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ABSTRACT 
This paper presents a performance analysis of space-time 
coded systems with transmit antenna selection over fre­
quency selective fading channels when the erroneously es­
timated fading coefficients are available only at the receiver. 
An upper bound on the pairwise error probability is derived 
and numerical examples are presented. The analysis does not 
assume any specific coding or channel estimation algorithm. 
With imperfect channel state information (CSI) used both at 
the antenna selection and the space-time decoding processes, 
the achievable diversity order does not decrease compared to 
perfect CSI scenario. 

1. INTRODUCTION 

Antenna selection [1] has become a popular technique which 
requires only a few RF chains switched to selected anten­
nas. This can be highly effective in reducing the cost and the 
complexity of space time coded (STC) [2, 3, 4] systems es­
pecially over frequency selective fading channels in high rate 
communications. 

In the literature, there has been considerable research on 
antenna selection generally about fast selection and error per­
formance. Although most works consider the selection only 
at the receiver [5, 6], STC systems with transmit antenna 
selection [7, 8] and joint transmit/receive antenna selection 
[9] have also been studied recently. In general, it has been 
shown that full space diversity can still be achieved with an­
tenna selection with the assumption of perfect channel state 
information (CSI) available at the receiver. Furthermore, an­
tenna selection with imperfect CSI is addressed in [lO] where 
specific space-time block coding (STBC) systems employing 
smgle antenna selection at the receiver are studied. In high 
rate wireless transmission systems, frequency selective chan­
nel model is more common than flat fading. However, there 
are only a few papers about the performance of antenna se­
lection considering frequency-selectivity [11]. 

In this paper, we present the performance of general 
STCs with transmit antenna selection based on the largest re­
ceived powers over frequency selective fading channels. We 
assume that an imperfect channel estimation algorithm pro­
vides erroneous fading coefficients which are used at the se­
lection and the space-time decoding processes. By deriving 
an upper bound on the pairwise error probability of STCs and 
performing computer simulations we show that the diversity 
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order of STC systems with transmit antenna selection is not 
degraded compared to perfect CSI assumption. 

The rest of the paper is organized as follows: Section 2 
describes the system model. The pairwise error probability 
bound for transmit selection when the receiver has imperfect 
channel estimates is derived in Section 3. Numerical exam­
ples are provided in Section 4 followed by the conclusions in 
Section 5. 

2. SYSTEM DESCRIPTION 

In this section, we describe the system model for general 
STC systems in the presence of channel estimation errors. 
Figure 1 shows a STC system with transmit antenna se­
lection. The channel is modeled as a quasi-static MIMO 
Ray leigh frequency selective fading channel where the dif­
ferent sub-channels fade independently. The channel esti­
mation uses the demodulated signals from the N receive an­
tennas to estimate the fading coefficients which are used in 
space time decoding and in the antenna selection based on 
the largest received powers. We assume that there are M 
transmit antennas available, however, only LT of them are 
selected and used in each frame. The indices of the LT trans­
mit antennas are fedback periodically which only requires at 
most Mbits, thus, it does not slow down the transmission rate 
significantly. At the transmitter, the information sequence is 
encoded by a space-time encoder, then, multiplexed into LT 
data streams which are modulated and transmitted through 
the selected antennas simultaneously. 

For a general multiple antenna system with LT transmit 
and N receive antennas, and D intersymbol interference (lSI) 
taps, the received signal at antenna n at time k can be written 
as 

(1 ) 

where h�] n is the fading coefficient between transmit antenna 
m and receive antenna n, corresponding to the lSI tap d. 
�m(k) is .the transmitted symbol from antenna m and wn(k) 
IS the nOise term at antenna n at time k, k = 1", . ,K, where 
K is the frame length. Both fading channel coefficients, and 
noise terms are modeled as zero mean complex Gaussian ran­
dom variables with variance 1/2 per dimension. The fading 
coefficients are spatially independent, but they are assumed 
to be constant over an entire frame (i.e., quasi-static fading) 
and we assume uniform multipath delay profile. Signal con­
stellation at each transmit antenna is normalized so that the 
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Figure 1: Block diagram of space-time coded multiple antenna system with transmit antenna selection. 

