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SPARSE CHANNEL ESTIMATION AND DATA DETECTION ALGORITHMS 

FOR OFDM-BASED UNDERWATER ACOUSTIC COMMUNICATION SYSTEMS 

 

 

ABSTRACT 

Communication over acoustic signals in underwater results into a multi-scale multi-

lag channels, which occurs due to the multipath propagation. Hence, a robust 

channel estimation technique has to be present at the receiver, and the solutions of 

the terrestrial-based systems are not applicable. In this work, using path-based 

channel model that characterizes underwater channels by a delay, a Doppler shift, 

and an attenuation factors, three new pilot assisted, time domain-based channel 

estimation algorithms are proposed for single-input single-output communication-

based and diversity communication-based underwater acoustic systems. The 

multicarrier transmission technique assumed is OFDM. In addition, depending on 

the base stations deployment in underwater, the sparse underwater channels 

undergo Rician or Rayleigh fading, where channels in this work are generated using 

Bellhop software. In the first two proposed approach, the overall sparse channel tap 

delays and constant Doppler shifts are estimated using Matching Pursuit and 

Orthogonal Matching Pursuit algorithms, where the sparse complex channel path 

gain vector is estimated by maximum a posteriori probability (MAP) technique, and 

the prior densities of the channel gains follow Rician distribution with unknown 

mean and variance vectors, where Maximum Likelihood is proposed for their 

estimation. The first approach considers a colored noise and uniform Doppler 

spread, and the second approach considers a non-uniform Doppler shifts with white 

noise. The third proposed approach considers transmitter diversity with Alamouti’s 

coding, where the channel estimator iteratively estimates the complex channel 

parameters of each subcarrier using the expectation maximization method, which 

in turn converges to a true maximum a posteriori probability estimation of the 

unknown channel, where Karhunen-Loeve expansion and ESPRIT algorithm are 

assumed for complexity reduction and delay estimation, respectively. Finally, in 
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order to assess the performance of the proposed algorithms, the computer 

simulations show the behavior in terms of mean square error and symbol error rate. 

 

Keywords:  Channel estimation, detection, equalization, underwater acoustic 

communication, Alamouti coding, space-time coding, expectation maximization 

algorithm, maximum a posteriori channel estimation. 
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DFBÇ TABANLI SUALTI AKUSTİK HABERLEŞME SİSTEMLERİ İÇİN SEYREK 

KANAL KESTİRİMİ VE VERİ TESPİT ALGORİTMALARI 

 

 

ÖZET 

Sualtındaki akustik sinyallerle haberleşme çokyollu yayılımdan dolayı çok ölçekli 

çok gecikmeli kanallara yol açmaktadır. Bu nedenle, kara tabanlı çözümler 

uygulanamamakta ve alıcı tarafında kuvvetli kanal kestirim teknikleri 

sunulmalıdır.  Bu çalışmada, tek girişli tek çıkışlı haberleşme tabanlı ve çeşitli 

haberleşme tabanlı sualtı akustik sistemleri için sualtı kannallarını gecikme, 

Doppler kayması ve sönümleme unsuru ile karakterize eden yol tabanlı kanal 

modeli kullanılarak iki yeni kılavuz yardımcılı, zaman bölgesi tabanlı kanal 

kestirim algoritmaları önerilmiştir. Çok-taşıyıcılı verici tekniği olarak dikey 

frekans bölmeli çoklama (DFBÇ) kabul edilmiştir. Ek olarak, baz istasyonlarının 

konuşlanmalarına bağlı olarak, seyrek sualtı kanalları Rician veya Rayleigh 

sönümlemesine uğramaktadır ve her ikisi de bu çalışmada göz önünde 

bulundurulmuştur ve Bellhop yazılımı bunların üretimi için kullanılmıştır. İlk 

önerilen yaklaşımda, seyrek karmaşık kanal yol kazanç vektörünün maksimum 

sonsal olasılık (MSO) tekniğiyle kestirildiği durumda, kanal kazancının öncelikli 

yoğunluğunun bilinmeyen ortalama gradiyent ve varyans vektörlerine sahip Rician 

dağılımı takip ettiği ve bunların kestirimi için enbüyük olabilirlik (EO) tekniğinin 

önerildiği durumda genel seyrek kanal çıkma gecikmeleri ve sabit Doppler 

kaymaları Matching Pursuit (MP) algoritması kullanılarak kestirilmiştir. İlk 

yaklaşıma bir genişletme yapılmış, algoritmada düzensiz Doppler kayması 

değerlendirilmiş ve Orthogonal Matching Pursuit (OMP) kullanışmıştır. İkinci 

önerilen yaklaşımda ise Alamouti kodlamasıyla verici çeşitliliği değerlendirilmiş, 

kanal kestirici tekrarlı olarak her bir alt taşıyıcının karmaşık kanal parametrelerini 

beklenti maksimizasyonu (BM) metoduyla kestirmekte olup, bilinmeyen kanalın 

kestirimi doğru maksimum sonsal olasılık (MSO) kestirimine yakınsamış, ve 

karmaşıklık azaltmak ve gecikme hesabı için sırasıyla Karhunen-Loeve genişletmesi 
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ve ESPRIT algoritması kabul edilmiştir. Son olarak, önerilmiş algoritmanın 

performansını değerlendirmek için bilgisayar benzetimleriyle sistem davranışı 

ortalama karesel hata (OKH) ve işaret hata oranı (İHO) cinsinden gösterilmiştir. 

 

Anahtar Sözcükler: Kanal kestirimi, belirleme, eşitleme, sualtı akustik haberleşme, 

Alamouti kodlama, uzay-zaman kodlama, beklenti maksimizasyonu algoritması, 

maksimum sonsal olasılık kestirimi 

  



 

v 

 

ACKNOWLEDGMENTS 

Praises and thankfulness to Allah, the most merciful and most compassionate for the great 

bounties bestowed upon me and granting me the strength to seek knowledge. A PhD 

thesis is a singularly authored document, but not one that is written in isolation. I would 

like to start with expressing my sincere gratitude to my thesis advisor Prof. Dr. Erdal 

PANAYIRCI for his beneficial advices, incessant encouragement, enduring patience, and 

constant support. I am indebted to Prof. PANAYIRCI for providing me with clear 

explanations and always giving me his time. It was a great honor for me to serve as a 

teaching and research assistant during my doctorate studies at Kadir Has University. 

However, I would like to show my appreciation to the members of the school of science 

and engineering faculty, notably, my admiration for Assoc. Prof. Serhat ERKÜÇÜK and 

Assoc. Prof. Metin ŞENGÜL for their encouragements along my PhD studies. In 

addition, I would like to thank Asst. Prof. Atilla ÖZMEN and Asst. Prof. Selçuk 

ÖĞRENCİ for their kindness and friendliness when I was attending their courses as an 

assistant in the lab. I would like to thank Asst. Prof. Bahattin KARAKAYA from Istanbul 

University, for his guidance and help in setting up Bellhop software. I also would like to 

show my appreciation to my colleagues at Kadir Has University and say “good luck to 

all of you. Working with you guys was an advantageous for me and full of fun”. Last but 

not the least, I would like to show my appreciation to my family, my mother, my sisters 

and their lovely families. 

This work would not have been possible without support from the Suasis as a sub-contract 

of the Turkish Scientific and Research Council (TUBITAK) under Grant 1140029, and 

in part by the U.S. National Science Foundation under Grant CCF-1420575, and in part 

by KAUST under grant No. OSR-2016-CRG 5-2958-02. 

  



 

vi 

 

LIST OF TABLES 

Table 2.1Comparison of acoustic, EM and optical waves in underwater medium ........... 8 

Table 3.1Computational complexity details ................................................................... 39 
Table 3.2 Channel and simulation parameters for Sapanca Lake ................................... 44 

  



 

vii 

 

LIST OF FIGURES 

Figure 2.1 Illustration of the overall AQUO methodology. ............................................ 13 

Figure 2.2 Short-range propagation. ............................................................................... 16 
Figure 2.3 Long-range propagation................................................................................. 16 
Figure 3.1 Block diagram of the MP-MAP channel estimation and equalization 

algorithm. ........................................................................................................................ 38 
Figure 3.2 Source and destination stations in Sapanca Lake .......................................... 40 

Figure 3.3 Ray tracing for a range of 5km ...................................................................... 41 
Figure 3.4 Sound speed profile for Sapanca Lake .......................................................... 42 

Figure 3.5 CIR for a range of 5km. (a) Original CIR with 607 paths; (b) Clustered paths 

with 79 clusters; (c) L = 3, delay spread = 28.5383 ms (normalized); (d) L = 5, delay 

spread = 28.5383 ms (normalized). ................................................................................. 43 
Figure 3.6 MSE vs. SNR performance comparisons of the MP-MAP and MP algorithms 

for different constellations: 𝜚 = 8, 𝑏𝑚𝑎𝑥 =  10 − 3, 𝛥𝑝 = 4. ....................................... 45 
Figure 3.7 SER vs. SNR performance comparisons of the MP-MAP and MP algorithms 

for different constellations: 𝜚 = 8, 𝑏𝑚𝑎𝑥 =  10 − 3, 𝛥𝑝 = 4. ....................................... 45 
Figure 3.8 MSE vs. SNR performance of the MP-MAP algorithm for different 

resolution factors: 𝑏𝑚𝑎𝑥 =  10 − 3, 𝛥𝑝 = 4, 16QAM signaling. .................................. 46 

Figure 3.9 SER vs. SNR performance of the MP-MAP algorithm for different resolution 

factors: 𝑏𝑚𝑎𝑥 =  10 − 3, 𝛥𝑝 = 4,16QAM signaling. .................................................... 46 
Figure 3.10 MSE vs. SNR performance of the MP-MAP algorithm for different Doppler 

rates: 𝜚 = 8, 𝛥𝑝 = 4, 16QAM signaling. ........................................................................ 47 
Figure 3.11 SER vs. SNR performance of the MP-MAP algorithm for different Doppler 

rates: 𝜚 = 8, 𝛥𝑝 = 4, 16QAM signaling. ........................................................................ 47 
Figure 3.12 MSE vs. SNR performance of the MP-MAP algorithm for different pilot 

spacings: 𝜚 = 16, 𝑏𝑚𝑎𝑥 =  10 − 3, 16QAM signaling. ................................................ 48 
Figure 3.13  SER vs. SNR performance of the MP-MAP algorithm for different pilot 

spacings: 𝜚 = 16, 𝑏𝑚𝑎𝑥 =  10 − 3, 16QAM signaling. ................................................ 48 
Figure 3.14 Block diagram of the OMP-MAP channel estimation and equalization 

algorithm ......................................................................................................................... 49 
Figure 3.15 MSE vs. SNR performance comparisons of the OMP-MAP and OMP 

algorithms for different constellations: 𝜚 = 4, 𝑏𝑚𝑎𝑥 =  10 − 4, 𝛥𝑝 = 4. ..................... 51 
Figure 3.16 SER vs. SNR performance comparisons of the OMP-MAP and OMP 

algorithms for different constellations: 𝜚 = 4, 𝑏𝑚𝑎𝑥 =  10 − 4, 𝛥𝑝 = 4. ..................... 52 
Figure 3.17 MSE vs. SNR performances of the OMP-MAP and OMP algorithms for 

different resolution factors: 𝑏𝑚𝑎𝑥 =  10 − 3, 𝛥𝑝 = 4,16QAM signaling. .................... 53 
Figure 3.18 SER vs. SNR performances of the OMP-MAP and OMP algorithms for 

different resolution factors: 𝑏𝑚𝑎𝑥 =  10 − 3, 𝛥𝑝 = 4,16QAM signaling. .................... 53 
Figure 3.19 MSE vs. Doppler rate performances of the OMP-MAP and OMP algorithms 

for different Doppler rates: 𝜚 = 8, 𝛥𝑝 = 4, 16QAM signaling. ..................................... 54 
Figure 3.20 SER vs. Doppler rate performances of the OMP-MAP and OMP algorithms 

for different Doppler rates: 𝜚 = 8, 𝛥𝑝 = 4, 16QAM signaling. ..................................... 54 
Figure 3.21 SER vs. SNR performance of the OMP-MAP algorithm for different pilot 

spacings: 𝜚 = 4, 𝑏𝑚𝑎𝑥 =  10 − 4, 16QAM signaling. .................................................. 55 
Figure 3.22 MSE vs. SNR performances of the OMP-MAP, OMP and FISTA 

algorithms with QPSK signaling, 𝜚 = 4, 𝑏𝑚𝑎𝑥 =  10 − 4, 𝛥𝑝 = 4. ............................. 56 



 

viii 

 

Figure 3.23 SER vs. SNR performances of the OMP-MAP, OMP and FISTA algorithms 

with QPSK signaling, 𝜚 = 4, 𝑏𝑚𝑎𝑥 =  10 − 4, 𝛥𝑝 = 4. ............................................... 56 
Figure 3.24 MSE vs. SNR comparisons of the OMP-MAP and OMP algorithms for 

different fading models with QPSK signaling, 𝜚 = 4, 𝑏𝑚𝑎𝑥 =  10 − 4, 𝛥𝑝 = 4 (random 

case channel). .................................................................................................................. 59 

Figure 3.25 SER vs. SNR comparisons of the OMP-MAP and OMP algorithms for 

different fading models with QPSK signaling, 𝜚 = 4, 𝑏𝑚𝑎𝑥 =  10 − 4, 𝛥𝑝 = 4 (random 

case channel). .................................................................................................................. 59 
Figure 4.1 MSE vs. SNR performance of the MAP-EM-ESPRIT algorithm for different 

residual Doppler rates b= [ 10 − 3, 5 × 10 − 3, 10 − 3] with 𝛥𝑠𝑐= 4. .......................... 73 
Figure 4.2 SER vs. SNR performance of the MAP-EM-ESPRIT algorithm for different 

residual Doppler rates b= [ 10 − 3, 5 × 10 − 3, 10 − 3]  with 𝛥𝑠𝑐= 4. ......................... 74 
Figure 4.3 MSE vs. SNR performance of the MAP-EM-ESPRIT algorithm for different 

pilot spacings 𝛥𝑠𝑐= [2, 4, 8], with b = 10 − 3Hz. .......................................................... 75 
Figure 4.4 SER vs. SNR performance of the MAP-EM-ESPRIT algorithm for different 

pilot spacings 𝛥𝑠𝑐= [2, 4, 8], with b = 10 − 3Hz. .......................................................... 75 

 

  



 

ix 

 

LIST OF ABBREVIATIONS 

Acronym Definition 

AOA Angle of Arrival  

A/D Analog-to-Digital 

BER Bit Error Rate 

BP Basic Pursuit 

CE Channel Estimation 

CFO Carrier Frequency Offset  

CIR Channel Impulse Response 

CP Cyclic Prefix 

CSI Channel State Information 

CAs Complex Additions 

CMs Complex Multiplications  

DFT Direct Fourier Transform 

EM Electromagnetic 

ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques 

FFT Fast Fourier Transform 

FISTA Fast Iterative Shrinkage-Thresholding Algorithm 

ICI Intercarrier Interference 

ISI Intersymbol Interference 

IDFT Inverse Direct Fourier Transform 

IFFT Inverse Fast Fourier Transform 

ISI Intersymbol Interference 

LMMSE  Linear Minimum Mean Square Error  

LMS Least-Mean-Squares 

LR Linear Regression 

LS Least-Squares 

LOS Line of Sight 

MAP Maximum a posteriori 

MIMO Multiple Input Multiple Output 

MISO Multiple Input Single Output 

ML Maximum Likelihood 

MP Matching Pursuit 

MSE Mean Square Error 



 

x 

 

OFDM Orthogonal Frequency Division Multiplexing 

OMP Othrogonal Matching Pursuit 

PDF Probability Density Function 

PSK  Phase-Shift Keying 

QAM Quadrature Amplitude Modulation 

QPSK Quadrature Phase Shift-Keying 

RF Radiofrequency 

RLS Recursive Least-Squares 

SAGE Space Alternating Generalized Expectation-maximization 

SER Symbol Error Rate 

SFBC Space-Frequency Block Coded 

SISO Single Input Single Output 

SNR Signal to Noise Ratio 

SSP Sound Speed Profile 

SPM Statistical Prediction Model 

SVD Singular Value Decomposition 

UASP Underwater Acoustic Signal processing 

UHF Ultra High Frequency 

UWAC Underwater Acoustic Communications 

Virtex Virtual Timeseries EXperiment 

 



 

1 

 

 

 

 

1. INTRODUCTION 

1.1 Motivation 

The surface of the earth planet is covered by more than two thirds of water including 

oceans, seas, rivers and lakes, where the need of having a robust communication system 

in the underwater environment is essential. Various applications for several domains that 

operate in aquatic environments require a wireless communication link for reporting and 

data exchange. Research laboratories and governments tend to develop this type of 

wireless communication in order to meet different applications such as submarine 

communication, seismic (tsunami) detectors, offshore oil field exploration and 

monitoring, intrusion detection for tactical surveillance (port and border security), 

maritime archaeology, data collection, environmental (pollution) monitoring and various 

of military applications that even wireless sensor networks found their way to such 

environment (Liu et al., 2008) (Chen et al., 2014.) (Zhang, et al., 2014) (Bernard and 

Meinig, 2011) (Mandalapa et al., 2016). The channel estimator design at the receiver side 

is a challenging problem in underwater due to the impairments that the signals face in 

such medium, which the overall system performance depends on it. The performance of 

an acoustical communication system in underwater depends on estimating different 

parameters regarding the communication channel, where the characteristics of the 

channel in this medium affect the channel impulse response. 

1.2 State-of-the-art on Channel Estimation Algorithms 

Different approaches are well-studied for a robust channel estimation. Space-time coding 

and multi-input multi-output (MIMO) configurations as well as orthogonal frequency 

division multiplexing (OFDM)-based communication systems, which were originally 

introduced in the context of terrestrial radiofrequency (RF) wireless communication, have 

been successfully applied to underwater communications in recent studies (Pelekanakis 
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and Baggeroer, 2011) (Li, et al., 2009). These techniques seem to be primary candidates 

for next generation UWA systems, due to their high information capacity and robustness 

to large multipath spreads (Tu, et al., 2011)  (Emre et al., 2008) and bring significant 

improvements in both throughput rate and error rate performance. On the other hand, 

when the deployment of multi transmit/receive elements is not possible due to space or 

power limitations and pathloss becomes a performance limiting factor, relay-assisted 

(cooperative) communication has also been applied to UWA systems to take advantage 

of diversity benefits. These works have been mostly focused on capacity and power 

allocation (Choudhuri and Mitra, 2009) for UWA relay channels with intersymbol 

interference (ISI), distributed channel coding and space time corporative schemes for 

UWA channels (Vajapeyam et al., 2008) (Jalil and Ghrayeb, 2014), and on channel 

estimation and equalization for amplify-and-forward cooperative relay based OFDM 

systems in UWA channels (Panayirci et al., 2016). Notably, in (Panayirci et al., 2016), 

Rayleigh fading channels between source, relay and destination, an efficient algorithm is 

developed based on the space-alternating generalized expectation-maximization (SAGE) 

technique for the latter purpose. 

