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Abstract

In the present work, treating the arteries as a thin walled prestressed elastic tube with a bump, and the blood as a New-
tonian fluid of variable viscosity, we have studied the propagation of weakly nonlinear waves in such a medium by employ-
ing the reductive perturbation method, in the longwave approximation. Korteweg–deVries–Burgers equation with variable
coefficients is obtained as the evolution equation. Seeking a progressive wave type of solution to this evolution equation, it
is observed that the wave speed is variable. The numerical calculations show that the wave speed reaches to its maximum
value at the center of the bump but it gets smaller and smaller as we go away from the center of the bump. Such a result
seems to be reasonable from physical considerations.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Due to its applications in arterial mechanics, the propagation of pressure pulses in fluid-filled distensible
tubes has been studied by several researchers [1,2]. Most of the works on wave propagation in compliant tubes
have considered small amplitude waves ignoring the nonlinear effects and focused on the dispersive character
of waves (see, [3–5]). However, when the nonlinear terms arising from the constitutive equations and kinemat-
ical relations are introduced, one has to consider either finite amplitude, or small-but-finite amplitude waves,
depending on the order of nonlinearity.

The propagation of finite amplitude waves in fluid-filled elastic or viscoelastic tubes has been examined, for
instance, by Rudinger [6], Ling and Atabek [7], Anliker et al [8] and Tait and Moodie [9] by using the method
of characteristics, in studying the shock formation. On the other hand, the propagation of small-but-finite
amplitude waves in distensible tubes has been investigated by Johnson [10], Hashizume [11], Yomosa [12],
and Demiray [13,14] by employing various asymptotic methods. In all these works [10–14], depending on
the balance between the nonlinearity, dispersion and dissipation, the Korteweg–de Vries (KdV), Burgers’
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or KdV–Burgers’ equations are obtained as the evolution equations. In obtaining such evolution equations,
they treated the arteries as circularly cylindrical long thin tubes with a constant cross-section. In essence,
the arteries have variable radius along the axis of the tube.

In the present work, treating the arteries as a thin walled prestressed elastic tube with a bump, and the
blood as a Newtonian fluid of variable viscosity, we have studied the propagation of weakly nonlinear waves
in such a medium by employing the reductive perturbation method, in the longwave approximation. Kor-
teweg–deVries–Burgers equation with variable coefficients is obtained as the evolution equation. Seeking a
progressive wave type of solution to this evolution equation, it is observed that the wave speed is variable.
The numerical calculations show that the wave speed reaches to its maximum value at the center of the bump
but it gets smaller and smaller as we go away from the center of the bump. Such a result seems to be reason-
able from physical considerations.

2. Basic equations and theoretical preliminaries

2.1. Equations of tube

In this section, we shall derive the basic equations governing the motion of a prestressed thin elastic tube,
with an axially symmetric bump (stenosis), and filled with a viscous fluid. For that purpose, we consider a cir-
cularly cylindrical tube of radius R0, Fig. 1. It is assumed that such a tube is subjected to an axial stretch kz and
the static pressure P0(Z*). Under the effect of such a variable pressure the position vector of a generic point on
the tube is assumed to be described by
r0 ¼ ½r0 � f �ðz�Þ�er þ z�ez; z� ¼ kzZ�; ð1Þ

where er, eh and ez are the unit base vectors in the cylindrical polar coordinates, r0 is the deformed radius at the
origin of the coordinate system, Z* is the axial coordinate before the deformation, z* is the axial coordinate
after static deformation and f*(z*) is a function that characterizes the axially symmetric bump on the surface of
the arterial wall and will be specified later.