average power of the transmitted signals is unity, and p is 
interpreted as the average signal to noise ratio (SNR) at each 
receive antenna. We assume that the receiver obtains the CSI 
via some training symbols, however, the transmitter does not 
have access to this, and thus it evenly splits its power across 
LT transmit antennas. The received signals can be stacked in 
a matrix form as 

y = J L�DHS+ W, (2) 

where the N x (K + D - 1) received signal matrix is 

the Nx LTD channel coefficient matrix is 

J!?-I 
1,1 

J!?-I I,N 
the LTDx (K+D-l) codeword matrix is 

SI (1) SI (I() 0 
0 SI (I) SI (K) 

0 0 SI (I) 

s= 

SLr (l) SLr(K) 0 
0 SLr(l) SLr(l() 

0 0 SLr(1) 

and the Nx (K + D-1) noise matrix is 

) (3) 

L�,I 
J!?-I ) 

. , (4) 
J!?-I Lr,N 

o 
o 

SI (K) 

o 
o 

(5) 

(6) 

For any given H, the PEP of erroneously receiving S, 
when S is transmitted, is given by 

(7) 

which can be upper bounded as 

(8) 

where B = S -S is the codeword difference matrix. 11.112 
represents the Frobenius norm (i.e., the sum of magnitude 
squares of all entries). 

3. TRANSMIT ANTENNA SELECTION IN THE 
PRESENCE OF CHANNEL ESTIMATION ERRORS 

In this section, we investigate the performance, especially di­
versity order, of STC with transmit antenna selection over 
quasi-static frequency selective fading channels. The re­
ceiver obtains imperfect channel estimates which are used 
in antenna selection based on received powers. 

In practical receivers, estimated channel coefficients can 
be written as follows [12], 

(9) 

where £� n is a complex Gaussian random variable represent­

ing the channel estimation error independent of h� '" having 

zero mean and variance 0"; . h� n is a complex Gau�sian ran­

dom variable with zero mean, v�riance 0"2 per dimension and 

dependent on h�J,n with the following correlation coefficient, 

1 
J1 = ---;== Jl+O";' (lO) 

where, 0"; can be estimated from the SNR, the number of pi­
lots, and the method of estimation. In the presence of chan­
nel estimation errors, as in [12], when S is transmitted, the 
conditional mean of the received signal can be written as 
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and the conditional variance is as follows 

P D-I LT 'd 2 " " 2 Var{Yn(k)lhm,mSm(k)}=I+(I-I.u1 )L D£... £...lsm(k-d)l · 
T d=Om=1 

We note that the Euclidean distance tenn can be written as 

N K
I
D-I LT hd 12 I tics,s) = L L L L �n sm(k-d) = 2"2IIHBI12, 

=1 k= 1 d=O m= 1 V 2(J (J 

where the N x LTD matrix H contains the estimated channel 
coefficients, h�l n' Then, the PEP bound conditioned on H 
can be obtained

' 
as, 

(11) 

where the modified SNR term is defined as follows 

The unconditional PEP upper bound can be obtained by av­
eraging the above conditional PEP using the statistics of the 
selected channel coefficients. 

