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Treating arteries as thin-walled prestressed elastic tubes with a narrowing (stenosis) and blood as
an inviscid fluid, we study the propagation of weakly nonlinear waves in such a fluid-filled elastic
tube by employing the reductive perturbation method in the long wave approximation. It is shown
that the evolution equation of the first-order term in the perturbation expansion may be described by
the conventional Korteweg-de Vries (KdV) equation. The evolution equation for the second-order
term is found to be the linearized KdV equation with a nonhomogeneous term, which contains the
contribution of the stenosis. A progressive wave type solution is sought for the evolution equation,
and it is observed that the wave speed is variable, which results from the stenosis. We study the vari-
ation of the wave speed with the distance parameter τ for various amplitude values of the stenosis.
It is observed that near the center of the stenosis the wave speed decreases with increasing stenosis
amplitude. However, sufficiently far from the center of the stenosis stenosis amplitude becomes neg-
ligibly small.
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1. Introduction

Due to its application in arterial mechanics, the
propagation of pressure pulses in fluid-filled distensi-
ble tubes has been studied by Pedley [1] and Fung [2].
Most of the works on wave propagation in compli-
ant tubes deal with small amplitude waves, ignoring
the nonlinear effects, and focus on the dispersive char-
acter of waves (see Atabek and Lew [3], Rachev [4]
and Demiray [5]). However, when the nonlinear terms,
arising from the constitutive equations and kinemati-
cal relations, are introduced, one has to consider either
finite amplitude, or small-but-finite amplitude waves,
depending on the order of nonlinearity.

The propagation of finite amplitude waves in fluid-
filled elastic or viscoelastic tubes has been exam-
ined, for instance by Rudinger [6], Ling and Atabek
[7], Anliker et al. [8] and Tait and Moodie [9] by
using the method of characteristics in studying the
shock formation. On the other hand, the propagation
of small-but-finite amplitude waves in distensible tubes
has been investigated by Johnson [10], Hashizume
[11], Yomosa [12] and Demiray [13, 14] by employ-
ing various asymptotic methods. In all these works
[10 – 14], depending on the balance between the non-

0932–0784 / 06 / 1200–0641 $ 06.00 c© 2006 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

linearity, dispersion and dissipation, the Korteweg-de
Vries (KdV), Burgers’ or KdV-Burgers’ equations are
obtained as the evolution equations. In obtaining such
evolution equations, they treated the arteries as cylin-
drical long thin tubes of constant cross-section. The ar-
teries have a variable radius along the axis of the tube.

In the present work, treating the arteries as thin-
walled prestressed elastic tubes with narrowing (steno-
sis) and blood as an inviscid fluid, we study the propa-
gation of weakly nonlinear waves in such a fluid-filled
elastic tube by employing the reductive perturbation
method in the long wave approximation. It is shown
that the evolution equation of the first-order term in the
perturbation expansion may be described by the con-
ventional KdV equation. The evolution equation for
the second-order term is found to be the linearized
KdV equation with a nonhomogeneous term, which
contains the contribution of the stenosis. A progressive
wave type solution is sought for the evolution equa-
tion, and it is observed that the wave speed is variable,
which results from the stenosis. We study the variation
of the wave speed with the distance parameter τ for
various amplitude values of the stenosis; the result is
depicted in Figs. 1 – 3. It is observed that near the cen-
ter of the stenosis the wave speed decreases with in-
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creasing stenosis amplitude. However, sufficiently far
from the center of the stenosis the stenosis amplitude
becomes negligibly small.

2. Basic Equations and Theoretical Preliminaries

2.1. Equations of the Tube

In this section we shall derive the basic equations
governing the motion of a prestressed thin elastic tube
with an axially symmetric bump (stenosis), and filled
with a viscous fluid. For that purpose we consider a
circularly cylindrical tube of radius R0. It is assumed
that such a tube is subjected to an axial stretch λz and a
static pressure P0(Z∗). Under the effect of such a vari-
able pressure, the position vector of a generic point on
the tube is assumed to be described by

r0r0r0 = [r0 − f ∗(z∗)]ererer + z∗ezezez, z∗ = λzZ
∗, (1)

where ererer, eθθθeθθθeθθθ and ezezez are the unit base vectors in the
cylindrical polar coordinates, r0 is the deformed radius
at the origin of the coordinate system, Z ∗ the axial co-
ordinate before the deformation, z∗ the axial coordi-
nate after static deformation, and f ∗(z∗) is a function
that characterizes the axially symmetric bump on the
surface of the arterial wall and will be specified later.