The fundamental performance bounds of such systems are determined by the inherent 

characteristics of the underwater channel and by reliable channel state information (CSI) 

available at the destination, to enable high transmission speeds and high link reliability. 

However, almost all the existing works assume perfect channel estimation, which is a 

critical task in the receiver design, and is extremely challenging in the UWA 

communication context due to the large number of unknowns as a result of large delay 

and Doppler spread. A work on channel estimation of doubly selective UWA channels 

based on the use of a basis expansion model first, to reflect the time-varying nature of the 

channel (Qu and Yang, 2008) (Leus and Van Walree, 2008) through which some subspace 

algorithms, namely root-MUSIC and ESPRIT, can be applied for channel estimation (Van 

Trees, 2002) (Pesavento, et al., 2000).  

Inspired from array processing, a subspace method can be applied to determine the 

distinct path arrivals, after which the complex path gains can be estimated based on pilot 

subcarriers. However, it has been shown that these techniques work well only for channels 

that have limited Doppler-spread. Also, the number of the unknowns that need to be 

estimated increases substantially depend on the time varying nature of the UWA channel, 
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imposing substantial demands on the channel estimation (Qu and Yang, 2008) (Leus and 

Van Walree, 2008). Channels with mild or more severe Doppler distortion require 

dedicated intercarrier interference (ICI) equalization (e.g., (Li, et al., 2008) and (Huang 

et al., 2011)) and channel estimation is typically accomplished using pilots only (Li at al., 

2008), (Huang et al., 2011), (Stojanovic, 2008), or decision feedback instead or in 

addition to pilots (Li et al., 2009), (Radosevic et al., 2011). 

The channel estimation algorithms described in the recent literature have been mainly 

based on exploiting the sparse nature of UWA channels (Li and Preisig, 2007), 

(Stojanovic, 2008). Given sufficiently wide transmission bandwidth, the impulse 

response of the underwater acoustic channel is often sparse as the multipath arrivals 

become resolvable (Stojanovic, 2009). Also, in the presence of large Doppler spread, 

channel estimation algorithms have been recently shown to be highly effective, based on 

experimental results for both single-carrier (Cotter and Rao, 2002) and multi-carrier 

(Berger et al., 2010), underwater transmissions. In these works, orthogonal matching 

pursuit (OMP) and other basis pursuit (BP) variants have been tested and based on the 

simulation and experimental studies, it was shown that BP has better performance than 

OMP in the UWA environment.  

A channel estimation for relay-based UWA systems is investigated in (Panayirci et al., 

2016). The authors considered a sparse CIR and a non-Gaussian channel gains in their 

channel model. The expectation-maximization (EM) along with the matching pursuit 

(MP) algorithms were employed for the Doppler shift and the delay estimation. In (Ma et 

al., 2017), the authors adopted superposition coding with OFDM for downlink 

communication in the presence of multiple stations (sensors).  

Based on statistical representation of each underwater station’s channel state information 

(CSI), a resource allocation mechanism is proposed that obtains the transmitting power 

of each subcarrier for each user. An adaptive channel estimator based on least squares 

(LS) and recursive least-squares (RLS) is proposed in (Shi and yang, 2016). The results 

show a promising bit error rate (BER) performance and the average mean square error 

(MSE) can be obtained better than the linear minimum mean square error (LMMSE) or 

the LS. The authors of (Kumar and Sarvgaya, 2016) investigated different modulation, 

channel estimation, and channel equalization techniques for OFDM-based and pilot-

assisted UWA systems. They assumed in their simulations a channel that follows a 
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Rayleigh distribution. Their results show that QPSK, DPSK, and 16QAM are the most 

suitable modulation schemes for UWA applications. The authors of (Yu et al., 2015) 

proposed a low computational complexity channel estimation algorithm based on fast 

block-Fourier transform (FFT) and orthogonal matching pursuit (OMP) in the presence 

of large pilot spacing. In (Peng et al., 2015), the authors proposed an OMP-based 

algorithm for channel coefficients estimation with no prior CSI knowledge in the presence 

of doubly selective channel. Two different Doppler estimation techniques are discussed 

in (Ahmed, 2015) for pilot-assisted OFDM-based UWAC systems. The first technique 

consider a cross correlation operation performed on the observed signal with the local 

known OFDM symbol, then the peak location(s), after that, the authors compare each 

peak location with the corresponding known peak location, where the difference 

determines the Doppler scale. The other technique is very close to the first one; mainly, 

after determining the peak using the local signal, an auto correlation operation is 

performed on the successive data OFDM symbol to determine the peak location(s). The 

authors compare the peak location with the reference of the corresponding peak location, 

where the difference in peak location pairs defines the Doppler shift (𝛾). In both 

approaches, however, a sampling operation is performed in the time domain on the 

observed signal in order to compensate the dominant Doppler shift, i.e. 
𝑡

1+ 𝛾̂
.  

The noise generated in acoustic type of communication in underwater has also received 

efforts, due to the fact of its high power. In such environment, the main resource of noise 

is not only the activities of the ships, and other man-made sources, shrimps, rainfall, and 

wind contribute in noise generation. Authors of (Jenserud and Ivansson, 2015) proposed 

a study that shows a better channel impulse response modeling when out-of-plane 

scattering and reverberation are taken into account, whereas the authors of (Kuai et al., 

2016) proposed an algorithm where the receiver can detect the impulsive noise positions 

using the signal amplitude in the time domain, and the impulsive noise and the Doppler 

shift estimation are based on the null subcarriers of the OFDM symbol. 

In (Chen et al., 2017), the authors consider impulsive noise in the underwater region due 

to the generated by snapping shrimps and other sources noise sources, where an impulsive 

noise mitigation operation is carried out on the received signal. Basically, the authors 

consider the non-zero channel coefficients at the pilots, where the impulsive noise is 

detected by calculating the average power of the current OFDM block, then collects the 
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positions of possible impulsive noise into a vector that are greater than a predefined power 

threshold, then the algorithm subtracts the estimated impulsive noise from the received 

signals. Another channel estimation approach was discussed in (Liu, et al., 2016). The 

authors consider the non-zero paths in their channel estimation (CE) procedure, where an 

inverse direct Fourier transform (IDFT) operation is performed and then the algorithm 

selects the paths with high powers, then convert it back to the frequency domain through 

direct Fourier transform (DFT) operation, then the signal is equalized. 

The reminder of this work is organized as follows. Chapter 2, investigates the state of the 

art of the underwater acoustic communications, the underwater channel characteristics, 

and an introduction to Bellhop acoustical toolbox. Chapter 3, discusses the proposed 

channel estimator along with the proposed channel and system models. In addition, 

chapter 3 proposes an extension to the proposed model with detailed formula derivations 

and simulation results with comparisons. Chapter 4, discusses the proposed channel 

estimation algorithm proposed for a multiple-input-single-output type of communication. 

Finally, chapter 5 contains concluding remarks. 

1.3 Contribution of This Work 

In this work, a synthetic type of channel impulse response (CIR) generated using Bellhop 

MATLAB-wrapper acoustic toolbox is proposed for the channel estimation problem 

considering the characteristic of underwater region of Sapanca Lake in Turkey. However, 

the proposed channel estimators are computational friendly. In the first approach, a SISO 

type of communication is proposed with correlated colored Gaussian noise to be added to 

the received signal in order to simulate a real underwater environment, where the second 

approach assumes a MISO type of communication with white noise, which also fits in 

underwater environments. In addition, the first approach assumes Rician fading channel, 

whereas the second algorithm assumes Rayleigh fading. 

The main difference of the work in chapter 3 and (Panayirci et al., 2016) is that, this work 

is concerned with a synthetic type of channel based on a real environment obtained from 

Sapanca Lake in Turkey using the BELLHOP-MATLAB acoustic toolbox (Porter, last 

accessed, 2018), whereas the work in (Panayirci et al., 2016) assumes an exponentially 

decaying type of channel. In addition, the channels proposed in chapter 3 assumes Rician 

fading, whereas the channels in (Panayirci et al., 2016) undergo Rayleigh fading. 
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Moreover, in this work of chapter 3, maximum a posteriori (MAP) is proposed for 

channel gains estimation with maximum likelihood (ML) for the prior densities 

estimation, whereas in (Panayirci et al., 2016) Expectation Maximization (EM) algorithm 

was employed. Finally, the work in (Panayirci et al., 2016) investigates a system model 

with cooperative-based system, while in this work in chapter 3 the system model deals 

with direct communication.  

The main difference of the work in chapter 4 and (Cirpan, Panayirci, & Dogan, 2006) is 

that this work assumes space-time type of diversity, whereas the work in (Cirpan et al., 

2006) assumes a space-frequency one. In addition, the work in chapter 4 uses a sparse 

underwater channel generated by BELLHOP-MATLAB acoustic toolbox for Sapanca 

Lake in Turkey, where the work in (Cirpan et al., 2006) uses an exponentially decaying 

channel. Finally, the work in chapter 4 is extended by using ESPRIT algorithm for sparse 

channel delay estimation and a comparison of it is shown with the work discussed in 

(Cirpan et al., 2006). 
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2. STATE-OF-THE-ART ON UNDERWATER ACOUSTIC 

COMMUNICATIONS 

In this chapter, the main characteristics of underwater acoustic communication will be 

discussed. The objective of this chapter is to provide an insightful knowledge on the 

challenges and impairments that acoustic signals face in underwater environment. 

2.1 History of Underwater Acoustical Communications 

In 400 BC, Aristotle had noted that sound could be heard in underwater medium as well 

as in the air. In 15th century, Leonardo da Vinci observed the wireless communication 

can be made over acoustical signals in underwater environment, where his words were 

“If you cause your ship to stop, and place the head of a long tube in the water and place 

the outer extremity to your ear, you will hear sips at a great distance from you” (Vaccaro, 

1998). Due to the development of electronic devices, the use of underwater acoustics has 

been made through hydrophones, where the latter converts the acoustic energy into 

electrical signal (and vice versa). Since then, several articles were made on underwater 

acoustic signal processing (UASP) considering solutions of multipath spread, rapid 

channel fluctuations, significant ambient noise, and channel estimation. 

2.2 Why Acoustic Signals 

Many contributions regarding wireless communications in underwater environment are 

well studied to enhance the performance of the overall wireless-based communication 

system. In order to fulfill a wireless communication link in underwater environment; 

there exist three candidate type of signal waves (electromagnetic, optical, and acoustic) 

proposed to achieve this task, where the acoustic signals are found to be the most suitable. 

Electromagnetic (EM) waves have been deployed in wireless communication for over a 



 

8 

 

century achieving a superior performance in terrestrial wireless communications offering 

a robust wireless link with a decent speed of propagation that provides an insignificant 

delay for real-time applications. Unfortunately, the radio waves were found to experience 

high attenuation for underwater wireless communications because of the conductive 

nature of the underwater medium, where a higher transmission power has to be used in 

order to solve this problem (Zhou and Wang, 2014). 

Lately, the trend of communication over visible light has received a lot of interest among 

researchers, and numerous number of well-written papers are proposed for 

communication over this type of signals. Regrettably, due to the nature underwater 

medium, the optical signals scatters, and the optical powers can be absorbed rapidly 

(Webster et al., 2017). 

Fortunately, acoustic signals are found to be capable of achieving this type of wireless 

communication with minimal damage and considered as the best candidate for wireless 

communication in underwater environment. Research papers for this type of signals in 

underwater medium are increasing tremendously due to its unique characteristics such as 

temporal variations, abundance of transmission paths, and wideband property in nature 

(Bernard and Meinig, 2011). Table-2.1. summarizes the different characteristic of 

acoustic, EM, and optical waves in underwater medium (Zhou and Wang, 2014). 

Table 2.1Comparison of acoustic, EM and optical waves in underwater medium 

 Acoustic Electromagnetic Optical 

Nominal speed (m/s) ~ 1500 ~ 33 333 333 ~ 33 333 333 

Power loss relatively small large ∝ turbidity 

Bandwidth ~ kHz ~ MHz ~ 10 - 150 MHz 

Frequency band ~ kHz ~ MHz ~ 1014 - 1015Hz 

Antenna size ~ 0.1 m ~ 0.5 m ~ 0.1 m 

Effective range ~ km ~ 10 m ~ 10 - 100 m 

2.3 Characteristics of Underwater Acoustic Channel 

Acoustical signals experience a different type of dilemmas other than those that can be 

found in terrestrial communication over EM or optical waves. In the next context, part of 

the characteristics that distinguish underwater acoustical communication will be 



 

9 

 

introduced, which make underwater acoustical channel one of the most challenging 

channels for wireless communication.  

2.3.1 Sound Velocity 

The propagation speed of the sound signals is extremely slow compared to the EM and 

optical waves. The average speed of acoustic signals in underwater medium is 1500 m/s 

(Wang and Wang, 2016). Acoustic signals propagate with different speeds in underwater 

environments. Basically, the acoustic signals propagate with different speeds that depend 

on the depth, the water temperature, and the water salinity (Porter, last accessed, 2018). 

However, a typical speed of sound in water near the ocean surface is about 1520 m/s, 

which is more than 4 times faster than the speed of sound in air (~ 343 m/s), but five 

orders of magnitude smaller than the speed of light. The water layers can be categorized 

into three main layers (Zhou and Wang, 2014) 

 Surface layer: this layer is also referred to as mixed layer. The depth of this layer 

is within tens of meters away from the water surface, where the salinity and the 

temperature of the water in this layer tend to be homogenous (due to the effect 

wind) that leads to a constant sound velocity of the acoustic waves. This layer is 

also called shallow water. 

 Seasonal and permanent thermocline layers: this layer is the second deeper layer 

than the surface layer, where the water temperature decreases in this layer as the 

depth increases, and the temperature varies from season to season. 

 Deep isothermal layer: in this layer, the temperature is almost constant for all 

depths, where the water pressure plays role in determining the acoustic wave 

speed. 

2.3.2 Propagation Loss 

The strength of the received signal is quite related to the placement of base stations, in 

the underwater environment. Based on the surface (sea conditions) and the bottom 

topology of the underwater area, each channel gain can be assumed to have different 

distribution statistical characterization. For instance, when the receiver is in shallow water 

and close to the transmitter, diffuse random multipath contributions are negligible and the 
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channel tap gains can be assumed to obey the Rician distribution. On the other hand, with 

increasing distance between the transmitter and the receiver, the large sea dynamics 

prevent direct path contributions, and consequently, the diffuse multipaths dominate, 

resulting in the channel gains having Rayleigh distribution. Since the underwater 

communication topology is in a continuous change, the channel tap gains may also obey 

other type of distributions, such as log-normal and Nakagami-m distributions. 

Acoustical waves experience two different energy loss factors while propagation in 

underwater medium. Mainly, the absorptive and the scattering (the bottom and the surface 

loss) loss due to the geometry of the underwater region. The scattering of sound coming 

from the sea surface and the scattering and the absorption of the sound waves from the 

sea floor can also contribute significantly into signal attenuation and dominant when the 

base stations are placed in shallow water. 

Finally, the refraction and reflection of sound (which mainly depend on the sea 

conditions, sea floor type, isothermal layer depth, sudden and unexpected temperature 

changes in underwater etc.,) can create the so called phenomena shadow zone resulting 

in a significant attenuation of signal energy (Nguyen et al., 2009). Due to the scattering 

and the large fading of the acoustic signals, the channel impulse response is considered 

to be a time variant sparse channel, and only received taps with significant powers are 

considered. 

2.3.2.1 Absorptive Loss 

In general, underwater applications operate in low frequency, where the pH of the water 

in the underwater region plays an important role in the attenuation, that is, the higher the 

pH, the larger the attenuation, where an accurate attenuation computation is a must 

(Browning et al., 1988). In underwater medium, the energy of acoustic wave converts to 

heat. The frequency-dependent loss experienced by acoustic waves occurs due to the 

existence of the chemical substances (boric acid 𝛼1, magnesium sulphate 𝛼2, and 

viscosity of water 𝛼3). Different contributions on underwater absorption were made for 

a better acoustic wave attenuation estimation. The frequency-dependent loss can be 

expressed as (Moll, et al., 2009): 

𝛼 =  𝛼1 + 𝛼2 + 𝛼3, (2.1) 

where 
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𝛼1 = 𝐴1

𝑓1𝑓2

𝑓1
2 + 𝑓2

𝑒(𝑝𝐻−8)/𝑃1 

o 𝑓1 = 𝐹1  (
𝑆

35
)

𝑠1

𝑒𝑇/𝑇1, 

𝛼2 = 𝐴2  (1 +
𝑇

𝜃2
) (

𝑆

35
) (

𝑓2𝑓2

𝑓2
2 + 𝑓2

) 𝑒−𝑧/𝑍2 , 

o 𝑓2 = 𝐹2 𝑒𝑇/𝑇2, 

𝛼3 = 𝐴3𝑃3𝑓2, 

where 𝐴3 and 𝑃3 can be estimated as follows: 

o 𝐴3 = 4.937 10−4 − 2.59 10−5 𝑇 + 9.11 10−7𝑇2 − 1.5 10−8 𝑇3 ,  for 

𝑇 ≤ 20 °C, 

o 𝐴3 = 3.964 10−4 − 1.146 10−5 𝑇 + 1.45 10−7𝑇2 − 6.5 10−10 𝑇3, for 

𝑇 > 20 °C, 

o 𝑃3 = 1 − 3.83 10−2𝑧 + 4.9 10−4 𝑧2, 

 

where 𝑓 is in kHz, pH in NBS, salinity (S) in g/kg, temperature (T) in Celsius, depth (z) 

in km. The formula results in an absorption value measure in decibels per kilometer 

(dB/km). For simplicity, a simplified version of the attenuation formula can be used 

called Thorpe attenuation which can be expressed as (Zhou & Wang, 2014): 

𝛼𝑇ℎ𝑜𝑟𝑝𝑒(𝑓) =  
40 𝑓2

4100 +  𝑓2
+  

0.1 𝑓2

1 + 𝑓2
 (2.2) 

where 𝑓 is the carrier frequency in kHz and 𝛼𝑇ℎ𝑜𝑟𝑝𝑒 is in units of dB/m. For the case of 

an ultra-high frequency (UHF) deployment is assumed in underwater mediums (up to 10 

GHz), Akhiezer and Landau-Rumer type of attenuation should be considered (Telichko, 

et al., 2015). 