Upon this initial static deformation, we shall superimpose a dynamical radial displacement u*(z*, t*), where
t* is the time parameter, but, in view of the external tethering, the axial displacement is assumed to be negli-
gible. Then, the position vector r of a generic point on the tube may be described by
r ¼ ½r0 � f �ðz�Þ þ u��er þ z�ez; ð2Þ
Fig. 1. The geometry of the tube in various configuration.
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The arclengths along the meridional and circumferential curves are, respectively, given by
dsz ¼ 1þ �f �0 þ ou�

oz�

� �2
" #1=2

dz�; dsh ¼ ðr0 � f � þ u�Þdh: ð3Þ
Then, the stretch ratios along the meridional and circumferential curves, respectively, may be given by
k1 ¼ kz½1þ ð�f �0 þ ou�=oz�Þ2�1=2
; k2 ¼

1

R0

ðr0 � f � þ u�Þ; ð4Þ
where the prime denotes the differentiation of the corresponding quantity with respect to z*. The unit tangent
vector t along the deformed meridional curve and the unit exterior normal vector n to the deformed tube are
given by
t ¼ ð�f �0 þ ou�=oz�Þer þ ez

½1þ ð�f �0 þ ou�=oz�Þ2�1=2
; n ¼ er � ð�f �0 þ ou�=oz�Þez

½1þ ð�f �0 þ ou�=oz�Þ2�1=2
: ð5Þ
Let T1 and T2 be the membrane forces along the meridional and circumferential curves, respectively. hen,
the equation of the radial motion of a small tube element placed between the planes z* = const,
z* + dz* = const, h = const and h + dh = const may be given by
� T 2 1þ �f �0 þ ou�

oz�

� �2
" #1=2

þ o

oz�
ðr0 � f � þ u�Þð�f �0 þ ou�=oz�Þ
½1þ ðf �0 þ ou�=oz�Þ2�1=2

T 1

( )

� P �r ðr0 � f � þ u�Þ 1þ �f �0 þ ou�

oz�

� �2
" #1=2

¼ q0

HR0

kz

o
2u�

ot�2
; ð6Þ
where q0 is the mass density of the tube, H is the thickness in the undeformed configuration and P �r is the fluid
reaction force to be specified later.

Let lR be the strain energy density function of the membrane, where l is the shear modulus of the tube
material. Then, the membrane forces may be expressed in terms of the stretch ratios as
T 1 ¼
lH
k2

oR
ok1

; T 2 ¼
lH
k1

oR
ok2

: ð7Þ
Introducing (6)into Eq. (5), the equation of motion of the tube in the radial direction takes the following form:
� l
kz

oR
ok2

þlR0

o

oz�
ð�f �0 þou�=oz�Þ

½1þð�f �0 þou�=oz�Þ2�1=2

oR
ok1

( )
þP �r

H
ðr0� f � þu�Þ½1þð�f �0 þou�=oz�Þ2�1=2¼q0

R0

kz

o2u�

ot�2
:

ð8Þ

2.2. Equations of fluid

In general, blood is known to be an incompressible non-Newtonian fluid. However, in the course of flow in
large arteries, the red blood cells in the vicinity of arterial wall move to the central region of the artery so that
hematocrit ratio becomes quite low near the arterial wall, which results in lower viscosity in this region. More-
over, due to high shear rate near the arterial wall the viscosity of blood is further reduced. Therefore, for flow
problems in large blood vessels, the blood may be treated as a Newtonian fluid with variable viscosity, which
vanishes on the arterial wall and it takes the maximum value at the center of the artery. Because of the van-
ishing viscosity on the arterial wall, the non-slip condition of the viscous fluid will be violated, i.e. the tangen-
tial velocity of the fluid will not be set equal to the tangential velocity of the tube.

Let V �r and V �z denote the radial and the axial velocity components of the fluid body. In this work we shall
be concerned with the symmetrical motion of the fluid. Then, the physical components of the stress tensor of
the fluid read � �
rrr ¼ ��p þ 2lvðrÞ
oV �r
or

; rrh ¼ 0; rrz ¼ lvðrÞ
oV �r
oz�
þ oV �z

or
;

rhh ¼ ��p þ 2lvðrÞ
V �r
r
; rzh ¼ 0; rzz ¼ ��p þ 2lvðrÞ

oV �z
oz�

;