Upon this initial static deformation we shall su-
perimpose a dynamical radial displacement u∗(z∗, t∗),
where t∗ is the time parameter, but, in view of the ex-
ternal tethering, the axial displacement is assumed to
be negligible. Then, the position vector rrr of a generic
point on the tube may be described by

rrr = [r0 − f ∗(z∗)+ u∗]ererer + z∗ezezez. (2)

The arc lengths along the meridional and circumferen-
tial curves are, respectively, given by

dsz = [1+(− f ∗
′
+

∂u∗

∂z∗
)2]1/2dz∗,

dsθ = (r0 − f ∗ + u∗)dθ .

(3)

Then, the stretch ratios along the meridional and cir-
cumferential curves may, respectively, be given by

λ1 = λz[1+(− f ∗
′
+ ∂u∗/∂z∗)2]1/2,

λ2 =
1

R0
(r0 − f ∗ + u∗),

(4)

where the prime denotes the differentiation of the cor-
responding quantity with respect to z∗. The unit tangent

vector ttt along the deformed meridional curve and the
unit exterior normal vector nnn to the deformed tube are
given by

ttt =
(− f ∗′ + ∂u∗/∂z∗)ererer +ezezez

[1+(− f ∗′ + ∂u∗/∂z∗)2]1/2
,

nnn =
ererer − (− f ∗′ + ∂u∗/∂z∗)ezezez

[1+(− f ∗′ + ∂u∗/∂z∗)2]1/2
.

(5)

Let T1 and T2 be the membrane forces along the
meridional and circumferential curves, respectively.
Then, the equation of the radial motion of a small
tube element placed between the planes z∗ = const,
z∗ + dz∗ = const, θ = const and θ + dθ = const may
be given by

−T2

[
1+(− f ∗

′
+

∂u∗

∂z∗
)2

]1/2

+
∂

∂z∗

{
(r0 − f ∗ + u∗)(− f ∗′ + ∂u∗/∂z∗)

[1+( f ∗′ + ∂u∗/∂z∗)2]1/2
T1

}

+P∗
r (r0 − f ∗ + u∗)

[
1+

(
− f ∗ +

∂u∗

∂z∗

)2
]1/2

= ρ0
H R0

λz

∂2u∗

∂t∗2 ,

(6)

where ρ0 is the mass density of the tube, H the thick-
ness in the undeformed configuration and P ∗

r the fluid
reaction force to be specified later.

Let µΣ be the strain energy density function of the
membrane, where µ is the shear modulus of the tube
material. Then, the membrane forces may be expressed
in terms of the stretch ratios as

T1 =
µ H
λ2

∂Σ
∂λ1

, T2 =
µ H
λ1

∂Σ
∂λ2

. (7)

Introducing (7) into (6), the equation of motion of the
tube in the radial direction takes the form

− µ
λz

∂Σ
∂λ2

+µ R0
∂

∂z∗

{
(− f ∗′ + ∂u∗/∂z∗)

[1+(− f ∗′ + ∂u∗/∂z∗)2]1/2

∂Σ
∂λ1

}

+
P∗

r

H
(r0 − f ∗ + u∗)[1+(− f ∗

′
+ ∂u∗/∂z∗)2]1/2

= ρ0
R0

λz

∂2u∗

∂t∗2 .

(8)
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2.2. Equations of the Fluid

In general, blood is an incompressible non-
Newtonian fluid. The main factor for blood to behave
like a non-Newtonian fluid is the level of cell concen-
tration (hematocrit ratio) and the deformability of red
blood cells. In the course of blood flow in arteries, the
red blood cells move to the central region of the artery
and, thus, the hematocrit ratio is reduced near the arte-
rial wall, where the shear rate is quite high, as can be
seen from Poiseuille flow. Experimental studies indi-
cate that, when the hematocrit ratio is low and the shear
rate is high, blood behaves like a Newtonian fluid [2].
Moreover, as pointed out by Rudinger [6], for flows in
large blood vessels the viscosity of blood may be ne-
glected as a first approximation. Thus, the equations of
axially symmetric motion of an incompressible nonvis-
cous fluid may be given in cylindrical polar coordinates
by

∂V ∗
r

∂r
+

V ∗
r

r
+

∂V ∗
z

∂z∗
= 0 (incompressibility), (9)

∂V ∗
r

∂t∗
+V ∗

r
∂V ∗

r

∂r
+V ∗

z
∂V ∗

r

∂z∗
+

1
ρf

∂P̄
∂r

= 0, (10)

∂V ∗
z

∂t∗
+V ∗

r
∂V ∗

z

∂r
+V ∗

z
∂V ∗

z

∂z∗
+

1
ρf

∂P̄
∂z∗

= 0, (11)

where V ∗
r , V ∗

z are the fluid velocity components in the
radial and axial directions, respectively, P̄ is the fluid
pressure function and ρf the density of the fluid.