2.3.2.2 Scattering Loss 

In underwater medium, the scattering loss of the sound waves increases as the acoustic 

wavelength decreases. Scattering in underwater is induced by the roughness of the water 

surface and sea bottom, whereas high interface roughness induces large spatial energy 

dispersion. The scattering occurred by the bottom mainly depends on the roughness of 

the geology of the sea bottom such as, sand ripples, and roughness of the rocks. 
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An important scattering parameter in the surface side is the environmental conditions of 

the sea, that is, in the presence of high wind, where the wind-generated waves increases 

the roughness of sea surface, and the higher the scattering order is experienced (Yuan et 

al., 2016). 

2.3.3 Ambient Noise and Interference 

In any communication system, signal-to-noise ratio (SNR) is very essential for ensuring 

a smooth and reliable carriage of the transmitted data. SNR, however, gives a comparison 

of the strength of the intended signal to that of the noise. In underwater acoustical 

communication, depending on the sea conditions, the acoustic channel can be 

considerably affected by the ambient noise generated by the diverse origins. 

The ambient noise experienced in underwater environment is relatively high. Different 

natural sources of noise such as surface waves, rainfall, biological sources (marine 

mammal vocalizations, snapping shrimp) and other man-made sources (underwater 

machineries, ships and boats) affect the acoustic communication in underwater medium 

(Chitre et al., 2006) (Guimarães et al., 2014). For instance, in (Adzhani et al., 2016), the 

experiment shows a wind noise of 50 dB, where the experiment in (Prince et al., 2015), 

shows an aerial noise in the range of [46.8, 53] dB, where the rainfall (depending on the 

precipitation) can produce noise up to 50 dB, whereas noise spectrum level decreases 

with increasing frequency from about 140 dB at 1Hz to 30 dB at 100 KHz (Santoso et al., 

2015). Consequently, modulation order in underwater coherent communication systems 

plays an important role in data detection at the receiver side. SNR can be given in the 

following formula: 

𝑆𝑁𝑅(𝑑, 𝑓) =  10 log10 (𝑃𝑆) −  𝑇𝑙 −  10 log10 (𝑃𝑁),  (2.3) 

where 𝑃𝑆 is the total signal power, 𝑇𝑙 is the transmission lose, 𝑃𝑁 is the total noise power, 

and the final result of SNR is then measured in dB. However, the transmission loss 𝑇𝑙 

presented in  (2.3)is a function of the distance, (d) and the attenuation factor 𝛼(𝑓) 

(discussed in subsection 2.3.2.1). It was stated in (Iqbal et al., 2013), that the total noise 

power (𝑃𝑁) can be divided into four main sources, mainly, noise generated by ships 

activities, noise generated by wind, noise generated by heat, and noise generated by 

turbulence. Consequently, the noise equation can be formulated as: 
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𝑁(𝑓) =  𝑁𝑠(𝑓, 𝑆) +  𝑁𝑤(𝑓, 𝑊) +  𝑁ℎ(𝑓) +  𝑁𝑡(𝑓), (2.4) 

where 

𝑁𝑠(𝑓, 𝑆) =  40 + 20 (𝑠 − 0.5) + 26 log10(𝑓) − 60 log10(𝑓 + 3), 

𝑁𝑤(𝑓, 𝑊) =  50 + 7.5√𝑤  + 20 log10(𝑓) − 40 log10(𝑓 + 0.4), 

𝑁ℎ(𝑓) =  −15 + 20 log10(𝑓), 

𝑁𝑡(𝑓) =  17 − 30 log10(𝑓). 

There exist huge efforts for acoustical noise estimation and measurements in underwater 

environments, i.e., QUONOPS and LIDO systems (André, et al., 2016). QUONOPS 

system is connected to several underwater sensors at different bathymetries, while 

temperature and salinity measurements process is carried on. In LIDO is responsible for 

automatic processing of an acoustic data from the observed signals. Basically, it measures 

the noise levels, then identifies the acoustic source that contributed to the measured 

acoustical noise. Finally, an online interface can be accessed for real-time monitoring. 

On the other hand, the EU Ocean of Tomorrow program has started AQUO project to 

achieve quieter oceans by shipping noise footprint reduction. The was methodology was 

to take into account all the key components and measurements of noise coming from 

ships as the noise source at the receivers, basically sensors. The procedure they pursued 

is presented in Fig. 2.1 (André, et al., 2016).  

 

 

Figure 2.1 Illustration of the overall AQUO methodology. 
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However, the main two parts of their study regarding the man-made noise reduction are: 

 A noise footprint assessment tool development was formed, 

 A development of the radiated noise model of ships was developed, that consider 

a variety of commercial ships and their corresponding characteristics. 

However, depending on the underwater area and sea conditions, the noise modelling for 

wireless acoustical communication in such environment has been growing. For instance, 

(Liling and Dupeng, 2017) came up with a solution for underwater noise stimulated by 

an airborne source. The study uses the propagator matrix and the wave number integration 

to establish an air and underwater acoustic field spatial distribution model stimulated by 

the moving source in the air. 

2.3.4 Large Doppler Shift 

Due to the nature of acoustic signals, a major change in the wavelength (frequency) of 

the sound wave that arises as a result of the medium instability (i.e., movement of the 

transmitter/receiver due to wind) (Beygi and Mitra, 2015). This kind of frequency change 

is referred to as Doppler shift or Doppler effect. Because the moving surface of the sea, 

the Doppler shifts have an unpredictable variant values. Consequently, underwater 

acoustic communications (UWACs) are fragile to Doppler shift, where the relatively low 

sound speed in underwater medium generates a large Doppler shift. For example, in the 

presence of an acoustic wireless communication with a carrier frequency centered at 𝑓𝑐 =

 20 kHz, where the average velocity of the sound wave in underwater medium is 

approximately. 1500 m/s, thus the Doppler shift induced by the moving sea surface for a 

system placed in shallow water with a received line of sight (LOS) signal can be 

determined as (Ha et al., 2017): 

𝑓𝑇X𝑆𝑛
=  

𝑉𝑆𝑛
 ×  𝑓𝑐

𝐶𝑆
cos(𝜃𝑆𝑛

) =  
1.5 × 20,000

1500
= 20 Hz, 

where 𝜃𝑆𝑛
 is the angle between the surface-normal velocity 𝑉𝑆𝑛

and the scatterer-

transmitter axis, 𝐶𝑆 is the speed of the acoustical signal. For the case when the received 

signal is a scattered component, the Doppler shift formula can be expressed as: 

𝑓𝑆𝑛𝑅X
= (𝑓𝑐 +  𝑓𝑇X𝑆𝑛

) ×
𝑉𝑆𝑛

 

𝐶𝑆 − 𝑉𝑆𝑛
cos (𝜃𝑅𝑛

)
cos(𝜃𝑅𝑛

), 
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where 𝜃𝑅𝑛
is the angle between the surface-normal velocity 𝑉𝑆𝑛

 and the scatterer-receiver 

axis, and the total Doppler shift generated by the sea surface can be expressed as: 

𝑓𝐷,𝑆𝑛
=  𝑓𝑆𝑛𝑅X

+ 𝑓𝑇X𝑆𝑛. 

However, Doppler shift can also arise due to the movement of the receiver, and thus, can 

be given by this formula 

𝑓𝑖,𝑛 =  
𝑓𝑐 × 𝑉𝑅 

𝐶𝑆
cos(𝛼𝑖𝑛

) cos(𝜋 −  𝛼𝑉
𝑅), 

where 𝑓𝑖,𝑛 is the resulting Doppler shift of the 𝑛𝑡ℎpath 𝛼𝑖𝑛
 is the angle of arrival (AOA), 

and 𝑖 = 1, 2 which denotes the signal is reflected from surface (i=1) or bottom (i=2), 

respectively. 

2.3.5 Long propagation Delay 

Multipath spread is a significant characteristic of the underwater acoustic communication 

channels affecting the channel impulse response at the receiver side, where the long 

propagation delay experienced in this region is due to the low sound speed. In addition, 

the reflection of the sound wave off the sea surface and sea floor as well as the refraction 

of sound such as bending rays of the propagation paths create many different propagation 

paths, and hence, the underwater channel is considered to be time-variant. Mainly, the 

nature of the underwater environment is responsible of creating the multipath channel, 

where the longer the communication range, the longer the delay experienced at the 

receiver side. The wave reflections from the surface and the bottom generate several 

arriving taps (sparse type of channel with large delay spread) can be observed at the 

receiver in applications that use transmitter/receiver placement in shallow water, 

whereas, the applications where transmitter/receiver are placed in deep water, the surface 

and bottom reflections can be neglected (Zhou and Wang, 2014)] (Nguyen et al.,2009) 

(Mason et al., 2008). 

2.3.6 Multipath Propagation and Channel Models 

Channel modelling provide an excellent tool for predicting the performance of 

underwater acoustic communication systems before their deployment, and, of course, 

they are very essential for system design. 
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One of the essential dilemmas in the underwater acoustical communication is the 

corruption of the data, due to multipath interference. Underwater acoustic 

communications suffer from the time variant type of channel. A particular underwater 

channel can be represented depending on the sea conditions, the range of communication, 

and the depth of the stations. At the receiver, the received signals can be direct, reflected, 

scattered from the surface and bottom, or refracted by variations in the acoustic velocity 

profile, which lead to multipath propagation. Thus, the received signals then suffer from 

severe and rapid amplitude fluctuations and fading. When the communication range is 

short, then the receiver will experience a direct path (steady component), and different 

random paths (diffused components) which can be as a result of boundary scattering. In 

the case of long communication range, the received signal is then a superposition of a 

number of time-delayed, randomly propagated components arriving via different paths 

(Falahati et al., 1991). 

Figs 2.2 and 2.3 attempt to simulate the time-varying characteristics of underwater 

channels observed experimentally.  

 

 

Figure 2.2 Short-range propagation. 

 

Figure 2.3 Long-range propagation 
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Multipath causes a receiving of a series of pluses at the receiver, that are originally a 

single impulse sent from the transmitter. In the case of a multiple echoes, the received 

data can overlap in time, thus, become degraded. This type of interference can be largely 

avoided by using asynchronous serial transmission. In this type of transmission, the 

transmitter sends of short signal, each followed by a much longer quiet period. However, 

a suitable arrangement of the transmitting and receiving transducers has to be made. 

However, all the signals are then received before the next burst is transmitted. 

Successful channel models that can be found in the literature are based on statistics. 

Mainly, a statistical channel model encounter physical laws of acoustic propagation 

(frequency-dependent attenuation, bottom/surface reflections). In addition, these 

statistical channel models reflect the effects of inevitable random local displacements. 

Specifically, random displacements that involve distances on the order of a few 

wavelengths (small-scale effects), and those that involve many wavelengths (large-scale 

effects). The small-scale type of effects includes the scattering and the motion-induced 

Doppler shifting. The aforementioned effects are responsible for the fast variations of the 

instantaneous channel response. On the other hand, the large-scale type of effects 

describes the location uncertainty and the changing environmental conditions, and thus, 

affects the averaged power of the received signals. Since the transmission conditions in 

the underwater environment differ from the nominal ones due to the changes in system 

geometry and environmental conditions. Consequently, the necessity of having a 

relatively accurate channel model is a must. However, the channel model is responsible 

for allocating the appropriate resources (power, bandwidth) before system deployment, 

as well as to examine the pre-designed signals processing techniques on both the physical 

link layer and the higher network layers. Channels can be generated at labs. Using a ocean 

wave basin, a real underwater channel can be modeled. Moreover, an experimental type 

of channel is always preferred to study the behavior of channel estimators. Experimental 

channels take into consideration the exact depths of the underwater area, the sediments, 

the Doppler scales per path, real-time delays, and the exact type of sea bottom including 

the what exist at the bottom i.e.,sand ripples roughness of the rocks. However, a technique 

for channel modeling known as beam tracing that consider underwater acoustic 

communications can be found in an acoustical toolbox known as BELLHOP, more about 

BELLHOP is discussed in the next section. 
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2.4  Bellhop Acoustic Toolbox 

In this section, an overview about BELLHOP acoustical toolbox will be given. Note that, 

BELLHOP is an open source software, and it does not come in a standalone fashion, it 

comes wrapped in another compiler, i.e. MATLAB-wrapper BELLHOP. 

2.4.1 Overview 

Bellhop is a set of algorithms that trace the ray in underwater environment. It was 

originally written in Fortran language, later on, programmers prepared many versions of 

Bellhop written in different languages to support different operating systems (Porter, last 

accessed, 2018). BELLHOP uses ray theory to provide an accurate deterministic picture 

of the underwater channel. 

In addition, Bellhop is capable of producing various useful outputs such as, ray 

coordinates, travel time and amplitude forming channel impulse response, eigenrays, and 

transmission loss. The ray trace, which shows the propagation paths of the acoustic 

signals for the given underwater region and communication specifications along the 

communication range. In addition, user can find the channel impulse response through 

requesting the time of arrival and amplitude of the arriving acoustic signals. In order to 

run Bellhop, the user inputs the sound speed profile associated with the specifications of 

the underwater region, and requests the desired output. 

Bellhop considers sea surface heights with a single valued function of position and time, 

whereas in Virtex (Virtual Timeseries EXperiment), which is an update version of 

Bellhop, it approximates the motion of the environment itself by a sequence of snapshots 

with different heights instead of one snapshot as in Bellhop. In addition, Virterx, along 

with its advancements, has the ability to include the motion of the source, and/or the 

receiver in its calculation, with an unsteady sea surface motion, where the Doppler 

introduced by the unsteady sea surface motion is calculated by the eigenray data produced 

by Bellhop. Virterx was developed to simulate the effect of channel variation in a manner 

that is computationally more efficient than repeated application of the Bellhop beam 

tracing. This algorithm operates by tracing multiple interrelated beams to assess the 

cumulative effect on the signal of a given frequency. However, the complexity of Virterx 

may still have an issue. For instance, it takes around of 15 seconds for a two-transmitters 
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and six-receivers underwater communication system to simulate a channel using Virterx. 

In each second, Virtex requires around 30 channel realizations, which leads to a total of 

5400 runs of BELLHOP, considering a Doppler distortion of the order of 0.015 KHz 

(Qarabaqi and Stojanovic , 2013). 

2.4.2 Environmental Profile 

The input file to Bellhop is called environmental profile. In this profile, the specifications 

of the underwater region along with the acoustical wireless communication link are 

imputed in the file manually along with the intended output. The wireless communication 

link information consists of the carrier frequency, the antenna aperture, the depth and the 

number of the transmitter/receiver, the number of beams to be sent considered per 

transmission, and the communication range. In addition, Bellhop offers a set of 

interpolation techniques (cubic spline interpolation, C-linear interpolation, N2-linear 

interpolation, and analytic interpolation) where user can specify the technique in order to 

find the sound speed and its derivatives along the ray. 

Moreover, different acoustic pressure approximations are proposed by Bellhop to be 

inserted in the environmental profile (geometric beams, Cartesian beams, use ray-

centered beams, Gaussian beam bundles). In addition, attenuation can be specified in 

different units (dB/m (kHz), Nepers/m, Q-factor, and dB/wavelength). However, Bellhop 

gives the ability for users to include the surface type and bottom shape as flat shaped or 

user can include them using an external file for a better ray tracing and arrival signal 

channel. One of the most important aspects of the communication over acoustic signals 

in underwater environment is the sound speed profile. This profile reflects the speed of 

the signal at different depths in the underwater region.  

In other words, according to the transmitter/receiver depths, the signal propagates in the 

underwater region towards the bottom of the underwater region and the surface sides, 

where the speed of the sounds is not constant along the depths, consequently the channel 

impulse response is affected. Unfortunately, BELLHOP does not encounter the random 

channel variation (Qarabaqi and Stojanovic, 2013). 

In order to cope with channel modeling, different studies were carried on modelling the 

UWA channel stochastically, e.g., (Qarabaqi and Stojanovic, 2009) (Ruiz-Vega, 

Clemente, Otero, & Paris, 2012). However, these studies were shaped based on the 
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analysis of an experimental type of an acoustic data, collected in a particular location. 

Depending on the system model of the study, the underwater channel was found to obey 

a Rician fading (Qarabaqi and Stojanovic, 2009), (Radosevic et al., 2009) or Rayleigh 

fading (Socheleau et al., 2009), (Galvin and Coats, 1996), (Chitre M. , 2007). 

In addition, fading of underwater channels was also detected to follow log-normal 

distribution (Qarabaqi and Stojanovic, 2011) (Tomasi et al., 2010), K-distribution (Yang 

and Yang, 2006) (Zhang et al., 2010), and a general class of Rician shadowed distribution 

(Ruiz-Vega et al., 2012). 

2.4.3 Sound speed profile 

In order to fulfill the task of Bellhop, the sound speed profile (SSP) consists mainly of 

the sound speeds at different depths. In the case of lack of information regarding the 

underwater region; users can estimate the sound speed profile through various formulas, 

such as Medwin formula as follows (Bahrami et al., 2016): 

 

𝑆𝑆𝑃(𝑇, 𝑆, 𝐷) = 1449.2 + 4.6𝑇 − 0.055𝑇2 + 0.00029𝑇3

+ (1.34 − 0.01𝑇) (𝑆 − 35) + 0.016𝐷. 
(2.5) 

 

The formula shows that the speed of acoustic signal in underwater medium grows when 

any of the parameters (T, S, D) increases. At a certain depth, depending on the water 

temperature, water salinity, and water depth, the formula accurately calculates the speed 

of the acoustic signal at that specific depth, and the resulting value is the sound speed that 

can be used along with the corresponding depth in the SSP of Bellhop’s environmental 

profile. 
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3. SPARSE CHANNEL ESTIMATION AND DATA DETECTION 

FOR OFDM-BASED UNDERWATER ACOUSTIC SYSTEMS IN 

RICIAN FADING 

 

In the following sections and subsections, two new pilot assisted channel estimation 

techniques that employ OFDM transmission scheme in doubly-selective Rician UWA 

channels are proposed. The chapter fully discusses the first algorithm and presents its 

simulation results, then the second algorithm, which is an extension of the first one, is 

then presented with simulations. 