ð9Þ



H. Demiray / Applied Mathematics and Computation 187 (2007) 1574–1583 1577
where �p is the pressure function and lv(r) is the variable viscosity function. The equations of motion in the
cylindrical polar coordinates may be given by
orrr

or
þ orrz

oz�
þ 1

r
ðrrr � rhhÞ ¼ qf a�r ; ð10Þ

orrz

or
þ orzz

oz�
þ rrz

r
¼ qf a�z ; ð11Þ

oV �r
or
þ V �r

r
þ oV �z

oz�
¼ 0 ðincompressibilityÞ; ð12Þ
where qf is the mass density of the fluid and a�r ; a
�
z are the components of the acceleration vector in the cylin-

drical coordinates and given by
a�r ¼
oV �r
ot�
þ V �r

oV �r
or
þ V �z

oV �r
oz�

; a�z ¼
oV �z
ot�
þ V �r

oV �z
or
þ V �z

oV �z
oz�

: ð13Þ
In Eqs. (10)–(12), the effect of the body force is neglected. Introducing (9) and (13) into Eqs. (10) and (11) we
have
oV �r
ot�
þ V �r

oV �r
or
þ V �z

oV �r
oz�
þ 1

qf

o�P
or
� m̂cðrÞ o

2V �r
or2
þ 1

r
oV �r
or
� V �r

r2
þ o

2V �r
oz�2

� �
� 2m̂c0ðrÞ oV �r

or
¼ 0; ð14Þ

oV �z
ot�
þ V �r

oV �z
or
þ V �z

oV �z
oz�
þ 1

qf

o�P
oz�
� m̂cðrÞ o2V �z

or2
þ 1

r
oV �z
or
þ o2V �z

oz�2

� �
� m̂c0ðrÞ oV �r

oz�
þ oV �z

or

� �
¼ 0; ð15Þ

oV �r
or
þ V �r

r
þ oV �z

oz�
¼ 0; ð16Þ
with the boundary conditions
V �r jr¼rf
¼ ou�

ot�
þ �f �0 þ ou�

oz�

� �
V �z

����
r¼rf

;

S�r ¼
1

K
�P � 2qf m̂cðrÞ

oV �r
or
þ qf m̂cðrÞ �f �0 þ ou�

oz�

� �
oV �r
oz�
þ oV �z

or

� �� �����
r¼rf

;

ð17Þ
where we have defined
lvðrÞ ¼ qf m̂cðrÞ; rf ¼ r0 � f �ðz�Þ þ u�: ð18Þ
Here, m̂ is the kinematical viscosity of the fluid at the center of the tube. The fluid reaction force density S�r is
obtained from the stress boundary condition in the radial direction
S�r ¼ �ðrrrnr þ rrznzÞjr¼rf
: ð19Þ
At this stage it is convenient to introduce the following non-dimensional quantities:
t� ¼ R0

c0

� �
t; z� ¼ R0z; u� ¼ R0u; V �r ¼ c0V r; V �z ¼ c0V z; r ¼ R0x; f � ¼ R0f ;

�P ¼ qf c2
0�p; S�r ¼ qf c2

0pr=K; m ¼ q0H
qf R0

; c2
0 ¼

lH
qf R0

; m̂ ¼ c0R0�m;
ð20Þ
where c0 is the Moens–Korteweg speed. Introducing (20) into Eqs. (8), (14)–(17), the following non-dimen-
sional equations are obtained:
pr ¼
m