In general it is quite difficult to deal with these exact
equations of motion of a nonviscous fluid. Therefore
we shall make some simplifying assumptions, the so-
called “the hydraulic approximations”. In this approx-
imations it is assumed that the axial velocity is much
larger than the radial one and than averaging procedure
with respect to the cross-sectional area is permissible.
Applying the averaging procedure to (9) – (11) we have

∂A
∂t∗

+
∂

∂z∗
(Aw∗) = 0, (12)

∂w∗

∂t∗
+ w∗ ∂w∗

∂z∗
+

1
ρf

∂P∗

∂z∗
= 0, (13)

where A denotes the inner cross-sectional area, i. e.,
A = πr2

f , where rf = r0 − f ∗ + u∗ is the radius of the
tube after final deformation, and other quantities are
defined by

Aw∗ = 2π
∫ rf

0
rV ∗

z dr, AP∗ = 2π
∫ rf

0
rP̄dr. (14)

Here w∗ is the averaged axial fluid velocity and P∗ is
the averaged fluid pressure. In obtaining (14) we have
made use of the following assumption (Prandtl and Ti-
etjens [15]):

A(w∗)2 = 2π
∫ rf

0
rV 2

z dr. (15)

Noting the relation between the cross-sectional area
and the final radius, i. e., A = π(r0 − f ∗ + u∗)2,
(12) reads

2
∂u∗

∂t∗
+ 2w∗ ∂u∗

∂z∗
+(r0 − f ∗ + u∗)

∂w∗

∂z∗
= 0. (16)

For the present problem the fluid reaction force P ∗
r

takes the form

P∗
r =

P∗

[1+(− f ∗′ + ∂u∗/∂z∗)2]1/2
. (17)

At this stage it is convenient to introduce the following
dimensionless quantities:

t∗ =
(

R0

c0

)
t, z∗ = R0z, u∗ = R0u,

m =
ρ0H
ρfR0

, w∗ = c0w, f ∗ = R0 f ,

r0 = R0λθ , P∗ = ρfc
2
0 p, c2

0 =
µ H
ρfR0

.

(18)

Introducing (18) into (8), (13) and (16) we obtain the
following dimensionless equations:

2
∂u
∂t

+2

(
− f ′ +

∂u
∂z

)
w+(λθ − f +u)

∂w
∂z

= 0, (19)

∂w
∂t

+ w
∂w
∂z

+
∂p
∂z

= 0, (20)

p =
m

λz(λθ − f + u)
∂2u
∂t2 +

1
λz(λθ − f + u)

∂Σ
∂λ2

(21)

− 1
(λθ − f + u)

∂
∂z

{
(− f ′ + ∂u/∂z)

[1+(− f ′+ ∂u/∂z)2]1/2

∂Σ
∂λ1

}
.

These equations give sufficient relations to determine
the field quantities u, w and p completely.

3. Long Wave Approximation

In this section we shall examine the propagation of
small-but-finite amplitude waves in a fluid-filled thin
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elastic tube with a stenosis, whose dimensionless gov-
erning equations are given in (19) – (21). For this we
adopt the long wave approximation and employ the
modified reductive perturbation method, the details of
which are given by Demiray [16].

The nature of the problem suggests to consider it as
a boundary value problem. For such problems, the fre-
quency is specified and the wave number is calculated
through the use of the dispersion relation. Thus, it is
convenient to introduce the following stretched coor-
dinates

ξ = ε1/2(z− ct),
∫ τ

0

ds
g(s)

= ε3/2z, (22)

where ε is a small parameter measuring the weakness
of the nonlinearity and dispersion, c is a constant and
g(τ) the scale function to be determined from the solu-
tion.

In the present work we shall assume that the geom-
etry of the stenosis is of the form

f (z) = ∆ sechKz, (23)

where ∆ and K are two constants to be specified later.
We shall further assume that the scale function g(τ)
and the field variables u, w and p may be expressed as
an asymptotic series of the form

g(τ) = 1+ εg1(τ)+ ε2g2(τ)+ . . . ,

u = εu1(ξ ,τ)+ ε2u2(ξ ,τ)+ ε3u3(ξ ,τ)+ . . . ,

w = εw1(ξ ,τ)+ ε2w2(ξ ,τ)+ ε3w3(ξ ,τ)+ . . . ,

p = p0 + ε p1(ξ ,τ)+ ε2 p2(ξ ,τ)+ ε3 p3(ξ ,τ)+ . . . .

