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Abstract: - In hardware implementations of Gaussian Potential Function Neural Networks (GPFNN), deviation 
from ideal network parameters is inevitable because of the techniques used for parameter storage and 
implementation of the functions electronically, resulting in loss of accuracy. This loss in accuracy can be 
represented by quantization of the network parameters. In order to predict this effect, theoretical approaches are 
proposed. One-input, one-output GPFNN with one hidden layer have been trained as function approximators 
using the Gradient Descent algorithm. After the training, the network parameters (means and standard 
deviations of the hidden units and the connection weights) are quantized up to 16-bits in order to observe the 
percentage error on network output stemming from parameter quantization. Simulation results are compared 
with the predictions of the theoretical approach. Consequently, the behaviour of the network output has been 
given with combined and separate parameter quantizations. Moreover, given the allowed percentage error for 
the network, a method is proposed where the minimum number of bits required for quantization of each 
parameter could be determined based on the theoretical predictions. 
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1 Introduction 
One of the challenging problems encountered in the 
design of neural network circuitry is the storage of 
parameters. Due to the techniques used for parameter 
storage such as digital memories, capacitors, and 
transistors, deviation from ideal network parameters 
is inevitable. As an example, quantization of ideal 
network parameters for easier storage may lead to a 
remarkable level of inaccuracy in hardware 
implementation of neural networks. Learning 
algorithms that are efficiently implemented on 
general-purpose digital computers encounter great 
difficulties while mapped onto VLSI hardware: 
deviations of parameters may significantly affect the 
performance of the trained system unless the more 
costly “chip in the loop” training is performed. A 
serious problem here is to predict the upper bound of 
inaccuracy to ensure a certain performance during 
the training stage. The remedy is to investigate the 
parameter quantization effects on neural network 
output and to provide an analytic solution based on 

probabilistic analysis for prediction of these effects. 
Such an analysis for multilayer perceptron neural 
networks has been carried out by several researchers 
[1, 2]. In this work, parameter quantization effects 
will be investigated and predicted for GPFNN. 
 GPFNN are considered in virtue of their wide 
usage for both supervised and unsupervised types of 
learning. They are used for function approximation 
where the highly nonlinear Gaussian basis functions 
provide good locality for incremental learning. 
GPFNN are also used where a similarity measure has 
to be computed such as in classification and self-
organization problems. Section 2 investigates the 
parameter quantization effects for a specific network, 
and a theoretical approach based on a probabilistic 
analysis is provided in order to predict network error 
resulting from parameter quantization. Next, results 
obtained for both experimental and theoretical 
methods are given where the network parameters 
(mean and standard deviation parameters of 
Gaussian activation function and the weights on the 



output synapses,) are quantized up to 16-bits to 
observe the network performance. In the conclusion, 
results are summarized and an optimization method 
is proposed, in which, given the percentage error, the 
optimum number of bits for each parameter 
quantization is found using the predictions of the 
theoretical approach. 
 
 
2 The Effects of Neural Network 
Parameter Quantization 
A single input - single output Gaussian Potential 
Function Network (GPFN) is considered for the 
analysis of parameter quantization on network 
performance. The Gradient Descent algorithm is 
used to train the network as a function approximator. 
After the training, the network parameters (which are 
the means and standard deviations of the hidden 
units and the connection weights) are quantized to 
observe the error on network output stemming from 
parameter quantization. This is performed separately 
on all parameters first, then together. Then, 
theoretical and experimental percentage error (PE) 
on the output is calculated for each parameters 
quantization. For this purpose, a theoretical approach 
will be derived to predict the network error resulting 
from parameter quantization. 
 In the following, 0

1x  is the input to the neural 
network, 0

iy  is the input to each hidden unit, 1
ix  is the 

output of each hidden unit, w are the weights, y1is the 
output of the neural network. The weights on the 
synapses connecting the input node to hidden nodes 
are equal to one, hence 
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Then, the network output is, 
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The experimental percentage error calculation will 
be carried out by the following formula, 
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where noiseσ  is the standard deviation of the 
quantization error which is considered as a noise on 
desired signals. 
 In the following sections, derivation of the 
standard deviation of the error and of the desired 
output will be given for each parameter perturbation 
of the network, namely the mean, standard deviation, 
and weights. 

