
are used. All the element values are formulated in terms of the 
coefficients of these polynomials. 

An algorithm to synthesize low-pass LC ladder networks has 
been proposed. Similar algorithms are going to be developed for 
high-pass, band-pass and band-stop cases. 

 
2. Low-pass LC Ladder Networks 

 
Consider the ladder networks with inductive series branches 

and capacitive shunt branches (low-pass) shown in Fig 1. Input 
impedance of the circuit is )( pZ  (input reflection factor is 

)( pS ), where p  is the usual complex frequency variable 
( ωσ jp += ). The first element is either a series inductor or a 
shunt capacitor, depending on whether )( pZ  or )( pY  has a 
pole at infinity. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Low-pass LC ladder networks 
 

Algebraically, the networks just described (first Cauer 
structure) corresponds to a continuous fraction expansion about 
the point at infinity, 
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The ia  are always residues at infinity and can be determined 

by an iterative long division procedure, in which at each step the 
remainder is divided into the divisor of the previous step. 

The above networks can be described in terms of scattering 
parameters using the Belevitch notation as follows [9,10]; 
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where the real polynomials )( pf , )( pg  and )( ph  have the 
following properties: 

• )( pg  is a strictly Hurwitz polynomial. 
• )( pf  is an even or odd polynomial, i.e. 

)()( pfpf α=− , where 1±=α . 
• )( pf , )( pg  and )( ph  are related by 

)()()()()( 2 pfphphpgpg α+−=−  
which imposes the following degree relations; 

)(deg)(deg pgph ≤ , )(deg)(deg pgpf ≤ , and the 
difference )(deg)(deg pfpg −  specifies the number of 
transmission zeros at infinity. 

For a series inductor, it can be shown that 
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pLph
2

)( = , 1
2

)( += pLpg  and 1)( =pf , 

 
and for a shunt capacitor 
 

pCph
2

)( −= , 1
2

)( += pCpg  and 1)( =pf  

 
where L  and C  are the element values of the inductor and 
capacitor, respectively. 

Consider low-pass LC ladder network with the first element is 
either a series inductor or a shunt capacitor. )( ph  and )( pg  
polynomials of each element in the structure can be written as 
 

pGph ii
ii μ1)( )1()( +−=     (3) 

1)()( += pGpg i
i      (4) 

 
for ni ,,2,1 �= , where n  is the number of lumped elements, 

2
LGi =  for a series inductor ( 1+=iμ ) ,and 

2
CGi =  for a 

shunt capacitor ( 1−=iμ ). 
The input reflectance )( pS  and the input impedance )( pZ  

of the ladder network terminated on a unit resistor are expressed 
in terms of the )( ph  and )( pg  polynomials as follows; 
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In the proposed synthesis algorithm, )( ph  and )( pg  

polynomials and )( pS  input reflection factor are employed. 
Firstly, element values are expressed in terms of )( ph  and 

)( pg  polynomial coefficients. Then )()( ph k
c  and )()( pg k

c  
polynomials of the extracted element are written. By using these 
four polynomials, input reflection factor (namely )( phr  and 

)( pgr ) of the remaining network is obtained, and the next 
element value is calculated. This process is implemented until 
all the elements are extracted (Fig 2). 
 
 
 
 
 
 
 
 
 

Fig. 2. Element extraction 
 

3. Synthesis via Transfer Matrix Factorization 
 

Cascade decomposition of a lossless two-port network is a 
classical problem which has been formulated in the literature in 
many different ways. The conventional approach is to start from 

a given driving-point function (impedance or reflecrance) and 
extract elementary sections, depending on the nature of the 
transmission zeros being extracted. In this approach, the 
extraction mechanics and the computation of the remaining 
impedance or reflectance functions can be quite involved and 
usually require intensive computational operations. An 
alternative way of accomplishing the canonic decomposition of 
lossless two-ports in cascade involves factoring the chain matrix 
or the scattering transfer matrix. It has long been recognized that 
the transfer matrix constitutes a better tool, mainly because of 
the simple representation in terms of only three canonical 
polynomials [11]. The factorization of the transfer matrix of a 
lossless two-port into a product of two simpler transfer matrices 
has been treated rigorously by Fettweis [11]. The problem is 
reduced to the solution of a set of linear equations introducing a 
mathematically well formulated alternative for the conventional 
cascade synthesis problem. The methods works directly on the 
canonic polynomial description of two-ports and involves 
algebraic decomposition of a given polynomial set, which 
describes the transfer matrix of a lossless two-port into subsets 
of polynomials of the same type. 