(24)

Solving z in terms of τ and using the expansion of g(τ)
we obtain

z = ε−3/2
∫ τ

0
{1−εg1(s)+ε2[g1(s)2−g2(s)]+ . . .}ds.

(25)

Inserting (25) into (23) we have

f (z) = ∆ sechKε−3/2
∫ τ

0

{
1− εg1(s)

+ ε2[g1(s)2 −g2(s)]+ . . .
}

ds.
(26)

In order to take the effect of the stenosis into account
we shall assume that ∆ = ε2σ and K = ε3/2κ . In this
case, the function f (z) may be approximated, to the
order of ε 4, as

f (z) = ε2h0(τ)+ ε3h1(τ)+ O(ε4), (27)

where h0(τ) and h1(τ) are defined by

h0(τ) = σ sechκτ,

h1(τ) = σκ sechκτ tanhκτ
∫ τ

0
g1(s)ds.

(28)

Noting the differential relations

∂
∂t

→−ε1/2c
∂

∂ξ
,

∂
∂z

→ ε1/2 ∂
∂ξ

+g(τ)ε3/2 ∂
∂τ

(29)

and introducing the expansion (24) into (19) – (21), the
following sets of differential equations are obtained:

O(ε) equations:

−2c
∂u1

∂ξ
+λθ

∂w1

∂ξ
= 0, −c

∂w1

∂ξ
+

∂p1

∂ξ
= 0. (30)

O(ε2) equations:

−2c
∂u2

∂ξ
+ λθ

∂w2

∂ξ
+ λθ

∂w1

∂τ
+ 2w1

∂u1

∂ξ
+ u1

∂w1

∂ξ
= 0,

−c
∂w2

∂ξ
+

∂p2

∂ξ
+

∂p1

∂τ
+ w1

∂w1

∂ξ
= 0. (31)

O(ε3) equations:

−2c
∂u3

∂ξ
+ λθ

∂w3

∂ξ
+ 2w2

∂u1

∂ξ
+ 2w1

∂u2

∂ξ

+ λθ
∂w2

∂τ
+ u1

∂w2

∂ξ
+ 2w1

∂u1

∂τ
+ λθ g1(τ)

∂w1

∂τ

+ u1
∂w1

∂τ
+[u2 −h0(τ)]

∂w1

∂ξ
= 0,

− c
∂w3

∂ξ
+

∂p3

∂ξ
+

∂
∂ξ

(w1w2)+
∂p2

∂τ

+ w1
∂w1

∂τ
+ g1(τ)

∂p1

∂τ
= 0. (32)

In these equations, the functions p1, p2 and p3 are
yet to be determined in terms of the radial displacement
u, from (21). Introducing the transformation (22) and
the expansion (24) into (21) we obtain

p0 = β0, p1 = β1u1,

p2 = β2u2
1 + β1[u2 −h0(τ)]+

(
mc2

λθ λz
−α0

)
∂2u1

∂ξ 2 ,

p3 = β3u3
1 + 2β2u1[u2 −h0(τ)]+ β1[u3 −h1(τ)]

+
(

mc2

λθ λz
−α0

)
∂2u2

∂ξ 2 −α1

(
∂u1

∂ξ

)2

+
(

α0

λθ
− mc2

λzλ 2
θ
−2α1

)
u1

∂2u1

∂ξ 2 −2α0
∂2u1

∂ξ ∂τ
.

(33)
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In obtaining the relations given in (32) we have made
use of the following expansions:

λ1 = λz

[
1+ ε3 1

2

(
∂u1

∂ξ

)2
]

,

λ−1 =

[
1− ε3 1

2

(
∂u1

∂ξ

)2
]

/λz,

λ2 = λθ + εu1 + ε2[u2 −h0(τ)]+ ε3[u3 −h1(τ)],

(λθ − f + u)−1 =
1

λθ
− ε

u1

λ 2
θ

+ε2
{

u2
1

λ 3
θ
− [u2 −h0(τ)]

λ 2
θ

}

+ ε3
{
− u3

1

λ 4
θ

+
2

λ 3
θ

u1[u2 −h0(τ)]− [u3 −h1(τ)]
λ 2

θ

}
+ . . .