The derivations for the selection of arbitrary number 
of antennas are quite lengthy due to frequency-selectivity. 
Therefore, for the clarity of the analysis, we now study the 
selection of single transmit antenna (LT = 1) which provides 
enough insight for the general case. First, we start with the 

statistics of H matrix of size N x D having the largest norm 

selected from the complete channel matrix H of size N x MD 
containing all estimated fading coefficients between NM an­
tenna pairs and for all D multipaths. Similar to [6], by using 
Gaussian and C hi-square statistics, the joint probability den-

sity function (pdf) f(H) ofH can be written as 

f(H)=M ( , _e-�N�1 
( 1I��112 r ) M-I 

I e-� 
�o n. (n2(J2)ND ' 

Now, we take the average of the PEP bound in the expression 
(11) over all possible selected channel coefficients, 

where eND is the ND dimensional complex space. Then, 
using the following simplification [6] 

N-I X' ;/'I 
1 - e-x L - < - for x> 0 (12) 

n=0 n! - N! 
' 

the upper bound on the PEP becomes, 

M ( _,_ )M-I r e( -�IIHBI12) 
(n2(J2)ND ND! leND 

( 1IHI12)ND(M-I) _ � 
A 

2(J2 e 20 dR. 

where we can utilize eigenvalue decomposition of BB* = 
UAU* (U a unitary matrix). Since we use only a single 
transmit antenna, the codeword matrix S is Dx K, and there­
fore, BB* is Dx Dwhere A is a diagonal matrix with eigen­
values Iq, ...  ,AD. Then, we note that 

D 
IIHBI12 = trace ((HU)A(HU)*) = L Ajllcjl12, (13) 

1=1 

where Cj is the jh column ofHU, and 

trace ( (HU) (HU) * ) 

trace (HUU*H* ) 
trace (HH* ) 
IIHI12. (14) 

At this point, let us assume that we have a full-rank space­
time code which means that all the eigenvalues of the matrix 
BB* are positive (i.e., nonzero). We denote the minimum of 

AI, ... , AD by i and note that 

D 
LAjllcil12:::: ?.IIHI12 (15) j=1 

Hence, we can obtain the following upper bound to be used 
in simplification of the PEP upper bound, 

We also note that 

N D-I 
IIHI12 = L L Ihn,dl2 n=1 d=O 

where hn d is the estimated channel coefficient at row nand 

column d of H. First, by making the change of variables, 

�2 = an diJn,d (dhn d = Y/2a2 an ddan dd8n d), then defin-
v 20'':'' , 

1 ' "  

ing Un,d = a?;,d (dUn,d = 2an,ddan,d), and using fi" d8n,d = 

2n, we obtain 



16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29,2008, copyright by EURASIP 

where 1JI = M \ND)/2 (Nbt 
) M-I 

. In order to simpl ify fur-(20'2) . 
ther, we can write the double summation as a single summa­
tion as follows 

N D-I ND 
L L un,d= L Vr, 
n=1 d=O r=1 

(16) 

where Vr = Un d with the index r = dN + n. This allows us to 
use the follow

'
ing expansion 

(I vr)
ND(M-I) 

= I. 
r=1 r]=1 

ND 
L Vrl ... VrNM-NLr' 

rNLlM-I)=1 
(17) 

where the terms Vr with Ir multiplicities in vrl ... vrNM-NLr can 

be written as n� ( vr)lr such that 

ND 
L lr= ND(M-l). 
r=1 

Then we can write the PEP bound as, 

P(S->S) ::; IJI fo�"'fo� e-I�(pA+I)v, 

ND ND 
L' L (vr)"dVI,,·dvND. 

r] =1 rNLlM-I)=1 

(18) 

C hanging the order of summation and integration and using 

results in 

ND 
p(S -> S)::; IJI L 

r]=1 

ND ND ir! 
" L II ( ' ) (1,+1)' 

rNLlM-I)=1 r=1 iH + 1 
(19) 

Finally, considering high SNRs and expression (18), we ob­
tain 

(20) 

This result shows that a diversity order of MND (i.e., full di­
versity available in the system) can be achieved when only 
one transmit antenna is selected based on the instantaneous 
SNR at the receiver. Although the diversity advantage is 
the same as the full-complexity system, the coding gain de­
creases with antenna selection. Since selecting only one 
transmit antenna achieves full spatial diversity, we expect 
the same diversity order to be achieved when more than one 
transmit antenna is selected as well. The coding gain de­
pends on the number of antennas and the eigenvalues of the 
square of the codeword difference matrix, BB* . Obviously, 
the coding gain with antenna selection will be lower than that 
of full-complexity system. 