3.1 Introduction 

The main contribution in this work is twofold. First, the sparse structure of the UWA 

channel impulse response is exploited to improve the performance of the channel 

estimation algorithm, due to the reduced number of taps to be estimated. The resulting 

algorithm initially estimates the overall sparse channel tap delays and the Doppler shift 

by using a conventional matching pursuit (MP) algorithm (Cotter & Rao, 2002) (Zhang, 

Han, Huang, & Nramdt-Pearce, OFDM transmission over time-varying channel with self 

interference cancellation, 2014), assuming correlated ambient Gaussian noise affecting 

the system from source to destination.With the path delays and Doppler spread 

information, then a computationally efficient and low complexity novel channel 

estimation algorithm is proposed by combining MP and maximum a posteriori 

probability (MAP) estimation to estimate the complex channel path gains whose prior 

densities have Rician distributions with unknown means and variances. They are, in turn, 

estimated separately by the maximum likelihood (ML) technique. The likelihood function 

of those parameters is determined by properly averaging it over the Rician distributed 

complex channel gains.  
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This chapter is organized as follows. Section 3.2 presents the system and channel model 

for an OFDM-based underwater wireless communication system and describes the main 

parameters of the UWA channel and the ambient noise. Section 3.3 proposes the new 

sparse channel estimation algorithm. Section 3.4 describes the equalization and detection 

algorithms for the overall OFDM based UWA communications system. The computation 

complexity is presented in 3.5, and the computer simulations with BELLHOP simulated 

channels in Sapanca Lake are presented in 3.6. Section 3.7 presents the second proposed 

approach which extends the work to a non-uniform Doppler scale and use orthogonal 

matching pursuit (OMP) instead of MP in the case of white noise. All related equations 

and simulations of this extension can be found under subsection 3.7. Finally conclusions 

regarding the two approaches are presented in section 3.8. 

3.2 System and Channel Model 

The proposed UWA communication scenario is OFDM-based in which a single-antenna 

source node S transmits information to a single-antenna destination node D. The UWA 

channel between source and destination nodes is characterized by multipath propagation, 

typically with a few significant paths, resulting in a sparse multipath channel model 

(Mason, Berger, Zhou, & Willett, 2008). This type of channels can be represented by a 

parametric channel model, consisting of a limited number of distinct paths parameterized 

by the path delays and path gains. The parametric channel model effectively reduces the 

dimension of the signal estimation problem, and the corresponding channel estimation 

can achieve better performance than that of non-parametric channel model-based 

estimators. 

The time-varying UWA channel impulse response (CIR) from source to destination (S 

⟶ D) link is sparse and characterized by 

ℎ(𝑡, 𝜏) =  ∑ 𝐴ℓ(𝑡) 𝛿(𝜏 −  𝜏ℓ(𝑡))

𝐿−1

ℓ=0

 (3.1) 

 

where, 𝐿, 𝐴ℓ(𝑡) and 𝜏ℓ(𝑡) denote the number of non-zero paths, the real channel path 

amplitudes and the time-varying path delays, respectively. In this work, the path gains are 

assumed on each link to remain constant over one OFDM symbol transmission and vary 

independently from symbol to symbol. That is,  𝐴ℓ(𝑡) = 𝐴ℓ, ℓ = 0, 1, … , 𝐿 − 1. 
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The continuously time-varying delays 𝜏ℓ(𝑡) are caused by the motion of the 

transmitter/receiver as well as scattering of the moving sea surface or reflections due to 

sound speed variations (Mason, Berger, Zhou, & Willett, 2008). For the duration of an 

OFDM symbol, the time variations of the path delays can be approximated well by a 

Doppler rate as 𝜏ℓ(𝑡)  = 𝜏ℓ −  𝛾𝑡  (Kuai, Sun, & Cheng, 2016) (Beygi & Mitra, 2015). The 

path delays, 𝜏ℓ, are assumed to be constant over an OFDM symbol duration and all paths 

have a similar Doppler scaling factor, that is 𝛾ℓ  ≡  𝛾. However, in general, the Doppler 

scaling factor can be different for each path (Mason, Berger, Zhou, & Willett, 2008). 

However, it was stated in (Li, et al., 2009) that as long as the dominant Doppler shift is 

caused by the direct transmitter/receiver motion, this assumption can be justified. 

Taking these assumptions and approximations into account, the time-varying continuous-

time multipath UWA channel impulse response model above is simplified to 

ℎ(𝑡, 𝜏) =  ∑ 𝐴ℓ  𝛿(𝜏 − (𝜏ℓ −  𝛾𝑡))

𝐿−1

ℓ=0

. (3.2) 

 

The baseband equivalent channel impulse response of ℎ(𝑡, 𝜏) in (3.2) can be determined 

as: 

ℎ𝑏(𝑡, 𝜏) =  ∑ ℎℓ 𝑒𝑗2𝜋𝑓𝑐𝛾𝑡  𝛿(𝜏 −  (𝜏ℓ −  𝛾𝑡))

𝐿−1

ℓ=0

 (3.3) 

where ℎℓ  ≜  𝐴ℓ 𝑒−𝑗2𝜋𝑓𝑐𝛾𝜏ℓ. 

The model in (3.2) deals only with real channel path amplitudes, 𝐴ℓ, obtained from a ray 

tracing technique. However, there are many diffuse multipath components diffracted or 

scattered by the rough sea and bottom surface. Consequently, the multipath components 

will have random phases uniformly distributed over [0, 2𝜋], and by the central limit 

theorem. In addition, the channel coefficients (taps) ℎℓ’s on the link are assumed to be 

complex Gaussian random variables with independent real and imaginary parts. 

Based on the sea conditions, each channel gain |ℎℓ| can be assumed to have a different 

distribution. When the receiver is in shallow water and close to the transmitter, diffuse 

random multipath contributions are negligible and the channel tap gains may be assumed 

to obey the Rician distribution. On the other hand, with increasing distance between 

transmitter and receiver, large sea dynamics prevent direct path contributions and mostly 

the diffuse multipaths dominate, resulting in the channel gains having Rayleigh 
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distribution. In this work, the channel path gains are a priori assumed to obey a Rician 

distribution where ℎℓ’s are complex Gaussian random variables with independent real 

and imaginary parts with mean 𝜇ℓ and variance 𝜎ℓ
2. In addition, the Doppler shift on each 

path is assumed constant, thus, no intercarrier interference (ICI) in the received signal is 

considered. 

Let Ωℓ = 𝐸 {|ℎℓ|2} = 2𝜇ℓ
2 +  2𝜎ℓ

2 denotes the power profile of the relevant Rician 

multipath channel, and ∑ Ωℓ = 1𝐿−1
ℓ=0 . Moreover, the Rician 𝜅 − factor for the ℓ𝑡ℎ tap is 

the ratio of the power in the mean component to the power in the diffuse component, i.e. 

𝜅ℓ =  𝜇ℓ
2/ 𝜎ℓ

2 , and each channel tap is given by 

ℎℓ =  √
𝜅ℓ Ωℓ

𝜅ℓ + 1
 (

1 + 𝑗

√2
)  +  √

Ωℓ

𝜅ℓ + 1
 ℎ̌ℓ , ℓ =  0, 1, … , 𝐿 − 1, (3.4) 

where ℎ̌ℓ  is a complex Gaussian random variable with zero mean and unit variance. 

However, by taking 𝜅 = 0, a Rayleigh distributed underwater acoustic channel model can 

be also taken into account. 

The additive ambient Gaussian noise, 𝑣(𝑡), generated by underwater acoustic channels 

has several distinct physical origins each corresponding to particular frequency range 

(Barbeau, et al., 2015). 

The power spectral density of the ambient noise is assumed to be in the 10 - 100 kHz 

band as a function of frequency in Hz as 

𝑆(𝑓) =  
𝑓0 𝜎0

2

𝜋(𝑓2+ 𝑓0
2)

 , (3.5) 

where 𝜎0
2 is the noise variance, and 𝑓0 is chosen as a model parameter of the colored noise 

autocorrelation function (𝑓0𝑇𝑠 = 0.01, 0.05, 0.05, 0.1, 𝑒𝑡𝑐.), where the autocorrelation 

function of the ambient noise can be obtained from (3.5) as 

𝑅𝑣(𝑡, 𝑡′) =  𝜎0
2 𝑒−2𝜋|𝑡=𝑡′|𝑓0 𝑇𝑠 , (3.6) 

where 𝑇𝑠 is the sampling period. In addition, an assumption that the CIR remains constant 

over a period of one block transmission and varies independently from block to block is 

considered. 

At the source node, the OFDM based UWA system with N subcarriers employs actively 

K subcarriers to transmit data symbols and nothing is transmitted on the remaining N – K 

subcarriers. During any OFDM symbol, each active subcarrier is modulated by a data 

symbol 𝑑𝑚[𝑘], where m and k represent the OFDM symbol index and the subcarrier 
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index, respectively. After taking an N-point inverse fast Fourier transform (IFFT) of the 

data sequence and adding a cyclic prefix (CP) of duration 𝑇𝐶𝑃 before transmission, to 

avoid intersymbol interference (ISI), the basedband-equivalent, continuous time-domain 

transmitted signal can be expressed as 

𝑠(𝑡) =  
1

√𝑁
 ∑ ∑ 𝑑𝑚[𝑘] exp (

𝑗2𝜋𝑘

𝑇
 (𝑡 − 𝑚𝑇𝑆𝑌𝑀 −

𝐾

2
−1

𝑘=−
𝐾

2

𝑀−1
𝑚=0

𝑇𝐶𝑃)) ⨂𝑔𝑇(𝑡), 0 ≤ 𝑡 ≤  𝑇𝑆𝑌𝑀 ,  

(3.7) 

 

where ⨂ denotes linear convolution and 𝑔𝑇(𝑡) is the impulse response of the transmitter 

filter. 𝑇𝑆𝑌𝑀 = 𝑇 +  𝑇𝐶𝑃is the total OFDM symbol duration and Δ𝑓 = 1/𝑇is the OFDM 

subcarrier spacing. Then, the received passband signal can be expressed as  

𝑦̃(𝑡) =  𝑠̃(𝑡)⨂ℎ(𝑡, 𝜏) +  𝑣̃(𝑡)  

=  √2 ℜ𝑒 {(∑ ℎℓ 𝑒𝑗2𝜋𝑓𝑐𝛾𝑡  𝑠((1 + 𝛾)𝑡 − 𝜏ℓ)

𝐿−1

ℓ=0

) 𝑒𝑗2𝜋𝑓𝑐𝑡} +  𝑣̃(𝑡), (3.8) 

where ℜ𝑒 {𝓏} denotes the real part of z and 𝑣̃(𝑡) =  √2 ℜ𝑒 {𝑣(𝑡)𝑒𝑗2𝜋𝑓𝑐𝑡} is the passband 

representation of the additive correlative Guassian ambient noise 𝑣(𝑡). 

However, in typical UWA communication systems, the receiver directly samples the 

passband signal due to a relatively low carrier frequency (Berger, Zhou, Preisig, & 

Willett, 2010). 

Consequently, resampling, passband-to-baseband downshifting as well as Doppler shift 

estimation, compensation and channel estimation are often performed in the digital 

domain. 

As specified in (Berger, Zhou, Preisig, & Willett, 2010) (Mason, Berger, Zhou, & Willett, 

2008), and (Qi, Wang, & Wu, 2011), to mitigate the frequency dependent Doppler effect 

in the received signal (3.8), the following three operations are carried out on the sampled 

received passband signal to obtain the final discrete frequency-domain samples.  

1) The main Doppler scaling effect is removed through the resampling operation with a 

resampling factor (1 + 𝛾) leading to the resampled signal 𝑦̃𝑅𝑆(𝑡) =  𝑦̃𝑅𝑆(𝑡/1 +  𝛾). 

From (3.8) it follows that 
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𝑦̃𝑅𝑆(𝑡) =  ℜ𝑒 {𝑒𝑗2𝜋𝑓𝑐𝑡 𝑒𝑗2𝜋𝑓𝑐𝑏𝑡  ∑ ℎℓ  𝑠((1 + 𝑏)𝑡

𝐿−1

ℓ=0

− 𝜏ℓ)} + 𝑣̃𝑅𝑆(𝑡), 

(3.9) 

where 𝑏 =  
𝛾− 𝛾̂

1+ 𝛾̂
, and 

𝑣̃𝑅𝑆(𝑡) =  𝑣̃ (
𝑡

1+ 𝛾̂
). (3.10) 

 

The Doppler effect, is divided into a non-zero valued Doppler rate, caused by relative 

movement of the transmitter and the receiver, and a Doppler spread, centered around zero 

caused by different travel paths and receiver angle shift. As can be seen from (3.9), the 

non-zero mean of is removed by the resampling. Consequently, the new residual Doppler 

shift b on each path is spread around zero within [−𝑣𝑚𝑎𝑥 , +𝑣𝑚𝑎𝑥] (Beygi & Mitra, 2015), 

after compensation by 𝛾, 𝑣𝑚𝑎𝑥 can be chosen based on the Doppler spread, with resolution 

Δ𝑣 = 2𝑣𝑚𝑎𝑥/𝑁𝑣, where 𝑁𝑣 is the number of grid points on the Doppler spectrum. 

2) At the receiver, the baseband-equivalent received signal 𝑦𝑅𝑆(𝑡) is then obtained from 

(3.9) via a demodulation process yielding 

𝑦𝑅𝑆(𝑡) =  𝑒𝑗2𝜋𝑣𝑡  ∑ ℎℓ  𝑠((1 + 𝑏)𝑡 − 𝜏ℓ)

𝐿−1

ℓ=0

 + 𝑣𝑅𝑆(𝑡), (3.11) 

where 𝑣 ≜  𝑓𝑐𝑏, represents the residual carrier frequency offset (CFO) and  𝑣𝑅𝑆(𝑡) is 

the baseband equivalent noise of the resampled 𝑣̃𝑅𝑆(𝑡) as in (3.10). Then a fine 

Doppler shift compensation is performed on 𝑦𝑅𝑆(𝑡) to obtain 𝑧𝑅𝑆(𝑡) =

 𝑦𝑅𝑆(𝑡) 𝑒−𝑗2𝜋𝑣̂𝑡, where 𝑣 is a fine estimator of 𝑣 (Berger, Zhou, Preisig, & Willett, 

2010). 

3) Finally after perfectly compensating the residual mean Doppler shift by its estimated 

value  𝑣, 𝑧𝑅𝑆(𝑡)  is converted into the discrete-time signal by means of low pass 

filtering and analog-to-digital (A/D) conversion with sampling interval 𝑇𝑠.  

Since the time varying-channel impulse response is assumed to be constant over the 

duration of one OFDM symbol and the number of channel paths, and the path  delays do 

not change during an OFDM symbol, it is sufficient to consider channel estimation only 

symbol by symbol. Therefore, for notational simplicity the OFDM symbol index m in 

(3.7) is omitted. 
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Consequently, with the assumption that 𝑇𝐶𝑃 is greater than or equal to the maximum 

channel path delay, and K active subcarriers are within the flat region of the frequency 

response of transmit and receive filters, after the CP removal, the received baseband 

equivalent discrete-time signal at the sampling instants 𝑡 =  𝑚𝑇𝑆𝑌𝑀 +  𝑛𝑇𝑠 +  𝑇𝐶𝑃, with 

𝑚 = 0, can be expressed from (3.7) and (3.11) as follows: 

𝑧𝑅𝑆[𝑛] =   ∑ ℎℓ  
1

√𝑁
 

𝐿−1

ℓ=0

 ∑ 𝑑[𝑞] exp (
𝑗2𝜋𝑞

𝑁
 ((1 + 𝑏)𝑛 − 𝜏ℓ))

𝐾
2

−1

𝑞=−
𝐾
2

+  𝑣𝑅𝑆[𝑛], 

(3.12) 

where 𝑁 = 𝑇/𝑇𝑠 and 𝜏̃ℓ  ≜  𝜏ℓ/𝑇𝑠 represents the ℓ𝑡ℎ normalized path delay. Similarly, 

𝑣𝑅𝑆[𝑛], 𝑛 = 0, 1, … , 𝑁 − 1, is the baseband equivalent discrete-time ambient noise 

samples obtained through the sampling of 𝑣̃𝑅𝑆[𝑛], in (3.9). From (3.5) it can be easily 

shown that the noise samples are complex-valued and correlated Gaussian distributed 

random variables with zero means. Hence, the autocorrelation function becomes, 

𝑅𝑣𝑅𝑆
[𝑢] =  𝑅𝑣  (

𝑢 𝑇𝑠

1 +  𝛾
) 𝑒

−𝑗𝑤𝑐𝑡
𝛾̂

1+ 𝛾̂
 𝑢 𝑇𝑠 . (3.13) 

An N-point fast Fourier transform (FFT) is applied to transform the sequence 𝑧𝑅𝑆[𝑛] into 

the frequency domain. Assuming that the K subcarriers by which data is transmitted are 

within the flat region of the transmitter and receiver filters of unity gains, the 

𝑘𝑡ℎsubcarrier output of the FFT during one OFDM symbol can be represented as 

𝑍𝑅𝑆[𝑘] =  
1

√𝑁
 ∑ 𝑧𝑅𝑆[𝑛] exp (−𝑗

2𝜋𝑛𝑘

𝑁
)

𝑁

𝑛=0

 

=  ∑ 𝑑𝑞𝐻[𝑘, 𝑞] + 
𝐾

2
−1

𝑞=−
𝐾

2

𝑉𝑅𝑆[𝑘], (3.14) 

where 

𝑘 = −
𝐾

2
, −

𝐾

2
+ 1, … ,

𝐾

2
− 1 

 

𝐻[𝑘, 𝑞] =  ∑ ℎℓ  exp (−𝑗
2𝜋𝑞𝜏̃ℓ

𝑁
 𝐹𝑘,𝑞(𝑏)) ,

𝐿−1

ℓ=0

 (3.15) 

𝐹𝑘,𝑞(𝑏) =  
sin (Θ𝑘,𝑞)

𝑁sin (Θ𝑘,𝑞/𝑁)
exp (−𝑗

𝑁 − 1

𝑁
 Θ𝑘,𝑞), (3.16) 
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where Θ𝑘,𝑞 =  𝜋(𝑞(1 + 𝑏) − 𝑘). The frequency domain noise samples 𝑉𝑅𝑆[𝑘] in (3.14) 

are determined from 𝑉𝑅𝑆[𝑘]  =  
1

√𝑁
 ∑ 𝑣𝑅𝑆[𝑛] exp (−𝑗

2𝜋𝑛𝑘

𝑁
)𝑁

𝑛=0 . Consequently, inserting 

(3.15) into (3.14) the vector form of (14) can be expressed as  

𝐙𝑅𝑆 = 𝐇 𝐝 +  𝐕𝑅𝑆, (3.17) 

where 

𝐙𝑅𝑆 = [𝑍𝑅𝑆 [−
𝐾

2
] , 𝑍𝑅𝑆 [−

𝐾

2
+ 1] , … , 𝑍𝑅𝑆 [

𝐾

2
− 1]]

𝑇

 ∈  𝐶𝐾 , 

𝐝 = [𝑑
−

𝐾

2

, 𝑑
−

𝐾

2
+1

, … , 𝑑𝐾

2
−1

]
𝑇

 ∈  𝐶𝐾,  
 

 

𝐕𝑅𝑆 = [𝑉𝑅𝑆 [−
𝐾

2
] , 𝑉𝑅𝑆 [−

𝐾

2
+ 1] , … , 𝑉𝑅𝑆 [

𝐾

2
− 1]]

𝑇

 ∈  𝐶𝐾,  

 

and the [𝑘, 𝑞]𝑡ℎ element of 𝐇 ∈  𝐶𝐾×𝐾 is determined from (3.15). It is obvious from 

(3.14) that the ambient noise vector in the frequency domain, 𝐕RS, is also a non-white 

Gaussian. Thus, without going further toward the channel estimation step, the observation 

model in (3.17) can be reduced to one with additive white Gaussian noise by the use of a 

noise-whitening filter, based on the singular value decomposition (SVD) of the 

covariance matrix of 𝐕𝑅𝑆, as 𝐑𝑉𝑅𝑆
= 𝐔 𝚼 𝐔†, where 𝐔 ∈  𝐶𝐾×𝐾is a complex valued 

unitary transformation matrix, 𝚼 is a 𝐾 × 𝐾 diagonal matrix with positive real entries and 

(. )† denotes the conjugate transpose. Therefore, the colored noise can be transformed into 

a white noise through the linear transformation 𝐖 = 𝚿 𝐕𝑅𝑆 where  𝚿 =   𝚼−𝟏/𝟐 𝐔†is 

the whitening matrix and 𝐖 =  [𝑊 [−
𝐾

2
] , 𝑊 [−

𝐾

2
+ 1] , … , 𝑊 [

𝐾

2
− 1]]

𝑇

 ∈  𝐶𝐾  is a 

white Gaussian noise vector whose components have zero mean and unit variance. 