2.1 Weight Quantization Effects 
The weight values are assumed to have a uniform 
distribution between -max(w) and max(w) where 
max(w) is the maximum weight value obtained from 
simulation results [1, 2]. Distribution parameters of 
connection weights are found as follows [2]: 
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The weight quantization effect on the network output 
can be expressed by the following: 
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and the error on the network output becomes, 
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where 1iw∆ is the quantization error (noise) of the 
weights. Quantization error has a uniform probability 
distribution between - w∆ /2 and + w∆ /2 

where
12

2 max

−
=∆

Bw
w  is the quantization increment 

with wmax being the upper bound of the quantization 
interval and B is the number of bits used in 
quantization. The distribution parameters of 
quantization error are found as follows [2]: 
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The variance of the error in network output is 
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Since ( ) 0=∆wE , the variance of the error becomes, 
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Similarly, variance of the actual network output is, 
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Since ( ) 0=wE , then 
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The percentage error due to weight quantization can 
be expressed as 
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and using (6) and (10), PE is found as follows: 
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2.2 Mean Value Quantization Effects 
The input of the network is assumed to be time, 
varying in the interval [0, 2L], where 2L is the period 
in which the function is to be approximated by the 
neural network. Hence, it is conceivable that the 
network input and mean values of the hidden units 
will have a uniform probability distribution between 
0 and 2L (this assertion will be modified in Section 
3, in order to get an upper bound estimate for the 
quantization effect): mean and standard deviation of 
the network input and mean (center values) above 
can easily be found as: 
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and distribution parameters of quantization error, 
m∆ , are similar to those of w∆ . 

 In order to eliminate the exponential term in the 
Gaussian activation function for easier mathematical 
manipulation, Taylor series expansion of ae  around 
a=0 will be used, then the activation function 
becomes 
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The mean quantization effect on the network output 
can be expressed in the following form: 
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Finally one finds the error in the network output as: 
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Variance of a function of n independent random 
variables, say ( )nXXHZ ,...,1=  with ( )  iiXE µ=  and 

( ) 2
iiXV σ= , is given by the following: 
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where all the partial derivatives are evaluated at the 
point ( )nµµ ,...,1 . By applying (22), the standard 
deviation of the error becomes, 
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where parameters with overbars indicate the 
variables’ expected values. In Section 3, it will be 
shown how to determine the expected values. 
 According to (14), ( )1ixE  is required to be 
calculated in order to find the variance of the output 
obtained without parameter quantization. The 
expected value of hidden unit output, ( )1ixE , is found 
according to the approach derived in [2]. First, the 
cumulative distribution function for x is derived. 
Then the pdf of x is found and the expected value of 
x becomes, 
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After some mathematical manipulation this yields 
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Then, substituting (25) into (14), the standard 
deviation of the output becomes, 
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Finally, by substituting (26) into (4), percentage 
error (PE) is found as follows, 
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2.3 Quantization Effects of Standard 
Deviation 
Similar to mean quantization, quantization effect of 
standard deviation on the network output can be 
expressed in (16) and distribution parameters of 
quantization error, s∆ are similar to those of w∆ . 
 By using the Taylor approximation, error on the 
network output can be expressed by, 
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and by applying (22), the standard deviation of error 
on the network output is found as, 
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Finally, by substituting the equations (26) and (29) 
into (4), percentage error (PE) is found as follows, 
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When all parameters, mean, standard deviation and 
weights, are quantized together, each quantization 
will contribute to the error on the network 
independent of each other [1]. Hence, a worst case 
(upper bound) estimate of the percentage error 
caused by quantization of all parameters will be the 
sum of percentage errors caused by quantization of 
each parameter: 

( ) ( ) ( )smw PEPEPEPE ++≤         (31) 
 