kzðkh � f þ uÞ
o2u
ot2
þ 1

kzðkh � f þ uÞ
oR
ok2

� 1

ðkh � f þ uÞ
o

oz
ð�f 0 þ ou=ozÞ

½1þ ð�f 0 þ ou=ozÞ2�1=2

oR
ok1

( )
; ð21Þ

oV r

ot
þ V r

oV r

ox
þ V z

oV r

oz
þ o�p

ox
� �mcðxÞ o

2V r

ox2
þ 1

x
oV r

ox
� V r

x2
þ o

2V r

oz2

� �
� 2�mc0ðxÞ oV r

ox
¼ 0; ð22Þ
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oV z

ot
þ V r

oV z

ox
þ V z

oV z

oz
þ o�p

oz
� �mcðxÞ o2V z

ox2
þ 1

x
oV z

ox
þ o2V z

oz2

� �
� �mc0ðxÞ oV r

oz
þ oV z

ox

� �
¼ 0; ð23Þ

oV r

ox
þ V r

x
þ oV z

oz
¼ 0 ð24Þ
with the boundary conditions
V rjx¼kh�fþu ¼
ou
ot
þ �f 0 þ ou

oz

� �
V z

����
x¼kh�fþu

; ð25Þ

pr ¼ �p � 2�mcðxÞ oV r

ox
þ �mcðxÞ �f 0 þ ou

oz

� �
oV r

oz
þ oV z

ox

� �� �����
x¼kh�fþu

: ð26Þ
Eqs. (21)–(26) give sufficient relations to determine the field quantities u, Vr, Vz and �p completely.

3. Longwave approximation

In this section we shall examine the propagation of small-but-finite amplitude waves in a fluid-filled thin
elastic tube with a bump, whose dimensionless governing equations are given in Eqs. (21)–(26). For this,
we adopt the long wave approximation and employ the reductive perturbation method [15,16]. For this type
of problems, it is convenient to introduce the following type of stretched coordinates:
n ¼ �1=2ðz� ctÞ; s ¼ �3=2z; ð27Þ

where � is a small parameter measuring the weakness of nonlinearity and dispersion and c is the scale param-
eter to be determined from the solution. Solving z in terms of s we get
z ¼ ��3=2s: ð28Þ

Introducing (28) into the expression of f(z) we obtain
f ð��3=2sÞ ¼ hð�; sÞ: ð29Þ

In order to take the effect of bump into account, the function f(z) must be of order �5/2. Thus we can write
hð�; sÞ ¼ �hðsÞ: ð30Þ

Introducing the following differential relations:
o

ot
¼ ��1=2c

o

on
;

o

oz
¼ �1=2 o

on
þ �3=2 o

os
; ð31Þ
into Eqs. (21)–(26) we obtain
pr ¼ �
mc2

kzðkh � �hþ uÞ
o2u

on2
þ 1

kzðkh � �hþ uÞ
oR
ok2

� �

ðkh � �hþ uÞ
o

on
þ � o

os

� �
ð��2h0 þ ou=onÞ

½1þ ð��2h0 þ ou=onÞ2�1=2

oR
ok1

( )
; ð32Þ

� �1=2c
oV r

on
þ V r

oV r

ox
þ �1=2V z

oV r

on
þ o�p

ox
� �mcðxÞ o

2V r

ox2
þ 1

x
oV r

ox
� V r

x2

� �

þ � o2V r

on2
þ 2�

o2V r

onos
þ o2V r

os2

� �
� 2�mc0ðxÞ oV r

ox
¼ 0; ð33Þ

� �1=2c
oV z

on
þ V r

oV z

ox
þ �1=2V z

oV z

on
þ � oV z

os

� �
þ �1=2 o�p

on
þ � o�p

os

� �

� �mcðxÞ o
2V z

ox2
þ 1

x
oV z

ox
þ � o

2V z

on2
þ 2�

o
2V z

onos
þ �2 o

2V z

os2

� �� �

� �mc0ðxÞ �1=2 oV r

on
þ � oV r

os

� �
þ oV z

ox

� �
¼ 0; ð34Þ
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oV r

ox
þ V r

x
þ �1=2 oV z

on
þ � oV z

os

� �
¼ 0; ð35Þ
with the boundary conditions
V rjx¼kh��hþu ¼ ��1=2c
ou
on
þ �1=2 ��2h0 þ ou

on

� �
V z

����
x¼kh��hþu

;

pr ¼ �p � 2�mcðxÞ oV r

ox
þ ��mcðxÞ ��2h0 þ ou

on

� �� �
oV r

on
þ � oV r

os

� �
þ oV z

ox

� �����
x¼kh��hþu

:

ð36Þ
For the long wave limit, it is assumed that the field quantities may be expanded into asymptotic series as
u ¼ �u1 þ �2u2 þ � � � ;
V r ¼ �1=2ð�V ð1Þr þ �2V ð2Þr þ � � �Þ;
V z ¼ �V ð1Þz þ �2V ð2Þz þ � � � ;
�p ¼ �p0 þ ��p1ðn; sÞ þ �2�p2ðn; sÞ þ � � � ;
pr ¼ pð0Þr þ �pð1Þr þ �2pð2Þr þ � � � ;
cðxÞ ¼ c0ðxÞ þ �c1ðxÞ þ �2c2ðxÞ þ � � � ;