Multiplying (3.17) by 𝚿 from the left the following final form of the observation model 

can be obtained as: 

𝐙 = 𝐆 𝐝 +  𝐖 ∈  𝐶𝐾 , (3.18) 

 

where 𝐙 =  𝚿 𝐙𝑅𝑆 and 𝐆 =  𝚿 𝐇  ∈  𝐶𝐾×𝐾 is the convolution matrix generated from data 

symbols. 
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3.3 Sparse Multipath Channel Estimation 

3.3.1 Preprocessing 

In this work, an estimation of a fast time-varying UWA channel, based on the observation 

model in (3.18) is taken into account. As explained earlier, the overall continuous time 

channel impulse response is represented by a parametric model in which each distinct 

path is characterized by a few significant complex-valued path amplitudes, {ℎℓ}ℓ=0
𝐿−1, the 

normalized path delays {𝜏̃ℓ  ≜   𝜏ℓ/𝑇𝑠}ℓ
𝐿−1 and the Doppler spread b, resulting in a sparse 

multipath channel model.  

In the following subsections, the algorithms are presented to estimate the sparse complex-

valued channel gains, channel path delays and Doppler spread in a computationally 

efficient way. A Rician fading is assumed in which ℎℓ has 𝜅-factor 𝜅ℓ, for ℓ = 0, 1, … , 𝐿 −

1. By taking 𝜅ℓ = 0, a Rayleigh fading is also obtained as a special case. 

From (3.18), the computation of the observation vector Z at the pilot subcarriers, {𝒫 =

 {𝑝1,𝑝2, … , 𝑝𝑃 }   ∈  𝐾 } of the OFDM symbol from which the least-squares (LS) estimates 

of the diagonal elements of the combined channel matrix G can obtained as: 

𝐺̂[𝑝𝑘, 𝑝𝑘] =  
𝑍[𝑝𝑘]

𝑑𝑝𝑘

= 𝐺[𝑝𝑘, 𝑝𝑘] + 𝑉[𝑝𝑘], 

 
(3.19) 

where 𝑉[𝑝𝑘] =  ∑ 𝑑𝑝𝑘
 𝐺[𝑝𝑘, 𝑞] + 𝑊[𝑝𝑘]q ∈ 𝒫,q≠p . By means of (3.15) and (3.16), (3.19) 

can be expressed as 

𝐙𝑃 =  𝐀𝑃 𝐡 +  𝐕𝑃, (3.20) 

 

where 𝐙𝑃 = [𝐺̂[𝑝1, 𝑝1], 𝐺̂[𝑝2, 𝑝2], … , 𝐺̂[𝑝𝑃, 𝑝𝑃]]
𝑇

∈  𝐶𝑃, 𝐕𝑃 =

 [𝑣(𝑝1), 𝑣(𝑝2), … , 𝑣(𝑝𝑃)]𝑇 ∈  𝐶𝑃and 𝐀𝑃 ∈  𝐶𝑃×𝐿 matrix given by 

𝐀𝑃 =  [
𝜉1(𝑏)𝑒−𝑗2𝜋𝑝1𝜏̃0/𝑁 ⋯ 𝜉1(𝑏)𝑒−𝑗2𝜋𝑝1𝜏̃𝐿−1/𝑁

⋮ ⋱ ⋮
𝜉1(𝑏)𝑒−𝑗2𝜋𝑝𝑃𝜏̃0/𝑁 ⋯ 𝜉1(𝑏)𝑒−𝑗2𝜋𝑝𝑃𝜏̃𝐿−1/𝑁

], (3.21) 

where 𝜉1(𝑏) =  ∑ 𝜓
𝑖+

𝐾

2
+1,   𝑘+

𝐾

2
+1

𝐹𝑘,𝑖(𝑏) 
𝐾

2
−1

𝑞=−
𝐾

2

, 𝜓𝑚,𝑛 is the (𝑚, 𝑛)𝑡ℎ element of the matrix 

𝚿 and 𝐹𝑘,𝑖(𝑏) is given by (3.16). 
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3.3.2 Path Delays and Doppler Spread Estimation 

The sparse path delays and the Doppler shift are estimated by the conventional matching 

pursuit algorithm (Zhang at al., 2014) (Cotter and Rao, 2002). However, in practice, the 

sparsity assumption does not always hold and consequently may not represent a truly 

sparse channel impulse response in UWA communications due to the non-integer 

normalized path delays in the equivalent discrete time baseband representation of the 

channel. Therefore, such an estimated channel may differ substantially from the original 

channel. The A/D conversion at the input of the OFDM receiver is implemented first with 

an oversampling rate 𝑅𝑠
(𝜚)

=  𝜚/𝑇𝑠, 𝜚 = 1, 2, …, leading to a finer delay resolution matrix 

𝐀𝑃
(𝜚)

 ∈  𝐶𝑃 ×𝑁𝜏𝑁𝜐, called dictionary matrix, obtained from the 𝐀𝑃 matrix in (3.21). Its 

columns correspond to the (𝛽, 𝒯ℓ)𝑡ℎ discrete multipath channel taps and Doppler rate 

positions, respectively, where 𝜚  is the oversampling factor, and 1/𝑇𝑠 is the baseband 

Nyquist sampling rate. Consequently, the real-valued normalized path delays 𝜏̃ℓ, ℓ =

0, 1, … , 𝐿 − 1 can be discretized as 𝒯ℓ =  ⌊𝜚 𝜏̃ℓ⌋ and take values from the set of the 

possible discrete path delays: 

𝒯ℓ ∈  {0, 1, 2, … , 𝑁𝜏 − 1}, (3.22) 

 

where 𝑁𝜏 = 𝜚 𝐿𝐶𝑃, 𝐿𝐶𝑃 =   𝑇𝐶𝑃/ 𝑇𝑠 and  𝑇𝐶𝑃 is the duration of the CP. However, 𝜚 is 

usually chosen to be one in MP-based channel estimators. Similarly, the real-valued 

Doppler spread b can be discretized as 𝛽 =  ⌊(𝑏 𝑣max)/ Δ𝑣⌋ and takes values from the set 

of the possible discrete Doppler rates: 

𝛽 ∈  {0, 1, 2, … , 𝑁𝑣 − 1}, (3.23) 

 

where 𝑁𝑣 = (2  𝑣max) / Δ𝑣. Based on the associated discrete random channel tap 

positions {𝒯ℓ}ℓ=0
𝐿−1, and Doppler rate 𝛽, the received signal in (3.20) can be rewritten as 

𝐙𝑃 =  ∑ arℓ 

𝐿−1

ℓ=0

hℓ +  V𝑃, (3.24) 

where 𝐚𝐫ℓ is the 𝑟ℓ
𝑡ℎcolumn vector of the finer resolution matrix 𝐀𝑃

(𝜚)
whose columns 

correspond to the (𝛽, 𝒯ℓ)𝑡ℎ discrete multipath channel tap and Doppler rate positions, 

respectively. For a given 𝑟ℓ  ⟺  (𝛽, 𝒯ℓ), the 𝑘𝑡ℎcomponent of 𝐚𝐫ℓ is determined from 

(3.21) as 
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arℓ [𝑘] =  A𝑃[𝑘, ℓ]|𝑏=− 𝑣max+𝛽Δ𝑣, 𝜏̃ℓ= 𝒯ℓ/𝜚. (3.25) 

where 𝛽 ∈  {0, 1, 2, … , 𝑁𝑣 − 1} and 𝒯ℓ ∈  {0, 1, 2, … , 𝑁𝜏 − 1}. The total number of 

columns of 𝐀𝑃
(𝜚)

 is 𝑁𝑣𝑁𝜏 and they are labelled as 𝑟ℓ = 1, 2, … , 𝑁𝑣𝑁𝜏. The conversion 

between 𝑟ℓ and (𝛽, 𝒯ℓ) can be easily obtained as: 

 

𝑟ℓ =  𝛽 + 𝑁𝑣𝒯ℓ + 1, 

𝛽 =  𝑟ℓ mod(𝑁𝑣) − 1 and, 𝒯ℓ =  ⌊
𝑟ℓ

𝑁𝑣
⌋ − 1. 

As a first step in the MP algorithm, the column in the dictionary matrix,  

𝐀𝑃
(𝜚)

= [𝐚0, 𝐚1, … , 𝐚𝑁𝑣𝑁𝜏−1], associated with the observation equation (3.24), that is best 

aligned with the residue vector 𝝆0 =  𝐙𝑃is found and denoted by 𝐚𝐫1 . Then the projection 

of 𝝆0 along this direction is removed from 𝝆0and the residual 𝝆1is obtained. The 

algorithm proceeds by sequentially choosing the column that is the best match until a 

termination criterion is met. At the ℓ𝑡ℎ iteration, the index of the vector from 𝐀𝑃
(𝜚)

 most 

closely aligned with the residual vector 𝝆ℓ−1 is obtained as follows (Berger, Zhou, 

Preisig, & Willett, 2010): 

𝑟ℓ = arg max
𝑗

|𝐚𝑗
†

 𝝆ℓ−1|
2

𝐚𝑗
†

 𝐚j
, 𝑗 = 1, 2, … , 𝑁𝑣𝑁𝜏 − 1,  

𝑗 ∉  {𝑟1, 𝑟2, … , 𝑟ℓ−1}, 

(3.26) 

and a coarse channel path amplitude estimate at 𝑟ℓ is 

 

ℎℓ =  
𝐚𝒓ℓ

†
 𝝆ℓ−1

𝐚𝒓ℓ

†
 𝐚𝒓ℓ

, (3.27) 

from which the new residual vector is computed as  

𝝆ℓ =  𝝆ℓ−1 −  ℎℓ 𝐚𝒓ℓ
 . The iteration is repeated until a specified number of channel taps, 

L, have been selected or the residual becomes sufficiently small, i.e. ‖𝝆ℓ‖ < 𝜀. 

3.3.3 Path Gains Estimation {𝒉𝓵} 

With the path delays and Doppler spread information, the channel path gains {ℎℓ}ℓ=0
𝐿−1 can 

be estimated by the MAP technique in an optimal fashion. Using the reduced dimensional 
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observation model given by (3.24) to estimate the complex valued channel gains ℎℓ. For 

notational simplicity, equation (3.24) can be re-written in the following form: 

𝒛 =  𝓨𝐡 + 𝐯, (3.28) 

 

where 𝒛 ≡  𝐙𝑝, 𝓨 ≡  [𝐞0, 𝐞1, … , 𝐞𝐿−1], 𝐞ℓ ≡   𝐚𝒓ℓ
, 𝐡 =  [h0, h1, … , h𝐿−1]𝑇 and 𝐯 ≡ 𝐕𝑃. 

Let the two notations 𝑠ℓ =  𝜎ℓ
2, 𝜂 ≡ 1/𝜎ℓ

2, define the channel path gains are assumed to 

obey a Rician distribution in which ℎℓ’s are complex Gaussian random variables with 

independent real and imaginary parts with mean 𝜇ℓ and the variance 𝑠ℓ and with Rician 

factor, 𝜅ℓ = 𝜇ℓ
2/𝑠ℓ, again assumed equal for each multipath channel. Consequently, the 

parametric form of the prior joint probability density function (pdf) of h can expressed as 

𝑓(𝐡|𝛍̃, 𝐬̃) =  ∏
1

𝜋𝑠̃ℓ
 exp (−

1

𝑠̃ℓ
 |ℎℓ − 𝜇ℓ|2)

𝐿−1

ℓ=0

, (3.29) 

 

where 𝜇ℓ =  𝜇ℓ(1 + 𝑗), 𝑠̃ℓ = 2𝑠ℓ and 𝛍̃ = [𝜇0, 𝜇1, … , 𝜇𝐿−1]𝑇 , 𝐬̃ = [𝑠̃0, 𝑠̃1, … , 𝑠̃𝐿−1]𝑇 are 

vectors of 2L parameters controlling the prior mean and variance of each channel 

coefficient ℎℓ. For fixed values of the parameters governing the prior, the posterior 

density of the channel coefficients vector is complex Gaussian as follows: 

𝑝(𝐡|𝛍̃, 𝐬̃) = 𝐶𝑁(𝛍𝐡, 𝚺h), (3.30) 

 

with 𝛍𝐡 =  𝚺h(𝜂 𝓨† 𝐳 +  𝚪−1 𝛍̃) and 𝚺h =  (𝜂 𝓨†𝓨 + 𝚪−1)−1, where 𝚪 = diag(𝐬̃). 

Thus, from (3.30) the MAP estimator for 𝐡 is given by 

𝐡̂MAP = arg  max
𝐡

𝑓(𝐡|𝛍̃, 𝐬̃)=𝛍𝐡  

=  (𝓨†𝓨 +
𝟏

𝜂
𝚪−1)

−1

( 𝓨† 𝐳 +
𝟏

𝜂
 𝚪−1 𝛍̃). (3.31) 

The column vectors of 𝓨 ≡ 𝐴𝑃 = [𝑒0, 𝑒1, … , 𝑒𝐿−1] are approximately orthogonal. That 

is 𝑒ℓ
†𝑒ℓ′  ≈ 0 for ℓ ≠  ℓ′ and ℓ ≠  ℓ′  ∈  {0, 1, … 𝐿 − 1}. The column vector 𝑒ℓ of the 

matrix in (3.21) can be expressed as 

𝑒ℓ =  [𝐹𝑝1,𝑝1
(𝑏ℓ) 𝑒−𝑗2𝜋𝑝1𝜏̃ℓ/𝑁, 𝐹𝑝2,𝑝2

(𝑏ℓ) 𝑒−𝑗2𝜋𝑝1𝜏̃ℓ/𝑁, … , 𝐹𝑝𝑃,𝑝𝑃
(𝑏ℓ) 𝑒−𝑗2𝜋𝑝1𝜏̃ℓ/𝑁]𝑇 

where 
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𝐹𝑝𝑘,𝑝𝑘
(𝑏ℓ)  =  

sin(Θ𝑝𝑘,𝑝𝑘
)

Nsin (
Θ𝑝𝑘,𝑝𝑘

𝑁 )

exp (−𝑗
𝑁 − 1

𝑁
 Θ𝑝𝑘,𝑝𝑘

) × exp(𝑗2𝜋(𝑓𝑐𝑏ℓ − 𝑣)𝑇𝐶𝑃) 

and Θ𝑝𝑘,𝑝𝑘
=  𝜋(𝑏ℓ 𝑝𝑘 + (𝑓𝑐𝑏ℓ − 𝑣)𝑇). 

It then follows from 𝐹𝑝𝑘,𝑝𝑘
(𝑏ℓ) that 

𝑒ℓ
†𝑒ℓ′ =  ∑ 𝐹𝑝𝑘,𝑝𝑘

(𝑏ℓ) 𝐹𝑝𝑘,𝑝𝑘
∗ (𝑏ℓ′) exp (−𝑗

2𝜋𝑝𝑘(𝜏̃ℓ −  𝜏̃ℓ′)

𝑁
 ) .

𝑃

𝑘=1

 

Note that, the Doppler rates {𝑏ℓ} are uniformly distributed within [−𝑏𝑚𝑎𝑥, +𝑏𝑚𝑎𝑥], 

where 𝑏𝑚𝑎𝑥 =  𝑣𝑚𝑎𝑥/𝑐, being the maximum velocity standard deviation and 𝑐 is the 

sound of speed. In practice, even in the presence of a severe Doppler spread, 𝑏𝑚𝑎𝑥 is in 

the order of 5 × 10−4. Hence, |𝑏ℓ|<< 1 for ℓ ∈  {0, 1, … 𝐿 − 1}. On the other hand, 

assuming 𝑣, the residual mean Doppler shift, is estimated almost perfectly, it follows that 

|𝑓𝑐𝑏ℓ − 𝑣|<< 1. Consequently, the term 𝐹𝑝𝑘,𝑝𝑘
(𝑏ℓ) 𝐹𝑝𝑘,𝑝𝑘

∗ (𝑏ℓ′) in 𝑒ℓ
†𝑒ℓ′ can be replaced 

with unity that yields to an upper bound for the value of 𝑒ℓ
†𝑒ℓ′. Then 𝑒ℓ

†𝑒ℓ′ takes the form 

𝑒ℓ
†𝑒ℓ′ =  ∑  exp (−𝑗

2𝜋𝑝𝑘(𝜏̃ℓ −  𝜏̃ℓ′)

𝑁
 ) .