As it is well known, canonic forms of the scattering matrix 
S  and the scattering transfer matrix T  of a lossless two-port 
N , referred to a real terminating resistances are defined as 

 

��
�

�
��
�

�
=��

�

�
��
�

�
−

=
gh
hg

f
T

hf
fh

g
S

*

*

*

* 1,1
σ
σ

σ
σ

  (7) 

 
where (*) represents paraconjugation, g  is a strictly Hurwitz 
polynomial of degree n , and h  and f  are real polynomials of 

nrees ≤deg  satisfying the paraunitary relation 
 

*** ffhhgg =− .    (8) 
 
 
 
 
 
 
 

Fig. 3. Cascade decomposition of a lossless two-port 
 

The problem is to decompose the lossless reciprocal two-
port N  into two cascade connected lossless two-ports aN  and 

bN  which are also reciprocal (Fig 3). This amounts to factoring 
the transfer matrix T  into a product of two transfer matrices 
[9], 
 

ba TTT ⋅=      (9) 
 
where 
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The polynomial sets { }aaa fhg ,,  and { }bbb fhg ,,  have the 

same properties as { }fhg ,,  and in particular must satify 
paraunitary relations similar to (9), i.e., 
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*** aaaaaa ffhhgg =− ,                (10a) 

*** bbbbbb ffhhgg =− .                (10b) 
 

In the proposed method, firstly the component type that will 
be extracted is determined. Then after calculating the element 
value, it is extracted and the polynomials of the remaining 
network have been obtained. This process is repeated until the 
termination resistance is reached. 

 
3.1. Coefficient Based Component Extraction 

 
Consider the circuits shown in Fig 1, )( pg , )( ph  and 
)( pf  polynomials of the circuit are as follows 

 
n

n pgpgpggpg ++++= �2
210)(                 (11a) 

n
n phphphhph ++++= �2

210)(                 (11b) 
1)( =pf                   (11c) 

 
Component value of the first element that will be extracted 

can be calculated as 
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where 
n

n
g
h

=μ  and If 1+=μ , the first component is an 

inductor, if 1−=μ , the first component is a capacitor. 
 

)( pg , )( ph  and )( pf  polynomials of the remainder can 
be obtained as 
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where 

pCVhcphcphc
2

)( 01
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p
CV
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2

)( 0*1**
μ

−=+=                 (14b) 

1
2

)( 01 +=+= pCVgcpgcpgc                 (14c) 

1
2

2)( 0*1** +−=+= pCVgcpgcpgc                 (14d) 

The extraction of the components proceeds in a similar 
fashion until the final termination resistance is reached. 

 
3.2. Algorithm 

 
Step 1: Enter )( ph  and )( pg  polynomials as 

n
n phphphhph ++++= �2

210)(
n

n pgpgpggpg ++++= �2
210)(  

( 00 =h  and 10 =g  for a transformerless design) 
Set 1=k , nm = . 
 
Step 2: Set )()()( phph k = , )()()( pgpg k =  and n  (the 

highest power of the polynomial )()( ph k  or )()( pg k ). 
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If 1)( +=kμ , the first component is an inductor, if 1)( −=kμ , 
the first component is a capacitor, and component value can be 
calculated as 
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If mk = , stop the algorithm. 
 
Step 4: Calculate )()( ph k

c  and )()( pg k
c  polynomials (their 

paraconjugate polynomials )()(
* ph k

c  and )()(
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extracted component, as 
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Step 5: Calculate )( ph  and )( pg  polynomials of the 
remaining network, as 
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Set 1+= kk , and go to Step 2. 

 
4. Illustrative Example 

 
The following polynomials are given for a low-pass LC 

ladder, 
 

432 60514)( ppppph +−+= , 
432 60352471)( pppppg ++++= , 

1)( =pf . 
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Step 1:  

[ ]6051410 −=h , [ ]60352471=g , 1=k  and 
4=m . 

 
Step 2: 

[ ]6051410)1( −=h , [ ]60352471)1( =g , 4=n . 
 

Step 3: 1
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4
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4

)1(
)1( +===

g
hμ  

Since 1)1( +=μ , the first component is an inductor. 
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Since mk ≠  ( 41 ≠ ), go to the next step. 
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Set 2=k  and repeat the procedure as follows. 
 
Step 6:  
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Step 7: 1
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Since 1)2( −=μ , the second component is a capacitor. 
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Since mk ≠  ( 42 ≠ ), continue the process in a similar manner. 
After completing the algorithm, the following component 

values are obtained, 
1,4,5,2,3 2211 ===== RCLCL . 

 
5. Conclusions 

 
In classical LC ladder synthesis, component values are 

calculated by using pole-zero removing or continued fraction 
expansion routines. But in the proposed synthesis algorithm 
presented here for low-pass ladder LC networks which is based 
on transfer matrix factorization, all component values are 
calculated in terms of )( ph  and )( pg  polynomial coefficients. 
After extracting an element, reflection factor of the remaining 
network is expressed, so new )( ph  and )( pg  polynomials. The 
same process is repeated until calculating all the elements. 
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