ð37Þ
where c0(x), c1(x) and c2(x) are defined by
c0ðxÞ ¼ 1� x
kh
; c1ðxÞ ¼

x

k2
h

ðu1 � hÞ; c2ðxÞ ¼
x

k2
h

u2 �
ðu1 � hÞ2

kh

" #
: ð38Þ
Here, we assumed that the function c(x), characterizing the variation of the viscosity, is of the form
cðxÞ ¼ 1� x
kh � �hþ u

: ð39Þ
Introducing the expansions (37) and (38) into Eqs. (32)–(36), the following sets of differential equations are
obtained:

O(�) equations
� c
oV ð1Þz

on
þ o�p1

on
� mc00ðxÞ

oV ð1Þz

ox
� mc0ðxÞ

o2V ð1Þz

ox2
þ 1

x
oV ð1Þz

ox

� �
¼ 0;

o�p1

ox
¼ 0;

oV ð1Þr

ox
þ 1

x
V ð1Þr þ

oV ð1Þz

on
¼ 0;

ð40Þ
and the boundary conditions
V ð1Þr jx¼kh
þ c

ou1

on
¼ 0; pð1Þr ¼ �p1jx¼kh

: ð41Þ
O(�2) equations
� c
oV ð1Þr

on
þ o�p2

ox
� 2mc00ðxÞ

oV ð1Þr

ox
� mc0ðxÞ

o
2V ð1Þr

ox2
þ 1

x
oV ð1Þr

ox
� V ð1Þr

x2

� �
¼ 0;

� c
oV ð2Þz

on
þ V ð1Þr

oV ð1Þz

ox
þ V ð1Þz

oV ð1Þz

on
þ o�p2

on
þ o�p1

os
� mc0ðxÞ

oV ð2Þz

ox2
þ 1

x
oV ð2Þz

ox
þ o2V ð1Þz

on2

� �

� mc1ðxÞ
o2V ð1Þz

ox2
þ 1

x
oV ð1Þz

ox

� �
� mc01ðxÞ

oV ð1Þz

ox
� mc00ðxÞ

oV ð1Þr

on
þ oV ð2Þz

ox

� �
¼ 0;

oV ð2Þr

ox
þ V ð2Þr

x
þ oV ð2Þz

on
þ oV ð1Þz

os
¼ 0;

ð42Þ
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and the boundary conditions
V ð2Þr jx¼kh
þ ðu1 � hÞoV ð1Þr

ox
þ c

ou2

on
� ou1

on
V ð1Þz

����
x¼kh

¼ 0;

pð2Þr ¼ �p2 þ ðu1 � hÞ o�p1

ox
� 2mcðxÞ oV ð1Þr

ox

� �����
x¼kh

:

ð43Þ
Here, it is assumed that the viscosity is of order of �1/2, i.e. �m ¼ �1=2m.
In order to complete the equations, one must know the expressions of pð1Þr and pð2Þr in terms of the radial

displacement u. For that purpose we need the series expansion of the stretch ratios k1 and k2, which read
k1 ’ kz; k2 ¼ kh þ �ðu1 � hÞ þ �2u2: ð44Þ
Using the expansion (44) in the expression of pr, given in (32), we have
pð1Þr ¼ b1ðu1 � hÞ; ð45Þ

pð2Þr ¼ b2ðu1 � hÞ2 þ b1u2 þ
mc2

khkz
� a0

� �
o

2u1

on2
; ð46Þ
where the coefficients a0, b1 and b2 are defined by
a0 ¼
1

kh

oR
okz

; b1 ¼
1

khkz

o2R

ok2
h

� oR
okh

 !
; b2 ¼

1

2khkz

o3R

ok3
h

� b1

kh
: ð47Þ
3.1. Solution of the field equations

From the solution of Eqs. (40) under the boundary conditions (41) we have
u1 ¼ Uðn; sÞ; V ð1Þz ¼
b1

c
ðU þ wÞ; V ð1Þr ¼ �

b1

2c
oU
on

x; p1 ¼ b1ðU � hÞ; ð48Þ
provided that the following condition holds true:
b1 ¼ 2c2=kh: ð49Þ

Here U(n,s) is an unknown function whose governing equation will be obtained later and (b1/c)w(s) corre-
sponds to the axial steady flow resulting from the pressure �b1h(s).