𝑃

𝑘=1

 

The real-valued, normalized path delays 𝜏̃ℓ’s in 𝑒ℓ
†𝑒ℓ′ are estimated by the MP algorithm 

at equally spaced pilot positions 𝑝1 = 0, 𝑝2 =  𝑝1 +  Δ, … , 𝑝𝑃 = (𝑃 − 1) Δ, taking values 

from the set of possible discrete path delays,  {0, 1, … , 𝐿𝐶𝑃}, normalized to the sampling 

interval  𝑇𝑠. Hence for ℓ ≠  ℓ′, 𝜏̃ℓ − 𝜏̃ℓ′ ≈ 𝑚, where 𝑚 ≠ 0 is an integer. Note also 

that 𝑃Δ = 𝑁. Now substituting 𝜏̃ℓ − 𝜏̃ℓ′ = 𝑚 and 𝑝𝑘 = (𝑘 − 1) Δ in 𝑒ℓ
†𝑒ℓ′ and 

performing the resulting summation, for 𝑚 ≠ 0, the result can be shown as follows 

𝑒ℓ
†𝑒ℓ′ ≈  ∑  exp (−𝑗

2𝜋𝑘𝑚Δ

𝑁
 ) 

𝑃−1

𝑘=0

 

 =
1 −  𝑒−𝑗2𝜋𝑚𝑃Δ/N

1 −  𝑒−𝑗2𝜋𝑚𝑃Δ/N
 

=  
1 −  𝑒−𝑗2𝜋𝑚

1 − 𝑒−𝑗2𝜋𝑚Δ/N
 



 

34 

 

                                                               =  0. 

Consequently, 𝓨†𝓨 is a banded matrix and can be approximated as 𝓨†𝓨 =

diag(‖𝐞0‖2, ‖𝐞1‖2, … , ‖𝐞𝐿−1‖2), where 𝐞ℓ is the ℓ𝑡ℎ column vector of 𝓨.  Then, the 

matrix inversion in (3.31) can be computed easily as: 

(𝓨†𝓨 +
𝟏

𝜂
𝚪−1)

−1

= diag (𝜆0, 𝜆1, … , 𝜆𝐿−1), (3.32) 

with 𝜆ℓ =  (𝜂 ‖𝐞ℓ‖2 + 1/𝑠̃ℓ)−1. However, for ℓ = 0, 1, … , 𝐿 − 1, the unknown 

parameters 𝜇ℓ =  𝜇ℓ/(1 + 𝑗) and 𝑠ℓ =  𝑠̃ℓ/2, representing the independent real and 

imaginary parts of the Rician distributed channel coefficients, ℎℓ, can be estimated from 

(3.28) by marginalizing over 𝐡, and then performing ML estimation. Details are given in 

the following subsection. 

3.3.4 ML Estimation of the Prior Unknown Mean and Variance {𝝁𝓵, 𝒔𝓵}𝓵
𝑳−𝟏 

The reduced dimensional observation model given by (3.28) is used to obtain the ML 

estimates of the variance 𝐬 =  [𝑠0, 𝑠1, … , 𝑠𝐿−1]𝑇and the mean vector 𝛍 =

[𝜇0, 𝜇1, … , 𝜇𝐿−1]𝑇  of h as follows: 

(𝛍ML, 𝐒ML) = arg max
𝛍,𝐬

log 𝑝 (𝐳|𝛍, 𝐬)., (3.33) 

In (3.33), 𝑝(𝐳|𝛍, 𝐬)  can be evaluated by averaging it over h as 

𝑝(𝐳|𝛍, 𝐬) =  ∫ 𝑝(𝐳|𝐡) 𝑝(𝐡|𝛍, 𝐬)
𝐡

. (3.34) 

From (3.28) it follows that 

𝑝(𝐳|𝐡)  ∼ exp{−𝜂 ‖𝐳 − 𝓨𝐡‖2}, (3.35) 

and 𝑝(𝐡|𝛍, 𝐬)   is given by (3.29). Substituting (3.35) and (3.29) into (3.34) and defining 

𝓨0 ≡ (𝟏 + 𝒋) 𝓨, the integral of (3.34) with respect to h is computable and given by 

𝑝(𝐳|𝐬, 𝛍) =  𝜋−𝑃 det(𝐶𝑧
−1)  exp{−(𝐳 − 𝓨0𝛍)† 𝐶𝑧

−1 (𝐳 − 𝓨0𝛍)}, (3.36) 

where 𝐶𝑧 =  𝓨 𝐀 𝓨† +  (1/𝜂) 𝐈𝑃and 𝑨 = diag(2𝑠0, 2𝑠1, … , 2𝑠𝐿−1). The loglikelihood 

of 𝛍 and s can then be expressed as  

log 𝑝 (𝐳|𝛍, 𝐬) = (𝐳 − 𝓨0𝛍)† 𝐶𝑧
−1 (𝐳 − 𝓨0𝛍) + log det(𝐶𝑧). (3.37) 
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Then the ML estimate of 𝛍. Can be found by minimizing (3.37). By taking the 

derivative of log 𝑝 (𝐳|𝛍, 𝐬) with respect to 𝛍 and setting the resulting gradient to zero, 

the following solution can be obtained: 

𝝁̂ML =  (𝓨0
† 𝐶𝑧

−1 𝓨0)
−1

 ℛ𝑒{𝓨0
† 𝐶𝑧

−1 𝐳}. (3.38) 

Using the matrix inversion lemma, 𝐶𝑧
−1 z can be expressed as 

𝐶𝑧
−1 =  (𝓨 𝐀 𝓨† +  (1/𝜂) 𝐈𝑃)−1 

=  𝜂𝐈𝑃 −  𝜂𝓨 (𝓨† 𝓨 +  (
1

𝜂
)  𝐀)

−𝟏

 𝓨†. (3.39) 

As mentioned earlier, 𝓨† 𝓨 can be approximated as 𝓨†𝓨 =

diag(‖𝐞0‖2, ‖𝐞1‖2, … , ‖𝐞𝐿−1‖2) , where 𝐞ℓ is the ℓ𝑡ℎ column vector of 𝓨. Then, (3.39) 

can be computed easily as: 

𝐶𝑧
−1 =  𝜂𝐈𝑃 −   𝜂 𝓨† 𝚲 𝓨, (3.40) 

where 𝚲 = diag (𝜆0, 𝜆1, … , 𝜆𝐿−1) with 𝜆ℓ =  ( ‖𝐞ℓ‖2 + 1/(2𝜂𝑠̃ℓ))−1.  

On the right hand side of Eq. (3.38), the term (𝓨0
† 𝐶𝑧

−1 𝓨0)
−1

can be expressed as 

follows 

(𝓨0
† 𝐶𝑧

−1 𝓨0)
−1

= ((1 + 𝑗)(1 − 𝑗)( 𝓨†𝐶𝑧
−1 𝓨))

−1

 

    =  
1

2
(𝓨†𝐶𝑧

−1 𝓨)−1. 

Substituting 𝐶𝑧
−1 =  (𝓨 𝐀 𝓨† +  (1/𝜂) 𝐈𝑃)−1, obtained in Eq. (3.39) and 𝓨†𝓨 =

diag(‖𝐞0‖2, ‖𝐞1‖2, … , ‖𝐞𝐿−1‖2), into the above expression yields,  

(𝓨0
† 𝐶𝑧

−1 𝓨0)
−1

=  
1

2𝜂
 (𝓨†𝓨 − 𝓨†𝓨𝑨𝓨†𝓨)−1 

=
1

2𝜂
(diag(‖𝐞0‖2, ‖𝐞1‖2, … , ‖𝐞𝐿−1‖2) − diag(‖𝐞0‖4𝜆0, ‖𝐞1‖4𝜆1, … , ‖𝐞𝐿−1‖4𝜆𝐿−1))

−1
 

=
1

2𝜂
(diag((‖𝐞0‖2 − (1 − 𝜆0‖𝐞0‖4)−1, … , (‖𝐞𝐿−1‖𝐿−1 − (1 − 𝜆𝐿−1‖𝐞𝐿−1‖)−1)) 

On the other hand, the second term, ℛ𝑒{𝓨0
† 𝐶𝑧

−1 𝐳} in (3.38) can be expressed as 

ℛ𝑒{𝓨0
† 𝐶𝑧

−1 𝐳} =  𝜂 ℛ𝑒{𝓨0
† ( 𝐈𝑃 −  𝓨𝑨𝓨†) 𝒛} 

   =  𝜂 ℛ𝑒{𝓨0
†𝐈𝑃 − 𝓨0

†𝓨𝑨𝓨†) 𝒛} 

=  𝜂 ℛ𝑒{𝓨0
†  − 𝓨†𝓨𝑨𝓨0

†) 𝒛} 
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=  𝜂 ℛ𝑒{(𝐈𝐿 −  𝓨†𝓨𝑨) 𝓨0
†𝒛} 

=  𝜂 diag((1 − ‖𝐞0‖2 𝜆0), … , (1 − ‖𝐞𝐿−1‖2 𝜆𝐿−1))  ℛ𝑒{𝓨0
†𝑧}. 

Note that in the last equation, the third equation from the above follows from the second 

equation due to the fact that 𝓨0  ≜ (1 + 𝑗)𝓨. Inserting (𝓨0
† 𝐶𝑧

−1 𝓨0)
−1

 and ℛ𝑒{𝓨0
† 𝐶𝑧

−1 𝐳} 

in Eq (38), the final result can be expressed as 

𝝁̂ML =  
1

2
 diag(‖𝐞0‖−2, ‖𝐞1‖−2, … , ‖𝐞𝐿−1‖−2) ℛ𝑒{𝓨0

†  𝐳}. (3.41) 

The ML variance estimate of s is then found by maximizing the following objective 

function with respect to s: 

𝑱(𝝁̂ML, 𝐬) = arg max
 𝐬

log 𝑝 (𝐳|𝝁̂ML, 𝐬). (3.42) 

Substituting (3.40) and (3.41) into (3.37), and discarding the terms independent of s, 

(3.42) takes the form of, 

𝑱(𝝁̂ML, 𝐬) =  ∑ log (‖𝐞ℓ‖2 𝑠ℓ +  
1

𝜂
) −  𝜂

𝐿−1

ℓ=0

∑(|qℓ|2 𝜆ℓ − |𝐭|2)

𝐿−1

ℓ=0

, (3.43) 

where 𝐭 ≜ 𝐳 − 𝓨𝝁̂ML and 𝑞ℓ is the ℓ𝑡ℎ component of the vector 𝐪 =  𝓨†𝒕.  

Defining 𝒕 ≜ 𝒛 − 𝓨0𝝁̂ML and 𝐪 =  𝓨0
†𝒕, Eq (3.37) can be expressed as 

log 𝑝(𝒛|𝝁, 𝒔) = 𝒕† 𝐂z
−1 𝒕 + logdet(𝑪𝑧). 

Substituting the expression of 𝐂z
−1 given by Eq. (39) and 𝐂𝑧 =  𝓨 𝐀 𝓨† +  (1/𝜂) 𝐈𝑃 into 

log 𝑝(𝒛|𝝁, 𝒔) , consequently, 

log 𝑝(𝒛|𝝁, 𝒔) =  𝜂𝒕†( 𝐈𝑃 −  𝓨𝑨𝓨†) 𝒕 + logdet(𝓨 𝐀 𝓨† +  (1/𝜂) 𝐈𝑃). 

= 𝜂(𝒕†𝒕 − 𝒒†𝑨 𝒒) + logdet(𝓨 𝐀 𝓨† +  (1/𝜂) 𝐈𝑃). 

Using the matrix identity det(𝓨 𝐀 𝓨† + (1/𝜂) 𝐈𝑃) =  𝜂𝐿 and discarding the terms 

independent of s, log 𝑝(𝒛|𝝁, 𝒔)  can then be expressed as 

det log 𝑝(𝒛|𝝁, 𝒔) ≈ ∑ log(2 ‖eℓ‖2 sℓ + 1/𝜂) − 𝜂 ∑ log( |𝑞ℓ|2 𝜆ℓ − ‖𝐭‖2)

𝐿−1

ℓ=0

 

𝐿−1

ℓ=0

. 

Taking derivative of det log 𝑝(𝒛|𝝁, 𝒔) with respect to sℓ, equating it to zero and solving 

the resulting equation yields the ML estimation expressed as 

𝒔̂ML = max ( 
|𝑞ℓ|2 𝜂 − ‖𝐞ℓ‖2

2‖𝐞ℓ‖4 𝜂
)

+

, (3.44) 

where [𝑥]+ = max (0, 𝑥). Finally a normalization is performed on the optimal mean and 

variance estimates so as to satisfy the following: 
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∑ Ω̂ℓ
(𝑛𝑜𝑟)

= 𝐿−1
ℓ=0 ∑ (2𝜇̂ℓ,𝑀𝐿

2 (𝑛𝑜𝑟)
+  2𝑠̂ℓ,𝑀𝐿

2 (𝑛𝑜𝑟)
)𝐿−1

ℓ=0 = 1, (3.45) 

where for ℓ = 0, 1, … , 𝐿 − 1, 𝜇̂ℓ,𝑀𝐿 , 𝑠̂ℓ,𝑀𝐿
(𝑛𝑜𝑟)

, and Ω̂ℓ
(𝑛𝑜𝑟)

 are normalized versions of 

𝜇̂ℓ,𝑀𝐿 , 𝑠̂ℓ,𝑀𝐿, and Ω̂ℓ = 2 𝜇̂ℓ,𝑀𝐿 +  2𝑠̂ℓ,𝑀𝐿, respectively. Also, 𝜅ℓ =  𝜇̂ℓ,𝑀𝐿
2 (𝑛𝑜𝑟)

/𝑠̂ℓ,𝑀𝐿
2 (𝑛𝑜𝑟)

, 

where 𝜅ℓ is the Rician 𝜅 − factor for the ℓ𝑡ℎ tap of the channel. The normalized Ω̂ℓ
(𝑛𝑜𝑟)

 

is determined by means of 𝜇̂ℓ,𝑀𝐿
(𝑛𝑜𝑟)

 and 𝑠̂ℓ,𝑀𝐿
(𝑛𝑜𝑟)

as 

Ω̂ℓ
(𝑛𝑜𝑟)

=  
Ω̂ℓ

∑ Ω̂𝑚
𝐿−1
𝑚=0

,  ℓ = 0, 1, … , 𝐿 − 1, 

from which the required normalized ML estimates of mean and variance are obtained 

respectively as: 

𝑠̂ℓ,𝑀𝐿
(𝑛𝑜𝑟)

=  
Ω̂ℓ

(𝑛𝑜𝑟)

2(1+𝜅ℓ)
, (3.46) 

𝜇̂ℓ,𝑀𝐿
(𝑛𝑜𝑟)

=  √
𝜅ℓ Ω̂ℓ

(𝑛𝑜𝑟)

2(1+𝜅ℓ)
, (3.47) 

3.4 Equalization and data Detection 

The final equalization and data detection steps at the receiver based on the received 

signal model in (3.18) is discussed in this subsection. Supposing P known data symbols 

(pilots) in each OFDM symbol are evenly inserted into the K subcarriers. Let 𝒫 =

 {𝑝1, 𝑝2, … , 𝑝𝑃} denote the set containing the pilot positions and 𝑑𝑃(𝑞), 𝑞 ∈ 𝒫 denote a 

pilot symbol 𝐝 =  [𝑑0, 𝑑1, … , 𝑑𝐾−1]𝑇 (3.18) is a superposition of the pilot vector, 𝐝P, 

and the vector of the unknown data symbols, 𝐝D, as 𝐝 =  𝐝P  +  𝐝D. 

However, the vectors 𝐝P, 𝐝D  ∈  𝐶𝐾contain nonzero components only at the pilot 

positions 𝑝𝑖, 𝑖 = 1, 2, …, and at the data positions 𝒫̅, respectively. Consequently, (3.18) 

can be expressed as 

𝐙P ≜ 𝐙 − 𝐆 𝐝P (3.48) 

                                                                =  𝐆 𝐝D + 𝐕. 

Then, the equalized soft data symbols  𝐝̃D are recovered at the output of a linear 

minimum mean-square error (LMMSE) equalizer as 

𝐝̃D =  𝐆†(𝐆𝐆† + 𝜸−𝟏 𝐈K)−𝟏 𝐙P, (3.49) 
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where is the signal-to-noise ratio (SNR). The [𝑘, 𝑞]𝑡ℎelement of G is computed from 

(3.15), (3.16) and (3.18) by replacing the channel estimates {ℎℓ, (𝑏, 𝜏̃ℓ)}ℓ
𝐿−1, obtained at 

the channel estimation stage. However, although the MMSE equalizer outperforms 

other linear equalizers, the matrix inversion in (3.49) requires 𝑂(𝐾3) flops which 

represents a significant burden when K is large. However, as already documented in 

(Berger, Zhou, Preisig, & Willett, 2010), the UWA channels produce nearly-banded 

channel matrices G and this property can be exploited to reduce the complexity 

substantially by means of the factorization of Hermitian banded matrices (Rugini, 

Banelli, & Leus, 2005). Finally, the soft equalized data symbols are mapped onto M-ary 

quadrature amplitude modulation (QAM) or phase-shift keying (PSK) symbols by an 

ML detection technique. The final channel estimation, equalization and detection 

algorithm is summarized in Fig.3.1.  

 

 

Figure 3.1 Block diagram of the MP-MAP channel estimation and equalization 

algorithm. 

3.5 Computation Complexity 

The computational complexity of the proposed algorithm is presented in Table-3.1. 

However, Doppler spread, path delays, and path amplitude estimates, in (3.26) and (3.27), 
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obtained by the MP algorithm require approximately (P+1) 𝑁𝑣𝑁𝜏 complex 

multiplications (CMs) and PL𝑁𝑣𝑁𝜏 complex additions (CAs). Also, the computational 

complexity of the parameter estimates of the associated prior distribution of the channel 

gains, 𝜇̂ℓ,ML and 𝑠̂ℓ,ML, can be obtained as follows. In (3.41), 

diag(‖𝐞0‖−2, ‖𝐞1‖−2, … , ‖𝐞𝐿−1‖−2) requires N(L - 1) CMs and (N - 1) CAs. Similarly, 

computation of  ℛ𝑒{𝓨0
†  𝐳} requires LN CMs and L(N- 1) CAs. Consequently, total 

computations for 𝜇̂ℓ,ML require 3NL CMs. Similarly, the estimates of 𝑠̂ℓ,ML in (3.44) 

require 6L CM and L CA. On the other hand, to implement the MAP algorithm for 

estimation of the complex channel path gains in (3.31), it can be easily checked that it 

requires L(N +4) CMs and N(L+1) CAs. 

Table 3.1Computational complexity details 

Prior Distribution Parameters Estimation 

Eq. 