Although the PEP analysis for using more than one an­
tennas in actual transmission (LT > 1) is not shown due 
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Figure 2: FER plots for transmit antenna selection, M = 

3, N = 1, LT = 2, D = 2, J1 depends on number of pilots and 
SNR. 

to space limitations, it is obvious that full diversity can be 
achieved and an upper PEP bound at high SNRs can be sim­
ply written as 

(21) 

where 1( is independent of SNR and a function of 
M,N,D,LT,J1 and eigenvalues ofB. 

4. SIMULATION RESULTS 

In this section, error rates of STC systems with joint transmit 
and receive antenna selection using imperfect CSI are illus­
trated. We note that in the presence of channel estimation 
errors, the decoding metric should be as described in [12] 
which is slightly different than the metric for perfect CSI sce­
nario. We have observed that, the perfonnance results with 
both metric are almost the same. 

The frame error rate (FER) plots of STC based on (5, 7)s 
convolutional coding [4] over frequency selective fading 
channels with transmit antenna selection M = 3, N = 1, LT = 

2, D = 2 are depicted in Figure 2 when the correlation coeffi­
cient J1 is modeled as a variable. As in practical receivers, 
the channel estimation error in these simulations assumed 
to decrease with increasing SNR, and the constant P which 
is related to the number of pilots and the method of chan­
nel estimation. We observe that the full diversity order 6 
is achieved with perfect CSI and it remains the same with 
imperfect channel estimation. When P decreases, FER in­
creases although the diversity does not change. 

The FER plots of STC based on (5,7)8 convolutional 
coding with transmit antenna selection M = 3,N = I,LT = 

2, D = 3 with fixed correlation coefficient J1 are depicted in 
Figure 3. This figure STC is rank-deficient due to increased 
number of l SI taps [4] and it cannot achieve full diversity 
MND = 9 with perfect and imperfect CSI. This figure illus­
trates that at low to mid SNRs, the performance degradation 
due to channel estimation errors is insignificant, however, at 
high SNRs the error floors occur. When the correlation J1 is 
larger than 0.9995 (a; < 0.001), the FER is almost the same 
as the FER with perfect CSI scenario. When J1 is smaller than 
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Figure 3: FER plots for transmit antenna selection, M = 
3, N = 1, LT = 2, D =  3, J1 has a fixed value. 
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Figure 4: PEP plots for transmit antenna selection, M = 
4, N = 1, LT = 2, D = 2, considering fixed and variable J1.  

0.9975, the degradation becomes significant, thus, in prac­
tical systems, there can be restrictions on the mean square 
error of channel estimators. 

The exact PEP plots of the STC s based on generalized 
and standard delay diversity scheme [3] with transmit an­
tenna selection M =  4, LT = 2, N = 1, D =  2 are depicted in 
Figure 4. After extensive simulations for several cases, we 
verified the theoretical results, compared to perfect CSI sce­
nario, we observe that the diversity order is preserved with 
imperfect CSI. The performance degradation for both full 
rank and rank-deficient codes under channel estimation er­
rors (fixed and variable J1 cases) are similar. 

5. CONCLUSIONS 

In this paper, the effect of imperfect channel estimates on 
the performance of space time coded systems with transmit 
antenna selection over frequency selective fading channel is 
presented. Only the receiver is assumed to have the imper­
fect CSI and the antenna selection is based on maximum esti-

mated received powers. The pairwise error probability analy­
sis and the numerical examples have shown that the diversity 
order achievable with perfect CSI is not reduced when im­
perfect channel estimates are used in antenna selection and 
space time decoding. The performance degradation caused 
by channel estimation can be seen as reduction in SNR. 
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