 
3 Simulation Experiments 
After having derived the theoretical methods for the 
prediction of network parameter quantization effects, 
comparison of the theoretical results to the 
simulation results will be presented. The GPFNN 
used in the simulation has been trained as a function 
approximator. Simulations are carried out for several 
periodic (sin(x), sin(x)*cos(x), etc. over [0,2π]) and 
non-periodic functions (f(x)=x(x-1)(x-1.5)(x-2.5)(x-
3) over [0,3]) for different numbers of hidden units. 
In the following, results for sin(x)*cos(x) and for the 
polynomial with N=14 hidden units are given. The 
neural networks are trained by software using 32-bit 
precision for a rms error of less than 0.1%. 
 
 
3.1 Results for sin(x)*cos(x): 
For the theoretical results, two different approaches 
will be used for the function sin(x)*cos(x) (and 
similar periodic functions). In the following, the 
expected values for the parameters, weight and 
mean, obtained from (5) and (17) will not be directly 
used for the terms w  and m , since this will cause 
(27) and (30) to be equal to zero. It is obvious that 
this would happen if all the Gaussians were identical 
to each other and equally spaced. Instead, they will 
be evaluated on two different sets for the terms, w , 
m  and s  in order to compute the upper bound for 
the possible percentage error. In the first approach, 
the terms w  and s  are directly evaluated from the 
training results as s =mean(s) and w =mean(w) where 

)(smean  and )(wmean  are the arithmetical mean of 
standard deviation and center values of hidden units 
obtained from simulation results. m  is chosen as 
follows: Assume that the interval of interest is 
covered by N Gaussians in such a way that the center 

of each one coincides with its neighbouring 
Gaussian’s tail at the level of only 1/e2 ≈ 10% of the 
neighbour’s maximum. Hence, the maximum 
distance between the centers of two Gaussians 
becomes 2s . Therefore, the maximum deviation of 
the average of the centers can be taken as 2s , 
implying that 

2sm π=                         (32) 
This value of m also agrees well with the average of 
the centers obtained from simulations, )(mmean . 
Substituting (32) into (27) and (30) yields, 
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In the second approach, w  and s  are chosen 
empirically. From several simulation runs with 
employing different number of hidden units, it has 
been observed that 
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Intiutively, s  should also be given by the formula 

N
Lks =                            (36) 

where k is a measure of the “complexity” of the 
problem. As the function exhibits more fluctuations, 
i.e. becomes more “complex”, the standard 
deviations of the Gaussians have to be smaller for 
attaining the required locality and preserving the 
generalization ability of GPFNN. For the function 
sin(x), k=2/3 and for sin(x)cos(x), k=1/2. Finally, m  
is calculated as given by (32). 
 
 
3.2 Results for the polynomial 
The polynomial f(x)=x(x-1)(x-1.5)(x-2.5)(x-3) is not 
symmetrical with respect to any point in[0,3]. It also 
has a non-zero average value, thus, the expected 
value of the weight values will not be zero. Then it 
becomes necessary to consider the variance of the 
hidden units’ outputs in (14). We can assume, 
however, that the weight values are uniformly 
distributed between the maximum weight value, 
max(w), and the minimum weight value, min(w), 
obtained from simulation results. Then, the 



distribution parameters of connection weights are 
found as follows: 
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Using (12) and (14) percentage error for weight 
quantization can be expressed as 
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Since E(w)≠0, the variance of hidden units’ output, 
V(x), has to be calculated to be used in (39): 
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where a and b are the lower and upper bounds of the 
interval of the function respectively. For our 
problem, this is obtained after some mathematical 
manipulation as 
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where σ/)(2 mbx −= , σ/)(1 max −= , and 
2/)(2 abL += . The percentage error for the mean 

value and standard deviation quantization can be 
found similar to (33) and (34) where w , m  and 
s are computed using the two approaches as in the 
previous example. 
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 In the next column, effects of parameter 
quantization are given as the graph of the 
“percentage error” versus the “number of bits used”, 
in logarithmic scale for the sin(x)*cos(x) problem. 
For mean and standard deviation quantization, both 
theoretical approaches are compared to the 
simulation results. During the simulations, first, each 
parameter of interest is quantized separately (Figures 
1, 2, 3.) Then, all parameters are quantized in Fig. 4. 