No 

Variable CMs CAs 

(3.46) 𝑠̂ℓ,ML ≈ 2𝐿(𝑁 − 1) ≈ 7𝐿 

(3.47) 𝜇̂ℓ,ML ≈ 2𝑁𝐿 ≈ 2𝑁𝐿 

MP-MAP Estimation Algorithm 

(3.26), 

(3.27) 

𝑟ℓ = (𝑏, 𝜏̃ℓ) ≈(P+1) 𝑁𝑣𝑁𝜏 PL𝑁𝑣𝑁𝜏 

(3.31), 

(3.32) 
ℎ̂ℓ,ML ≈NL + 4L L 

Equalization Algorithm 

(3.49) 𝑮†(𝑮𝑮† +  𝜸−1𝑰𝐾) ≈3𝑁2(𝐿 + Δ + 2)𝑁𝐿 ≈ 2𝑁2(𝐿 + Δ + 2) + 𝑁(𝐿

− 1) 

 

In computation of the equalizer output, 𝐝̃D in (3.49), the channel matrix G and the 

Hermitian matrix 𝑮†(𝑮𝑮† + 𝜸−1𝑰𝐾) can be approximated as banded matrices whose 

total number of diagonal and sub-diagonals is Δ. This property results in a substantial 

reduction of the computational complexity. Namely, the computation of 𝐝̃D requires 

approximately 3𝑁2(𝐿 + Δ + 2)𝑁𝐿 CMs and 2𝑁2(𝐿 + Δ + 2) + 𝑁(𝐿 − 1) CAs. As a 

result, it follows from Table-3.1 that the total computational complexity per iteration of 
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the MP-MAP channel estimation and equalization algorithms is approximately 2NL + 

2L(N-1) + (P+1)L𝑁𝑣𝑁𝜏 + NL + 4L + 3𝑁2(𝐿 + 𝛥 + 2) + NL CMs and 2LN + 7L + 

PL𝑁𝑣𝑁𝜏 + L + 2𝑁2(𝐿 + 𝛥 + 2) + N(L - 1) CAs. Consequently the complexity of the 

algorithm is on the order of O(NL) per OFDM subcarrier. 

3.6 Computer Simulations with BELLHOP Simulated Channels in Sapanca Lake 

In this subsection, the computer simulation results are presented to assess the performance 

of OFDMbased communication systems in UWA channels with the proposed channel 

estimation algorithm. The performance of the proposed algorithm is investigated over 

Sapanca Lake in Turkey, where the channels for the simulation part are generated by the 

BELLHOP-MATLAB wrapper acoustic toolbox (Kuai, Sun, & Cheng, 2016), which 

precisely reflects the characteristics of geographical location based on environmental 

factors such as sound speed profile and morphology of the lake bottom. Sapanca Lake is 

located at a latitude and longitude of 40.7163 and 30.2628, respectively. The lake has 

fresh water, and the dimensions of the lake are approximately 16-kilometres long, 5-

kilometres wide, and the deepest point of the lake is about 53-metres (Fig 3.2).  

 

 

Figure 3.2 Source and destination stations in Sapanca Lake 

 

The source and destination are located 5 km apart from each other and the corresponding 

transmitter and receiver are placed at a depth of 50 meters. 

Simulation parameters are summarized in Table-3.2. For the given environment, 

BELLHOP generates a variety of outputs such as the arrival time-series, the amplitudes 

and travel times associated with each echo. This yields the deterministic raw CIR which 

is then normalized and augmented by introducing Rician fading. Using the ray tracing 
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technique implemented by BELLHOP, Fig 3.2 shows the direct path and the reflected 

paths of the acoustic waves with significant power at the receiver (non-zero paths) 

between the source and destination, which enables us to compute the channel Rician 

factor. 

However, as explained in (Llor & Malimbres, 2013), in detail, the Rician factor is 

calculated by applying a repetitive computation using BELLHOP for a set of varying 

environmental conditions (surface height, wave activity, small node displacements 

around nominal locations, etc.), an ensemble of transmission losses can be compiled for 

a given deployment information (water depth, salinity, operational frequency range) and 

later used to infer the statistical model parameters, including the fading distribution and 

the Rician 𝜅 − factor. While it is possible, in principle, to run a deterministic propagation 

model for a large number of different surface conditions, the underlying computational 

demands are high. Hence, the statistical prediction model (SPM) is adopted in (Llor & 

Malimbres, 2013), to facilitate the BELLHOP in the presence of channel fading for the 

Sapanca Lake simulations. 

For the given SSP of Sapanca Lakes, the SMP is implemented by varying the parameters 

(wave height and wave lengths) related to the surface wave activity. Also, the stations are 

moved slowly in a random way at the source and receivers ends in vertical and horizontal  

 

 

Figure 3.3 Ray tracing for a range of 5km 

directions from their nominal positions.However, the surface wave height of Sapanca 

Lake was taken between 0.5 m -1 m (in steps 7.5 cm) and surface wave length between 
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25m-50m (in steps 1m). The probability density function estimated by the SMP was quite 

fitted in a Rician distribution with a Rician factor 𝜅 − factor 𝜅ℓ ≈ 10, for all channel 

paths, and consequently, used throughout the computer simulations. The proposed 

environmental profile, hypothesizes that the bottom type of Sapanca Lake is flat. 

However, a slight Doppler effect would arise due to the semi-steady state of the water 

motion in the lake. In order to get the sound speed for Sapanca Lake, Medwin’s formula 

(2.3) is used. The water temperature have been under measurement along the years (2000-

2007) (Akcaakan, Koker, Gurevin, & Albay, 2014), where the average water temperature 

of Sapanca lake is around  (16.0°), with salinity 0.5 ppt. Using these two values along the 

depths 0-53 m, an SSP is generated for the proposed Sapanca Lake. Fig 3.4 shows the 

sound speed profile of Sapanca Lake obtained by BELLHOP. 

 

 

Figure 3.4 Sound speed profile for Sapanca Lake 

Based on the carrier frequency, 𝑓𝑐, and the sound speed profile (Fig. 3.4), a raw 

deterministic sparse CIR is generated having a specific number of taps between the 

transmitter and the receiver.  The initial CIR (called the “raw CIR by the BELLHOP) is 

obtained directly from BELLHOP software as shown in Fig. 3.5 (a), using the information 

as input, about the carrier frequency, SSP, the aperture of the transmit and receive 

antennas, their positions located in the lake and the communication range. The CIR, 

showing in Fig. 3.5 (b) with reduced number of effective taps, ℒ, is obtained after 

performing a clustering process on the taps in Fig. 3.5 (a) as follows. If the delay between 

two consecutive paths is smaller than 1/BW, then the two paths are considered to be 
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merged into one path where the power of this path is determined by the summation of 

powers of the two corresponding paths. However, since the proposed communication 

range is 5 km and the average sound speed in the proposed underwater region is around 

1.455km/s, the acoustical waves are expected to be received at the receiver with a delay 

about 3.43 s that can be seen in Fig. 3.5 (a) and Fig. 3.5 (b). In order to obtain the taps 

with only significant powers, a thresholding process is carried out on the CIR obtained in 

Fig. 3.5 (b), following the clustering process.  

 

 

Figure 3.5 CIR for a range of 5km. (a) Original CIR with 607 paths; (b) Clustered paths 

with 79 clusters; (c) L = 3, delay spread = 28.5383 ms (normalized); (d) L = 5, delay 

spread = 28.5383 ms (normalized). 

That is, only the channel taps gains that are greater than 0.08 ∑ |ℎ|𝑙
ℒ
𝑙=0 , and 0.04 ∑ |ℎ|𝑙

ℒ
𝑙=0 , 

are considered, as shown in Fig. 3.5 (c) and 5 (d), resulting in 3-paths and 5-paths sparse 

channel, respectively, with a delay spread of about 28 ms.The proposed simulations for 

the proposed algorithm include average mean square error and symbol error rate versus 

signal to noise ratio in the presence of (BPSK, QPSK, and 16QAM) signaling, different 

oversampling factor [2, 4, 8, 16], different residual Doppler shift 

[10−2, 10−3, 10−4, 10−4], and different pilot spacing values [2, 4, 8] considering the 

proposed MP-MAP approach and comparing it to MP alone.  
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Considering a comb-type pilot structure with equally spaced pilot subcarriers and 

measure the performance of the system in terms of the frequency-domain mean square 

error (MSE) of the proposed channel estimator and the corresponding symbol error rate 

(SER). The sparse path delays and the Doppler shift are estimated by a conventional MP 

algorithm first. The estimates of the complex-valued channel gains are then obtained by 

the proposed MP-MAP algorithm. 

 

Table 3.2 Channel and simulation parameters for Sapanca Lake 

Variable Value 

Carrier frequency (𝑓𝑐) 16 kHz 

Channel bandwidth (BW) 4 kHz 

Number of subcarriers (K) 512 

OFDM symbol duration (T) 128 ms 

Subcarrier spacing (𝛥𝑓 ∶= 1/𝑇) 7.81 Hz 

Cyclic prefix duration (𝑇𝐶𝑃) 30 ms 

Model parameter of the ambiant noise (𝑓0𝑇𝑠) 0.05 

Maximum Doppler rate (𝑏𝑚𝑎𝑥) 10−3, 5 × 10−4, 10−4 

Doppler spread resolution (𝛥𝑣) 10−3Hz 

Channel Rician factor (𝜅ℓ) 10 

Modulation formats BPSK, QPSK, 16QAM 

Pilot spacing (Δ𝑝) 2, 4, 8 

Oversampling factor (𝜚) 2, 4, 8, 16 

 

 

In order to get statistically accurate results, the number of Monte Carlo runs is set as a 

function of signal-to-noise ratio values. the number of Monte Carlo runs increses 

according to 𝑟𝑝𝑡 = 𝑠𝑡𝑒𝑝 ∗ (1: 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑁𝑅_𝑑𝐵)), so that, the more Monte Carlo runs, 

𝑟𝑝𝑡, increases as SNR gets larger. The the step size parameter, 𝑠𝑡𝑒𝑝, is adjusted to 250, 

which was more than sufficient to obtain estimation errors up to 10−5 with sufficient 

accuracy. 

 

Figs. 3.6 and 3.7 show the MSE and SER performance curves of the MP and MP-MAP 

algorithm, corresponding to the UWA channel whose CIR is given by Fig. 3.5, for binary 

phase shift-keying (BPSK), quadrature phase shift-keying (QPSK) and 16-ary quadrature 

amplitude modulation (16QAM) signaling formats as a function of SNR in the presence 

of extreme Doppler spread. During simulations, the pilot spacing, Doppler spread and the 

resolution factor are chosen as Δ𝑝 = 8; 𝑏𝑚𝑎𝑥= 10−3 and 𝜚 = 8, respectively. However, 
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𝑏𝑚𝑎𝑥= 10−3
 represents a severe Doppler spread for UWA channels, corresponding to a 

maximum speed of 𝑣𝑚𝑎𝑥= c𝑏𝑚𝑎𝑥  = 1.5 m/s for a speed of sound c = 1500 m/s. 

As seen from Figs. 3.6 and 3.7, the MP-MAP algorithm, having excellent channel 

estimation and symbol error rate performance, uniformly outperforms the MP estimator. 

For instance, within the 25-30 dB SNR region, the MSE and SER of the MP-MAP 

algorithm are about 10 dB and 4.5 dB better than those of the MP algorithm, respectively. 

This is mainly due to the fact that the MP-MAP algorithm makes use of the prior 

information of the Rican distributed channel gains very effectively. 

 

 

Figure 3.6 MSE vs. SNR performance comparisons of the MP-MAP and MP algorithms 

for different constellations: 𝜚 = 8, 𝑏𝑚𝑎𝑥 =  10−3, 𝛥𝑝 = 4. 

 

Figure 3.7 SER vs. SNR performance comparisons of the MP-MAP and MP algorithms 

for different constellations: 𝜚 = 8, 𝑏𝑚𝑎𝑥 =  10−3, 𝛥𝑝 = 4. 
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In Figs. 3.8 and 3.9, the MSE and SER performances of the MP-MAP algorithm are 

shown as functions of SNR for different values of the oversampling factor, 𝜚 = 2; 4; 8; 

16, for maximum Doppler shift 10−3, oversampling factor Δ𝑝 = 4 and 16QAM signaling. 

It can be seen from these figures that an oversampling factor of 𝜚 = 8 would be sufficient 

to obtain the best sparse channel estimation performance of the proposed MP-MAP 

algorithm. However, another investigation is performed on the proposed approach with 

respect to the effect of the Doppler spread on the MSE and SER performances of the 

system with oversampling factor 𝜚 = 8, pilot spacing Δ𝑝= 4 and 16QAM signaling.  

 

Figure 3.8 MSE vs. SNR performance of the MP-MAP algorithm for different 

resolution factors: 𝑏𝑚𝑎𝑥 =  10−3, 𝛥𝑝 = 4, 16QAM signaling. 

 

 

Figure 3.9 SER vs. SNR performance of the MP-MAP algorithm for different resolution 

factors: 𝑏𝑚𝑎𝑥 =  10−3, 𝛥𝑝 = 4,16QAM signaling. 
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Figs. 3.10 and 3.11 show that the proposed MP-MAP algorithm is quite robust to Doppler 

shifts up to 𝑏𝑚𝑎𝑥= 10−3beyond which can be considered as severe Doppler effects.  

 

 

Figure 3.10 MSE vs. SNR performance of the MP-MAP algorithm for different Doppler 

rates: 𝜚 = 8, 𝛥𝑝 = 4, 16QAM signaling. 

 

Figure 3.11 SER vs. SNR performance of the MP-MAP algorithm for different Doppler 

rates: 𝜚 = 8, 𝛥𝑝 = 4, 16QAM signaling. 

The effects of different pilot spacings (Δ𝑝=  2, 4, 8) on the MSE and SER performances 

are also investigated as functions of SNR in Figs 3.12 and 3.13. The parameters are 

chosen as 𝜚 = 16 and 𝑏𝑚𝑎𝑥= 10−3 with 16QAM signaling. It can be seen from these  
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Figure 3.12 MSE vs. SNR performance of the MP-MAP algorithm for different pilot 

spacings: 𝜚 = 16, 𝑏𝑚𝑎𝑥 =  10−3, 16QAM signaling. 

 

curves that the channel estimation algorithm can tolerate a pilot spacing of Δ𝑝= 4 

sufficiently to handle the maximum Doppler rates around 𝑏𝑚𝑎𝑥= 10−3. The SER 

performance degrades rapidly as the pilot spacing increases beyond that. In addition, it 

can be seen in Fig. 3.13 that the proposed MP-MAP algorithm achieves almost the same 

in the SER for  Δ𝑝=  2 and Δ𝑝=  4 for the given severe Doppler shift. Fig. 3.13 figure 

gives an important insight for the pilot design regarding system bandwidth usage and the 

complexity in the calculations in the oversampling matrix. 

 

 

Figure 3.13  SER vs. SNR performance of the MP-MAP algorithm for different pilot 

spacings: 𝜚 = 16, 𝑏𝑚𝑎𝑥 =  10−3, 16QAM signaling. 

3.7 OMP-MAP Estimation 

In this section, an extension of the proposed algorithm is performed. The aforementioned 

proposed approach considers matching pursuit algorithm for Doppler and delays 
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estimation and MAP probability estimate for path gains’ estimation, where the channel 

multipaths were assumed to experience the same Doppler scale factor and hence there is 

no Doppler “spread” but just an uncompensated residual Doppler. In this section, 

considering white noise, another member of the matching pursuit family called 

orthogonal matching pursuit (OMP) is proposed for Doppler and delays estimation. In 

addition, in this section, the multipath channel is assumed to have different Doppler 

scaling factors (non-uniform Doppler shifts) exist in the Doppler-compensated received 

signal. 

3.7.1 OMP-MAP Algorithm 

The Doppler scaling factor b, in this section, is considered to be different for every path 

 ℓ ∈  {0, 1, … 𝐿 − 1}. Consequently, define, 𝑏ℓ, as the Doppler scaling factor of the ℓ𝑡ℎ 

path. However, the MP-MAP formulas, in this section, are kept the same, except that 

OMP algorithm is used instead for Doppler and delay estimation, and hence, OMP-

MAP is presented. The OMP algorithm can be found in (Yu et al., 2015), where the 

OMP-MAP algorithm is shown in Fig. 3.14. 

 

 
Figure 3.14 Block diagram of the OMP-MAP channel estimation and equalization 

algorithm 
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However, since the Doppler scale is considered to be different for each path, adjustments 

have to be carried out on part of the formulas presented earlier in this chapter, mainly in 

the system and channel model. Equations (3.2) and (3.3) which show the time-varying 

continuous-time multipath UWA channel impulse response in passband and baseband, 

respectively, are rewritten accordingly to meet the non-uniform Doppler scaling, as 

follows 

ℎ(𝑡, 𝜏) =  ∑ 𝐴ℓ  𝛿(𝜏 −  (𝜏ℓ − 𝑏ℓ𝑡))

𝐿−1

ℓ=0

. (3.2) 

ℎ𝑏(𝑡, 𝜏) =  ∑ ℎℓ 𝑒𝑗2𝜋𝑓𝑐𝛾𝑡  𝛿(𝜏 −  (𝜏ℓ −  𝑏ℓ𝑡))

𝐿−1

ℓ=0

 (3.3) 

Equations (3.8), (3.9), (3.11), and (3.12) that represent the received passband signal 

followed by resampling operation, passband-to-baseband conversion, and Doppler 

compensation procedure, are respectively rewritten as follows,  

𝑦̃(𝑡) =  𝑠̃(𝑡)⨂ℎ(𝑡, 𝜏) +  𝑣̃(𝑡)  

=  √2 ℜ𝑒 {(∑ ℎℓ 𝑒𝑗2𝜋𝑓𝑐𝛾𝑡   𝑠((1 + 𝑏ℓ)𝑡 − 𝜏ℓ)

𝐿−1

ℓ=0

) 𝑒𝑗2𝜋𝑓𝑐𝑡}

+  𝑣̃(𝑡), 

(3.8) 

𝑦̃𝑅𝑆(𝑡) =  ℜ𝑒 {𝑒𝑗2𝜋𝑓𝑐𝑡  𝑒𝑗2𝜋𝑓𝑐𝑏ℓ𝑡  ∑ ℎℓ  𝑠((1 + 𝑏ℓ)𝑡

𝐿−1

ℓ=0

− 𝜏ℓ)} + 𝑣̃𝑅𝑆(𝑡), 

(3.9) 

𝑦𝑅𝑆(𝑡) =  𝑒𝑗2𝜋𝑣𝑡  ∑ ℎℓ  𝑠((1 + 𝑏ℓ)𝑡 − 𝜏ℓ)

𝐿−1

ℓ=0

 + 𝑣𝑅𝑆(𝑡), (3.11) 

𝑧𝑅𝑆[𝑛] =   ∑ ℎℓ  
1

√𝑁
 

𝐿−1

ℓ=0

 ∑ 𝑑[𝑞] exp (
𝑗2𝜋𝑞

𝑁
 ((1 + 𝑏ℓ)𝑛 − 𝜏ℓ))

𝐾
2

−1

𝑞=−
𝐾
2

+  𝑣𝑅𝑆[𝑛], 

(3.12) 

The formulas of 𝐻[𝑘, 𝑞] and 𝐹𝑘,𝑞(𝑏) in (3.15) and (3.16) can be respectively given by 

𝐻[𝑘, 𝑞] =  ∑ ℎℓ  exp (−𝑗
2𝜋𝑞𝜏̃ℓ

𝑁
 𝐹𝑘,𝑞(𝑏ℓ)) ,

𝐿−1

ℓ=0

 (3.15) 
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𝐹𝑘,𝑞(𝑏ℓ) =  
sin (Θ𝑘,𝑞)

𝑁sin (Θ𝑘,𝑞/𝑁)
exp (−𝑗

𝑁 − 1

𝑁
 Θ𝑘,𝑞), (3.16) 

where Θ𝑘,𝑞 =  𝜋(𝑞(1 + 𝑏ℓ) − 𝑘). 