∂Σ
∂λ2

= λθ λz

(
β0 + εβ̄1u1 + ε2{β̄2u2

1 + β̄1[u2 −h0(τ)]}

+ ε3
{

β̄3u3
1 + 2β̄2u1[u2 −h0(τ)]

+ β̄1[u3 −h1(τ)]+ α1

(
∂u1

∂ξ

)2 })
. (34)

Here we have defined

β1 = β̄1− β0

λθ
, β2 = β̄2− β1

λθ
, β3 = β̄3− β2

λθ
, (35)

where the coefficients α0, α1, β0, β̄1, β̄2 and β̄3 are
given by

α0 =
1

λθ

∂Σ
∂λz

|u=0, α1 =
1

2λθ

∂2Σ
∂λz∂λθ

|u=0,

β0 =
1

λθ λz

∂Σ
∂λθ

|u=0, β̄1 =
1

λθ λz

∂2Σ
∂λ 2

θ
|u=0,

β̄2 =
1

2λθ λz

∂3Σ
∂λ 3

θ
|u=0, β̄3 =

1
6

∂4Σ
∂λ 4

θ
|u=0.

(36)

3.1. Solution of the Field Equations

From the solution of the sets (30) and (33)1 we ob-
tain

u1 = U(ξ ,τ), w1 =
2c
λθ

U(ξ ,τ),

p1 =
2c2

λθ
U(ξ ,τ),

(37)

provided that c satisfies the relation

c2 = λθ β1/2, (38)

where U(ξ ,τ) is an unknown function whose govern-
ing equation will be obtained later, and c is the phase
velocity in the long wave approximation.

Introducing the solution given in (37) into (31) and
(33)2 we have

−2c
∂u2

∂ξ
+ λθ

∂w2

∂ξ
+ 2c

∂U
∂τ

+
6c
λθ

U
∂U
∂ξ

= 0,

−c
∂w2

∂ξ
+

∂p2

∂ξ
+

2c2

λθ

∂U
∂τ

+
4c2

λ 2
θ

U
∂U
∂ξ

= 0
(39)

with

p2 =
( mc2

λθ λz
−α0

)∂2U
∂ξ 2 +β2U2+β1[u2−h0(τ)]. (40)

Eliminating p2 and w2 between (39) and (40) we obtain
the conventional Korteweg-de Vries equation

∂U
∂τ

+ µ1U
∂U
∂ξ

+ µ2
∂3U
∂ξ 3 = 0, (41)

where the coefficients µ1 and µ2 are defined by

µ1 =
5

2λθ
+

β2

β1
, µ2 =

m
4λz

− α0

2λθ λzβ1
. (42)

Here the coefficients µ1 and µ2 characterize the non-
linearity and dispersion, respectively.

For our future purposes we need the expression of
w2. From the solution of (39)1 we have

w2 =
2c
λθ

[u2 + w̄2(τ)]+
c

λθ

(
µ1 − 3

λθ

)
U2

+
2c
λθ

µ2
∂2U
∂ξ 2 ,

(43)

where w̄2(τ) is an unknown function characterizing the
steady flow of ε2-order.

To obtain the solution for O(ε 3) equations we intro-
duce the solutions given in (37) and (43) into (32) and
(33):

−β1
∂u3

∂ξ
+ c

∂w3

∂ξ
+ 6

c2

λ 2
θ

∂
∂ξ

(u2U)

+ 2
c2

λ 2
θ
(2w̄2 −h0)

∂U
∂ξ

+ 4
c2

λ 2
θ
(µ1 − 3

λθ
)U2 ∂U

∂ξ

+ 4
c2

λ 2
θ

µ2
∂U
∂ξ

∂2U
∂ξ 2 + 2

c2

λθ
µ1U

∂U
∂τ

+ 2
c2

λ 2
θ

µ2U
∂3U
∂ξ 3

+ 2
c2

λθ
µ2

∂3U
∂τ∂ξ 2 + β1

∂u2

∂τ
+ β1

dw̄2

∂τ
+ β1g1(τ)

∂U
∂τ

= 0,

(44)
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β1
∂u3

∂ξ
− c

∂w3

∂ξ
+

(
4

c2

λ 2
θ

+ 2β2

)
∂

∂ξ
(u2U)

+
[

c2

λ 2
θ

w̄2 −2β2h0(τ)
]

∂U
∂ξ

+
[

3β3 + 6
c2

λ 2
θ

(
µ1 − 3

λθ

)]
U2 ∂U

∂ξ

+
(

4
c2

λ 2
θ

µ2 +
α0

λθ
− mc2

λzλ 2
θ
−4α1

)
∂U
∂ξ

∂2U
∂ξ 2

+
(

4
c2

λ 2
θ

+ 2β2

)
U

∂U
∂τ

+
(

4
c2

λ 2
θ

µ2 +
α0

λθ
− mc2

λzλ 2
θ
−2α1

)
U

∂3U
∂ξ 3

+
(

mc2

λzλθ
−3α0

)
µ2

∂3U
∂τ∂ξ 2

+
(

mc2

λzλθ
−α0

)
∂3u2

∂ξ 3 + β1
∂u2

∂τ

+ β1g1(τ)
∂U
∂τ

−β1
dh0(τ)

dτ
= 0. (45)