To obtain the solution of O(�2) equations we introduce (48) into Eqs. (42) and the boundary conditions Eq.
(43) we obtain
b1

2

o2U

on2
x� mb1

khc
oU
on
þ o�p2

ox
¼ 0; ð50Þ

� c
oV ð2Þz

on
þ 2

b1

kh
ðU þ wÞ oU

on
þ o�p2

on
þ o�p1

os
� b1

dh
ds

� m 1� x
kh

� �
o

2V ð2Þz

ox2
þ 1

x
oV ð2Þz

ox
þ b1

c
o

2U

on2

� �
þ m

kh
� b1

2c
o

2U

on2
xþ oV ð2Þz

ox

� �
¼ 0; ð51Þ

oV ð2Þr

ox
þ V ð2Þr

x
þ b1

c
oU
os
þ b1

c
dw
ds
¼ 0; ð52Þ
and the boundary conditions
V ð2Þr jx¼kh
� 3b1

2c
U

oU
on
þ b1

2c
ðh� 2wÞ oU

on
þ c

ou2

on
¼ 0; pð2Þr ¼ �p2jx¼kh

: ð53Þ
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Here we noted that c0(kh) = 0. From the integration of (50) and the use of the boundary condition (53)2 we
have
�p2 ¼ �
b1

4

o2U

on2
x2 þ mb1

khc
oU
on

xþ p2ðn; sÞ; ð54Þ

p2 ¼
mc2

khkz
þ b1k

2
h

4
� a0

� �
o2U

on2
� mb1

c
oU
on
þ b1u2 þ b2ðU � hÞ2: ð55Þ
From the solution of Eq. (51) and (52) one can get
V ð2Þz ¼ �
b1

4c
o

2U

on2
x2 þ w2ðn; sÞ;

V ð2Þr ¼
b1

16c
o

3U

on3
x3 � x

2

ow2

on
þ b1

c
oU
os
þ b1

c
dw
ds

� �
;

ð56Þ
provided that the following relation holds true:
� c
ow2

on
þ 2 b2 þ

b1

kh

� �
U

oU
on
� mb1

c
o2U

on2
þ mc2

khkz
þ b1k

2
h

4
� a0

� �
o3U

on3

þ 2
b1

kh
w� b2h

� �
oU
on
þ b1

oU
os
þ b1

ou2

on
� b1

dh
ds
¼ 0; ð57Þ
where w2(n,s) is another unknown function to be determined from the solution.
The use of the boundary condition (53)1 yields
b1k
3
h

16c
o

3U

on3
� kh

2

ow2

on
þ b1

c
oU
os
þ b1

c
dw
ds

� �
� 3b1

2c
U

oU
on
þ b1

2c
ðh� 2wÞ oU

on
þ c

ou2

on
¼ 0: ð58Þ
Eliminating u2 between Eqs. (57) and (58) we obtain the following evolution equation:
2b1

oU
os
þ 5

b1

kh
þ 2b2

� �
U

oU
on
� mb1

c
o2U

on2
þ mc2

khkz
þ b1k

2
h

8
� a0

� �
o3U

on3

þ � b1

kh
þ 2b2

� �
hþ 4

b1

kh
w

� �
oU
on
þ b1

d

ds
ðh� wÞ ¼ 0: ð59Þ
The Eq. (59) must even be valid when U = 0, which results in
d

ds
ðh� wÞ ¼ 0: ð60Þ
The solution of (60) gives w(s) = h(s). Introducing this expression of w(s) into Eq. (59) we obtain the following
Korteweg–de Vries–Burgers equation with variable coefficients:
oU
os
þ l1U