All graphs displayed exponential behaviour, that is 
why a normalized logarithmic scale is used. 
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Fig. 1 Weight Quantization Error 
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Fig. 2 Mean Quantization Error 
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Fig. 3 Standard Deviation Quantization Error 
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Fig. 4 Weight-Mean-Standard Deviation 
Quantization Error 
 
 



4 Results and Conclusion 
In this work, the GPFN was trained with the 
Gradient Descent algorithm for several different 
function approximation examples. In order to 
observe the network performance affected by 
parameter quantization, network parameters, which 
are the connection weights, means and standard 
deviation of hidden units, were disturbed with up to 
16-bit quantization noise. This was performed on all 
parameters first separately, then together and it was 
observed that the performance of the resultant 
network was degraded by quantization noise and 
showed an exponential dependence on resolution. 
The same bahaviour has also been reported in [2] for 
multilayer perceptron neural networks. 
 Two theoretical approaches are derived in order 
to predict the behaviour of network performance 
affected by parameter quantization noise based on 
statistical analysis of network parameters. Both 
approaches for theoretical predictions almost 
coincided. This indicates that the estimation 
proposed for the placement of Gaussian hiddens for 
the functions is in accordance with the real case. It 
was also seen that both theoretical approaches agreed 
well with simulations. It has been also shown in the 
simulations that the network performance exhibits 
exponential dependence on resolution and was 
degraded with decreasing resolution.  
 It was observed that quantization noise on 
connection weights and means of the hidden units 
plays an important role on network performance. The 
performance was satisfactory only with 8 or greater 
of number of bits quantization on these parameters. 
On the other hand, the network performance did not 
degrade markedly with standard deviation 
quantization as compared to other parameter 
quantizations. Similar precision requirements are 
also reported in [3]. 
 Given the required percentage error of the 
network, minimum number of bits for each 
parameter quantization can be determined based on 
the theoretical results. Table 1 shows an example of 
such determination based on the results of second 
theoretical approach obtained by training the 
network. As can be seen from Table 1, to provide the 
required performance, the minimum number of bits 
per parameter quantization can be determined in 
several ways. For instance, to ensure a percentage 
error of 2 per cent, while one set of quantization bits 
would be {8,8,6}, the other one would be {7,10,6}. 
Moreover, an optimization could be applied to the 
following cost function that takes the hardware area 
cost for each parameter into account. 

Cost= k1Bw+k2Bm+k3Bs               (44) 
where k1, k2, and k3 are the area requirements for 
each weight that may depend on the implementation 
style. By minimizing the cost, optimum number of 
bits for each parameter can be found. As an example, 
the area requirement per bit for each parameter is the 
same in a DAC (Digital to Analog Converter) style 
parameter storage system. Hence the cost to be 
minimized is simply the sum of the bit counts for the 
parameters [4]. 
 The main outcomes of the approach here can be 
stated as follows: time can be saved for predicting 
the effects of quantization by employing the semi-
analytic approach. These results can be used in 
designing the architecture of the hardware. 
Furthermore, these results give some insight on how 
the quantization of the parameters affect the overall 
behaviour of the network. However, small 
modifications are necessary depending on the 
characteristics of the function to be approximated. 
As a future study, the techniques developed for 
predicting the network error against parameter 
quantization in approximation problem could be 
extended to other kinds of problems. 
 
Table 1 Determination of minimum number of bits 
per parameter for a given percentage error for sin(x). 
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Weight Mean 
Standard 
Deviation Approx. 

Total 
% Error  

PE 
No of 
Bits 

 
PE 

No of 
Bits 

 
PE 

No of 
Bits 

1.00% >=7 7.50% >=5 1.50% >=5 ~10% 
4.50% >=5 4.00% >=6 1.50% >=5 
0.60% >=8 0.90% >=8 0.80% >=6 ~2% 1.00% >=7 0.20% >=10 0.80% >=6 