Eliminating u3 and w3 between (44) and (45) we obtain
the following evolution equation for u2:

∂u2

∂τ
+ µ1

∂
∂ξ

(u2U)+ µ2
∂3u2

∂ξ 3

+
[

2
λθ

w̄2 −
(

1
2λθ

+
β2

β1

)
h0(τ)

]
∂U
∂ξ

+
[

3β3

2β1
+

5
2λθ

(
µ1 − 3

λθ

)]
U2 ∂U

∂ξ

+
(

µ2

λθ
−2

α1

β1

)
∂U
∂ξ

∂2U
∂ξ 2 +

(
µ2

2λθ
− α1

β1

)
U

∂3U
∂ξ 3

+
(

3
2

µ2 − α0

β1

)
∂3U

∂τ∂ξ 2 +
(

µ1

2
+

1
λθ

+
β2

β1

)
U

∂U
∂τ

+ g1(τ)
∂U
∂τ

+
1
2

d
dτ

[w̄2 −h0(τ)] = 0. (46)

Equation (46) must even be valid when u2 = U = 0,
which results in

d
dτ

[w̄2 −h0(τ)] = 0. (47)

The solution of (47) yields w̄2 = h0(τ). Thus, the
evolution (46) reduces to the following linearized
Korteweg-de Vries equation with a nonhomogeneous
term:

∂u2

∂τ
+ µ1

∂
∂ξ

(u2U)+ µ2
∂3u2

∂ξ 3 + S(U) = 0, (48)

where the function S(U) is defined by

S(U) =
(

3
2λθ

− β2

β1

)
h0(τ)

∂U
∂ξ

+
[

3β3

2β1
+

5
2λθ

(
µ1 − 3

λθ

)]
U2 ∂U

∂ξ

+
(

µ2

λθ
−2

α1

β1

)
∂U
∂ξ

∂2U
∂ξ 2

+
(

µ2

2λθ
− α1

β1

)
U

∂3U
∂ξ 3

+
(

3
2

µ2 − α0

β1

)
∂3U

∂τ∂ξ 2

+
(

µ1

2
+

1
λθ

+
β2

β1

)
U

∂U
∂τ

+ g1(τ)
∂U
∂τ

. (49)

3.2. Progressive Wave Solution

In this sub-section we shall study the localized trav-
elling wave solution to the field equations given in (41)
and (48). For that purpose we introduce

U = U(ζ ), u2 = V (ζ ), ζ = k(ξ − v0τ), (50)

where k and v0 are two constants to be determined
from the solution of the field equations. Introducing
(50) into (41) we obtain

−v0U ′ + µ1UU ′+ µ2k2U ′′′ = 0, (51)

where a prime denotes the derivative of the correspond-
ing quantity with respect to ζ . Integrating (51) with
respect to ζ and using the localization condition, i. e.,
U → 0 as ζ →±∞, we have

U ′′ − v0

µ2k2 U +
µ1

2µ2k2 U2 = 0. (52)

It is a common practice to employ the hyperbolic tan-
gent method in solving this type of wave equations.
For this purpose we introduce the coordinate transfor-
mation

y = tanhζ . (53)

The finite power series solution of (52) in the variable
y, which satisfies the regularity conditions U → 0 as
y →±1, can be expressed as

U = a(1− y2), (54)
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where a is the constant wave amplitude. Noting the dif-
ferential relation d/dζ = (1− y2)d/dy, we have

U ′′ = a(−2+ 8y2−6y4). (55)

Introducing (54) and (55) into (52) and setting the co-
efficients of like powers of y equal to zero, we obtain

k =
(

µ1a
12µ2

)1/2

, v0 =
µ1a
3

. (56)

Thus, the solution for the first-order equation is given
by

U = asech2ζ , ζ =
(

µ1a
12µ2

)1/2 (
ξ − µ1a

3
τ
)

. (57)

To obtain the solution for the second-order term, we
first introduce (50) into (48), which results in

−kv0V ′ + kµ1(UV )′ + µ2k3V ′′′ +S(U) = 0. (58)

Integrating (58) with respect to ζ and using the local-
ization conditions, we have

−v0V + µ1(UV )+ µ2k2V ′′ + T (U) = 0, (59)

where the function T (U) is defined by

T (U) =
[(

3
2λθ

− β2

β1

)
h0(τ)− v0g1(τ)