oU
on
� l2

o2U

on2
þ l3

o3U

on3
� l4hðsÞ oU

on
¼ 0; ð61Þ
where the coefficients l1, l2, l3 and l4 are defined by
l1 ¼
5

2kh
þ b2

b1

� �
; l2 ¼

m
2c
; l3 ¼

m
4kz
þ k2

h

16
� a0

2b1

� �
; l4 ¼

b2

b1

� 3

2kh

� �
: ð62Þ
3.2. Progressive wave solution

In this sub-section we shall present the progressive wave solution to the KdV–Burgers equation with var-
iable coefficients given in (61). For that purpose we introduce the following coordinate transformation:
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s0 ¼ s; n0 ¼ nþ l4

Z s

0

hðsÞds: ð63Þ
The use of (63) in (61) leads to the following conventional KdV–Burgers equation:
oU
os0
þ l1U

oU
on0
� l2

o
2U

on02
þ l3

o
3U

on03
¼ 0; ð64Þ
Following Demiray [17], the progressive wave solution to the evolution (64) may be given by
U ¼ a
l1

þ 3

25

l2
2

l3

ðsech2fþ 2 tanh fÞ; ð65Þ
where a is a constant and the phase function f is defined by
f ¼ l2

10l3

ðn0 � as0Þ: ð66Þ
Using the coordinate transformation (63), the phase function f takes the following form:
f ¼ l2

10l3

n� asþ l4

Z s

0

hðsÞds
� �

: ð67Þ
As is seen from the expression of the phase function f, the trajectory of the wave is not a straight line anymore,
it is rather a curve in the (n,s) plane. This is the result of the stenosis in the tube. As a matter of fact, the exis-
tence of stenosis causes the variable wave speed. Noting that s is space variable and n is temporal variable, the
wave speed may be defined by
vp ¼
ds
dn
¼ 1

½a� l4hðsÞ� : ð68Þ
4. Numerical results and discussion

In order to see the effects of a stenosis on the wave speed one has to know the sign of the coefficient l4. For
that reason, one must know the constitutive relation of the tube material. In this work we shall utilize the con-
stitutive relation proposed by Demiray [18] for soft biological tissues. Following Demiray [18], the strain
energy density function may be expressed as
R ¼ 1

2a
fexp½aðI1 � 3Þ� � 1g; ð69Þ
where a is a material constant and I1 is the first invariant of Finger deformation tensor and defined by
I1 ¼ k2

z þ k2
h þ 1=k2

z k
2
h: Introducing (69) into Eq. (47), the coefficients a0, b0, b1 and b2 are obtained as
a0 ¼ k2
z �

1

k2
hk

2
z
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1

kz
� 1

k4
hk
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1

khkz
þ 3

k5
hk

3
z

 !
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a
khkz

kh �
1

k3
hk

2
z

 !2
2
4

3
5F ðkh; kzÞ:

ð70Þ
where the function F(kh,kz) is defined by
F ðkh; kzÞ ¼ exp a k2
h þ k2

z þ
1

k2
hk

2
z

� 3

 !" #
: ð71Þ
As is seen from Eq. (68) the effect of the stenosis is closely related to the sign of the coefficient l4. Therefore,
it might be instructive to study the variation of the coefficient l4 with the initial deformation. In order to study
the variation of the coefficient l4 with the initial deformation, we need the value of material constant a. For
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the static case, the present model was compared by Demiray [19] with the experimental measurements by
Simon et al [20] on canine abdominal artery with the characteristics Ri = 0.31 cm, R0 = 0.38 cm and
kz = 1.53, and the value of the material constant a was found to be a = 1.948. Using this numerical value
of the coefficient a, the value of the coefficient l4 is calculated for the initial deformation kh = kz = 1.6 and
the value is found to be l4 = 1.21. Then, the wave speed takes the following form:
vp ¼
1

½a� 1:21hðsÞ� : ð72Þ
As is seen from Eq. (72) the wave speed reaches to its maximum value at the center of the stenosis, and it
gets smaller and smaller as we go away from the center of the stenosis. Such a result is to be expected from
physical consideration.
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