]
U

+
1
3

[
3β3

2β1
+

5
2λθ

(
µ1 − 3

λθ

)]
U3

+ k2
(

µ2

2λθ
− α1

β1

)[
1
2
(U ′)2 +UU ′′

]

− v0k2
(

3
2

µ2 − α0

λθ λzβ1

)
U ′′

− v0

2

(
µ1

2
+

1
λθ

+
β2

β1

)
U2. (60)

For the solution of (60) we shall again employ the hy-
perbolic tangent method and introduce the following
finite power series as the particular solution of the dif-
ferential equation (59) for the function V , which satis-
fies the localization condition

V = (1− y2)(a0 + a2y2), (61)

where a0, a2 are some constants to be determined by
introducing (61) into (59). Noting the derivative of V

V ′′ = 2(a2 −a0)+ (8a0−20a2)y2

+(38a2−6a0)y4 −20a2y6,
(62)

introducing this expression into (59) and setting the
coefficients of like powers of y equal to zero we ob-
tain

a0 = δ1a2,

δ1 = − 1
2µ1

[
3β3

2β1
+

5
2λθ

(
µ1 − 3

λθ

)]

− µ1

3µ2

(
3
2

µ2 − α0

β1

)
+

1
3

(
µ1

2
+

1
λθ

+
β2

β1

)
,

a2 = δ2a2,

δ2 = − 1
2µ1

[
3β3

2β1
+

5
2λθ

(
µ1 − 3

λθ

)]

+
1
µ2

(
µ2

2λθ
− α1

β1

)
,

g1(τ) =
3

µ1a

(
3

2λθ
− β2

β1

)
h0(τ)

− µ1

3µ2

(
3
2

µ2 − α0

β1

)
a. (63)

Thus, the particular solution may be expressed as

u2 = V = a2(δ1 + δ2 tanh2 ζ )sech2ζ . (64)

Here, it can be shown that a1 sech2ζ tanhζ is the ho-
mogeneous solution of the differential equation (59).
As stated before, the requirement of localized travel-
ling wave solution made it possible to determine the
scaling function g1(τ). As had been pointed out in [16],
without introducing the scaling function, the study of
higher-order terms in perturbation expansion leads to
some secularities in the solution. By use of the concept
of scaling function these secularities are removed. As
can be seen from (63)3 the scaling function g1(τ) also
depends on the change of the tube radius.

The total solution up to ε 2-order terms may be given
by

u = ε asech2ζ [1+ ε a(δ1 + δ2 tanh2 ζ )]+ O(ε3),

ζ =
(

µ1a
12µ2

)1/2 [
ε1/2(z− ct)− µ1 a

3
τ
]
, (65)

where z and τ are related to each other by

ε3/2z =
[

1+ ε
µ1

2µ2

(
3
2

µ2 − α0

β1

)
a

]
τ

−ε
3σ

µ1κa

(
3

2λθ
− β2

β1

)[
tan−1(sechκτ)− π

4

]
.

(66)
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Fig. 1. The variation of the radial displace-
ment with the space parameter τ for three
values of the stenosis parameter σ .

Similar expressions may be given for the axial velocity
w and the fluid pressure p.

As can be seen from the definition of the phase func-
tion ζ = k[ε1/2(z − ct)− µ1aτ(z)/3], the wave front
is not a plane anymore, it is rather a cylindrical sur-
face in the (z, t) plane. This is of course the result of
the stenosis in the tube. Noting the differential relation
dτ = ε3/2g(τ)dz, which can be obtained from (22), the
speed vp of the propagation may be defined by

vp =
c

1− ε
µ1a
3

g(τ)
. (67)

Recalling the perturbation expansion of g(τ), up to the
O(ε) approximation it reads

vp =
c

1− µ1a
3 [ε + ε2g1(τ)]

, (68)

where g1(τ) is given in (63)3.

4. Numerical Results and Discussion

In order to see the effects of a stenosis on the wave
speed one has to know the numerical values of the co-
efficients α0, β1, β2, µ1 and µ2. For that reason one

must know the constitutive relation of the tube mate-
rial. In this work we shall utilize the constitutive rela-
tion proposed by Demiray [17] for soft biological tis-
sues. Following Demiray [17], the strain energy den-
sity function may be expressed as

Σ =
1

2α
{exp[α(I1 −3)]−1}, (69)

where α is a material constant and I1 is the first in-
variant of the Finger deformation tensor and defined
by I1 = λ 2

z + λ 2
θ + 1/λ 2

z λ 2
θ . Introducing (69) into (35)

and (36), the coefficients α0, β0, β1 and β2 an β3 are
obtained as

α0 =
1

λθ

(
λz − 1

λ 2
θ λ 3

z

)
G(λθ ,λz),

β0 =
[

1

λ 4
θ λ 3

z
+ α

(
1− 1

λ 4
θ λ 2

z

)(
λz − 1

λ 2
θ λ 3

z

)]

· G(λθ ,λz),

β1 =
[

4

λ 5
θ λ 3

z
+ 2

α
λθλz

(
λθ − 1

λ 3
θ λ 2

z

)2]
G(λθ ,λz),
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Fig. 2. The variation of the radial displace-
ment u with time t for z = 1.0.

β2 =
[
− 10

λ 6
θ λ 3

z
+

α
λθ λz

(
λθ − 1

λ 3
θ λ 2

z

)(
1+

11

λ 4
θ λ 2

z

)

+ 2
α2

λθ λz

(
λθ − 1

λ 3
θ λ 2

z

)3]
G(λθ ,λz),

β3 =
[

20

λ 7
θ λ 5

z
+

4α
λ 5

θ λ 3
z

(
−5+

9

λ 4
θ λ 2

z

)

+
2α2

λθ λz

(
1+

7

λ 4
θ λ 2

z

)(
λθ − 1

λ 3
θ λ 2

z

)2

+
4
3

α3

λθ λz

(
λθ − 1

λ 3
θ λ 2

z

)4]
G(λθ ,λz),

where the function G is defined by

G(λθ ,λθ ) = exp

[
α

(
λ 2

θ + λ 2
z +

1

λ 2
θ λ 2

z
−3

)]
. (70)

For the static case, the present model was compared
by Demiray [18] with the measurements by Simon et
al. [19] on canine abdominal artery with the charac-
teristics Ri = 0.31 cm, R0 = 0.38 cm and λz = 1.53,
and the value of the material constant α was found to
be α = 1.948. Using this numerical value of the coef-
ficient α , the values of µ1, µ2, α0/β1, α1/β1, β2/β1,
β3/β1, δ1, δ2 and c are calculated numerically for

λθ = λz = 1.6, m = 0.1, and the result is found to be

µ1 = 4.911, µ2 = −0.0363, α0/β1 = 0.266,

α1/β1 = 0.540, β2/β1 = 3.348, β3/β1 = 8.071,

δ1 = −16.456, δ2 = 13.183, c = 15.39.

(71)

Here we note that the numerical value of the coefficient
µ2 is negative. In order to have a real k, given in (56),
the sign of the amplitude a must be negative.

Using these values in the expression of g1(τ) we
have

g1(τ) = −1.473
a

h0(τ)−14.45a. (72)

Introducing this expression of g1(τ) into the equation
(68), the displacement u and the wave speed vp for the
smallness parameter ε = 0.5 and the wave amplitude
a = −1 take the following form:

u = sech2ζ (−4.614+ 3.296tanh2 ζ ),

vp =
15.39

7.733+ 0.603h0(τ)
=

1.99
1+ 0.08σ sechκτ

.
(73)

For the numerical calculations we also need the expres-
sion of z relating to the variable of τ , which follows
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Fig. 3. The variation of the wave speed
vp with the space parameter τ for three
values of the stenosis parameter σ .

from (66) as

z =−27.79τ−2.08
σ
κ

[
tan−1(sechκ τ)− π

4

]
. (74)

The radial displacement, up to O(ε 3), is calculated
for various parameters and the results are depicted in
Figs. 1 and 2. Figure 1 shows the variation of the ra-
dial displacement with the space parameter τ for three
values of the stenosis parameter σ at a fixed time, i.e.
t = 1.0 and κ = 1.0. It is seen from this graph that the
wave profile moves to the right for larger values of the
stenosis parameter σ . Figure 2 explains the variation
of the radial displacement u with the time parameter
t, for a fixed space variable z, i. e. z = 1.0. This figure
shows that the variation of of the radial displacement
with time is not so sensitive to the stenosis parame-
ter σ . For the values of σ = 1.0, 5.0, 10.0 the variations

of the radial displacement with the time parameter t are
almost the same.

The variation of wave speed with the distance pa-
rameter τ for various values of σ , which characterizes
the amplitude of the stenosis, and for κ = 1 is depicted
in Figure 3. As the figure reveals, at the center of the
stenosis the wave speed decreases with increasing am-
plitude of the stenosis. As can be seen from the fig-
ure, the effect of stenosis to the wave speed at mod-
erately far distances, e. g. τ = 5 units, from the center
of stenosis is negligibly small. As a matter of fact, for
ε = 0.5 and for an arterial radius of 0.5 cm this dis-
tance is about 6 cm.
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