Using the aforementioned equations in the sparse UWA channel generation and 

BELLHOP-MATLAB wrapper, OMP-MAP algorithm is then performed, where the 

simulation-related curves are provided in the next subsection. 

3.7.2 Simulation Results for UWA Channel undergoing Rician Fading with 

different non-uniform Doppler rates 

The communication parameters of the OFDM system used in this section are the same in 

table 3.2. The underwater parameters such as, the residual Doppler shift values (𝑏𝑚𝑎𝑥), 

signalling type, the value of the resolution factor (𝜚), and the value of the pilot spacing 

(𝛥𝑝) used are all provided in the discussions of the figures and their captions. 

Figs. 3.15 and 3.16 show the MSE and SER performance curves of the OMP and OMP-

MAP algorithms, corresponding to the UWA channel whose CIR is given by Fig. 3.5 with 

different Doppler scaling factors. Considering different constellation models, OMP-MAP 

is presented in binary phase shift-keying (BPSK), quadrature phase shift-keying (QPSK) 

and 16-ary quadrature amplitude modulation (16QAM) signaling formats as a function of 

SNR. During simulations, the pilot spacing, Doppler spread and the oversampling 

(resolution) factor were chosen as Δ𝑝 = 4, 𝑏𝑚𝑎𝑥 = 10−4 and 𝜚 = 4, respectively. As seen  

 

Figure 3.15 MSE vs. SNR performance comparisons of the OMP-MAP and OMP 

algorithms for different constellations: 𝜚 = 4, 𝑏𝑚𝑎𝑥 =  10−4, 𝛥𝑝 = 4. 
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from Figs. 3.15 and 3.16, the OMP-MAP algorithm, having excellent channel estimation 

and symbol error rate performance, uniformly outperforms the OMP estimator. For 

instance, within the 25-30 dB SNR region, the MSE and SER performances of the OMP-

MAP algorithm are about 8-10 dB and 3-5 dB better than those of the OMP algorithm, 

respectively, depending on the modulation scheme employed. This is mainly due to the 

fact that the OMP-MAP algorithm makes use of the prior information of the Rician 

distributed channel gains very effectively. 

 

 

Figure 3.16 SER vs. SNR performance comparisons of the OMP-MAP and OMP 

algorithms for different constellations: 𝜚 = 4, 𝑏𝑚𝑎𝑥 =  10−4, 𝛥𝑝 = 4. 

In Figs. 3.17 and 3.18, the MSE and SER performances of the OMP-MAP and OMP 

algorithms are shown as functions of SNR for different values of the oversampling 

factors, 𝜚 = [2, 4, 8], in the presence of maximum Doppler shift of bmax= 10−4, pilot 

spacing Δ𝑝 = 4 and 16QAM signaling. It can be seen from these figures that an 

oversampling factor of 𝜚 = 4 would be sufficient to obtain the best sparse channel 

estimation performance of the proposed OMP-MAP algorithm. In case of higher order 

oversampling factor, the enhancement in the average MSE and the SER would be 

negligible with a higher computation complexity. 
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Figure 3.17 MSE vs. SNR performances of the OMP-MAP and OMP algorithms for 

different resolution factors: 𝑏𝑚𝑎𝑥 =  10−3, 𝛥𝑝 = 4,16QAM signaling. 

 

 

Figure 3.18 SER vs. SNR performances of the OMP-MAP and OMP algorithms for 

different resolution factors: 𝑏𝑚𝑎𝑥 =  10−3, 𝛥𝑝 = 4,16QAM signaling. 

Moreover, Figs. 3.19 and 3.20 investigate the effect of the Doppler spread on the MSE 

and SER performances of the system with oversampling factor 𝜚 = 4, pilot spacing Δ𝑝= 

4 and 16QAM signaling. Figs. 3.19 and 3.20 show the average MSE vs. Doppler rate and 

SER vs. Doppler rate. It can be observed from these plots that the proposed OMP-MAP 

algorithm is quite robust to Doppler shifts up to 𝑏𝑚𝑎𝑥 = 5 × 10−3, beyond of which can 
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be considered as severe Doppler effect, and that it has uniformly better performance than 

the OMP algorithm for bmax values varying between 10−5− 10−3. 

 

Figure 3.19 MSE vs. Doppler rate performances of the OMP-MAP and OMP algorithms 

for different Doppler rates: 𝜚 = 8, 𝛥𝑝 = 4, 16QAM signaling. 

 

 

Figure 3.20 SER vs. Doppler rate performances of the OMP-MAP and OMP algorithms 

for different Doppler rates: 𝜚 = 8, 𝛥𝑝 = 4, 16QAM signaling. 

In Fig. 21, the effects of different pilot spacings (Δ𝑝 = 2, 4, 8) on the SER performance 

as a functions of SNR is investigated. The parameters are chosen as 𝜚 = 4 and 𝑏𝑚𝑎𝑥 = 

10−4 with 16QAM signaling. It can be seen from these curves that the channel estimation 

algorithm can tolerate a pilot spacing of Δ𝑝 = 4 sufficiently to handle Doppler spreads 
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around 𝑏𝑚𝑎𝑥 = 10−4. The SER performance degrades rapidly as the pilot spacing 

increases beyond that. 

 

Figure 3.21 SER vs. SNR performance of the OMP-MAP algorithm for different pilot 

spacings: 𝜚 = 4, 𝑏𝑚𝑎𝑥 =  10−4, 16QAM signaling. 

Finally, in Figs. 3.22 and 3.23, MSE & SER vs. SNR performance results are presented 

when residual Doppler scales 𝑏ℓ and paths delays 𝜅ℓ are drawn from random distributions 

such as uniform U([−𝑏𝑚𝑎𝑥 , + 𝑏𝑚𝑎𝑥]) and Poisson distribution respectively, for every 

trial run. The purpose here is to show that the results hold for a wide range of 𝜏ℓ and 𝑏ℓ 

and are not influenced by certain specific choices of 𝜏ℓ or 𝑏ℓ as in the present simulation 

set up. In the same figures, the performance results include the fast iterative shrinkage-

thresholding algorithm (FISTA) that can be found in (Yuta et al., 2015), a fast version of 

the ISTA algorithm and a part of the basis pursuit (BP) family, and compare them with 

the proposed OMP-MAP algorithm. Note that, to operate the FISTA algorithm efficiently, 

the regularization parameter, the initial values for the channel coefficients, a parameter 

called learning rate as well as a suitable threshold value, to compute the shrinkage 

function, should be chosen very carefully. These parameters affect the convergence rate 

of the iterative algorithm, substantially. The figures below (Fig. 3.22 and Fig3.23) show 

the computer simulation results of MSE-vs-SNR and SER-vs-SNR curves corresponding 

to the OMP-MAP and FISTA algorithms. It can be shown in these plots that the OMP-

MAP algortihm also outperforms the FISTA, although the gap between the proposed 

OMP-MAP and FISTA is narrower than that of the OMP algorithm, but at the expense of 

more involved and higher computational complexity to operate the FISTA algorithm. 
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Figure 3.22 MSE vs. SNR performances of the OMP-MAP, OMP and FISTA 

algorithms with QPSK signaling, 𝜚 = 4, 𝑏𝑚𝑎𝑥 =  10−4, 𝛥𝑝 = 4. 

 

Figure 3.23 SER vs. SNR performances of the OMP-MAP, OMP and FISTA algorithms 

with QPSK signaling, 𝜚 = 4, 𝑏𝑚𝑎𝑥 =  10−4, 𝛥𝑝 = 4. 

3.7.3 Simulation Results for UWA Channel undergoing log-normal and Nakagami-

m Fading with different non-uniform Doppler rates 

In this subsection, an investigation on the MSE and SER performances of the proposed 

channel estimation algorithm by computer simulations in the presence of different fading 
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models such as log-Normal and Nakagami-m, while retaining the same receiver side 

algorithm that is constructed based on a Rician/Rayleigh model. 

The channel path coefficients of the Rician/Rayleigh fading are complex-valued Gaussian 

random variables with independent real and imaginary parts having mean and variance, 

𝜇ℓ and 𝜎ℓ
2 for each path ℓ =  0, 1, … , 𝐿 − 1. That is, discarding the channel path indices 

ℓ for notational simplicity, ℎ𝑅𝑖𝑐𝑖𝑎𝑛 =  Ω =  2𝜇ℓ
2 +  2𝜎ℓ

2, 𝐸 =  {|ℎ𝑅𝑖𝑐𝑖𝑎𝑛|4} =  𝜘 = 8𝜎ℓ
4 +

 16𝜎ℓ
2𝜇ℓ

2 + 4𝜇ℓ
4. 

Similarly, for log-normal fading the complex-valued fading coefficients are generated 

from ℎ = exp (𝑋𝑅 + 𝑗𝑋𝐼), where 𝑋𝑅 and 𝑋𝐼 are independent Gaussian random variables 

with mean 𝑀 and variance 𝑆2. Its second and fourth moments are given as  

𝐸 =  {|ℎ𝑙𝑜𝑔−𝑛𝑜𝑟𝑚𝑎𝑙|
2

} = exp (𝑀 +
𝑆2

2
), 

𝐸 =  {|ℎ𝑙𝑜𝑔−𝑛𝑜𝑟𝑚𝑎𝑙|
4

} = exp(2𝑀 +  𝑆2). 

Finally for Nakagami-m fading, the complex-valued fading coefficients are generated 

from ℎ =  √𝐺 exp (𝑗𝜑) where 𝐺 is a Gamma distributed random variable with parameters 

𝑚 and 𝜔 where 𝑚 is the shape parameter and 𝜔 is the spreading factor. Its second and 

fourth moments are given as 

𝐸 =  {|ℎ𝑁𝑎𝑘𝑎𝑔𝑎𝑚𝑖|
2

} =  
Γ(𝑚 + 1)

Γ(𝑚)

𝜔

𝑚
, 

 𝐸 =  {|ℎ𝑁𝑎𝑘𝑎𝑔𝑎𝑚𝑖|
4

} =
Γ(𝑚 + 2)

Γ(𝑚)
(

𝜔

𝑚
)

2

. 

 

In the following computer simulations, for mismatch analysis, the parameters (𝑀, 𝑆2) and 

(𝑚, 𝜔) of the log-normal and Nakagami probability density functions (pdfs), respectively, 

are determined in terms of the Rician parameters namely, the mean  𝜇 and variance 𝜎2 

for each channel path. These parameters have been obtained to yield equivalent second 

and fourth moments of the underlying channel coefficients as suggested in (Radosevic, 

Proakis, & Stojanovic, Statistical characterization and capacity of shallow water acoustic 

channels, 2009), that is  

𝐸 =  {|ℎ𝑅𝑖𝑐𝑖𝑎𝑛|2} = 𝐸 {|ℎ𝑙𝑜𝑔−𝑛𝑜𝑟𝑚𝑎𝑙|
2

} =  𝐸 =  {|ℎ𝑁𝑎𝑘𝑎𝑔𝑎𝑚𝑖|
2

} =  Ω, 

𝐸 =  {|ℎ𝑅𝑖𝑐𝑖𝑎𝑛|4} = 𝐸 {|ℎ𝑙𝑜𝑔−𝑛𝑜𝑟𝑚𝑎𝑙|
4

} =  𝐸 =  {|ℎ𝑁𝑎𝑘𝑎𝑔𝑎𝑚𝑖|
4

} =  𝜘. 
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This normalization ensures that the mean value of the log-normal random variable is in 

the range of mean values of Rician and Nakagami fading channels. By solving the related 

equations above, it can be shown that these parameters can be obtained for the log-normal 

distribution as  

𝑀 = ln(𝛺) − (
1

4
) ln(𝜘) 

𝑆2 = (
1

4
) ln(𝜘) −  (

1

2
) ln(𝛺) 

and for the Nakagami-m distribution as 

𝑚 =  (
Ω2

𝜘 − Ω2
), 

𝜔 =  𝛺. 

Consequently, as will be seen from the computer simulations shortly, if a different fading 

model other than Rician/Rayleigh, such as log-normal or Nakagami-m, is simulated while 

retaining the same receiver side algorithm that is constructed based on the Rician fading, 

the MSE and SER performance is degraded mainly by two types of mismatch situations. 

1) The real and imaginary parts of the fading coefficients of the log-normal and Nakagami 

random variables are no longer Gaussian. Hence, the Gaussian assumption on the prior 

distribution employed in the proposed algorithm is violated. 

2) The mean and the variance of the log-normal and Nakagami distributions cannot be 

made equal to that of the Rician distribution because of the normalization process that is 

applied to those distributions, as described earlier, to make the second and fourth order 

moments equal to each other. 

Figs. 3.24 and 3.25 present computer simulation results for the MSE and SER 

performances in such mismatched situation in the presence of log-normal and Nakagami 

fading when the Rician fading is the correct model. In these simulations, the residual 

Doppler is drawn uniformly from ([−𝑏𝑚𝑎𝑥 , + 𝑏𝑚𝑎𝑥]) and path delays are generated from 

a Poisson process within [0, 𝐿𝐶𝑃].  

As can be seen from the MSE-SNR and SER-SNR curves shown in Figs. 3.24 and 3.25, 

the log-normal fading model was affected most when it is running over the channel  
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Figure 3.24 MSE vs. SNR comparisons of the OMP-MAP and OMP algorithms for 

different fading models with QPSK signaling, 𝜚 = 4, 𝑏𝑚𝑎𝑥 =  10−4, 𝛥𝑝 = 4 (random 

case channel). 

estimation algorithm. Other than the non-Gaussian mismatch between the Rician and log-

normal, it can be observed that there are substantial discrepancies between the mean and  

variance parameters of these two fading models. On the other hand, the Nakagami fading  

 

Figure 3.25 SER vs. SNR comparisons of the OMP-MAP and OMP algorithms for 

different fading models with QPSK signaling, 𝜚 = 4, 𝑏𝑚𝑎𝑥 =  10−4, 𝛥𝑝 = 4 (random 

case channel). 

model seems to be less sensitive to the model mismatches, as can be seen also from the 

same plots. This would be due to the reasons that its mean and variance parameters are 
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fairly close to that of the Rician distribution and the pdf of the Nakagami distribution is 

more Gaussian in the vicinity of the mean value. From these curves it can be observed 

that the performances of Nagakami-m and lognormal fading models employing the OMP 

algorithm are almost same as the one achieved by the Rician fading model. 

3.7.4 Conclusion 

In this chapter, two low-complexity novel pilot assisted channel estimation and 

equalization algorithms for OFDM-based UWA systems are presented with uniform and 

non-uniform Doppler scaling. The roposed algorithms estimate the unknown parameters 

of the UWA channel such as sparse complex-valued channel gains and the channel delays 

are estimated by the MP-MAP and OMP-MAP algorithms, respecively. On the other 

hand, the means and variances of the prior distributions of the channel gains are obtained 

by ML estimation. The performance of the proposed algorithms has been assessed by 

detailed computer simulations on synthetic data based on real underwater channel 

environmental characteristics. These computer simulations show that the UWA channel 

is estimated very effectively and the proposed algorithms have excellent symbol error rate 

and channel estimation performance, and is robust to the effects of Doppler mismatch. In 

addition, the second approach is compared to FISTA algorithm (as a candidate of BP 

algorithms) with different random channel cases, where the second proposed approach 

showed a better estimation. Thus, the proposed approach and the resulting channel 

estimation algorithms are very promising for this kind of challenging and severe channel 

estimation scenarios. 
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4. SPARSE CHANNEL ESTIMATION FOR SPACE-TIME BLOCK 

CODED OFDM-BASED UNDERWATER ACOUSTIC CHANNELS 

 

In this chapter, a Maximum a posteriori probability-Expectation Maximization-based 

channel estimation algorithm for OFDM-based underwater acoustic systems undergoing 

Rayleigh fading for a 2 × 1 transmission diversity is derived and presented. 

4.1 Introduction 

Communication over acoustic signals, underwater results in multi-scale multi-lag 

channels due to multipath propagation. Hence, a robust channel estimation technique has 

to be present at the receiver. In this chapter, assuming underwater channels undergoing 

Rayleigh fading, a path-based channel model that characterizes each path of the time-

varying sparse channel by a delay, a Doppler scale, and an attenuation factor is 

considered. Alamouti’s space-time block transmit diversity scheme is used in the form of 

two-transmit antennas and one-receiver, hence, the proposed OFDM-based non-data-

aided algorithm iteratively estimates the complex channel parameters of each subcarrier 

using the expectation maximization (EM) method, which in turn converges to a true 

maximum a posteriori probability (MAP) estimate of the unknown channel, where 

Karhunen-Loeve expansion is performed for complexity reduction. Finally, the novel 

channel estimation algorithm combines the aforementioned MAP-EM technique with 

ESPRIT algorithm to accommodate the delay estimation by reflecting the sparseness of 

the underwater acoustic channels. The performance of the proposed algorithm is then 

presented in terms of average mean square error (MSE) and symbol error rate (SER) for 

QPSK signalling with extreme Doppler spreads and different pilot spacings. The 

computer simulations presented show that excellent MSE & SER vs SNR performance is 

achieved even in the present of extreme Doppler shifts. 
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Channel estimation methods considering different diversity techniques have been 

introduced with orthogonal frequency division multiplexing (OFDM) for frequency 

selectivity compensation in different land-based telecommunication systems (Cirpan et 

al., 2006), and have attracted significant attention in underwater acoustic communications 

(UWACs) due to their robustness against large multipath spreads. Different studies have 

considered the least-mean-squares (LMS) algorithm in multiple input-multiple-output 

(MIMO) UWAC channel estimator design (Xi et al., 2017) (Yang and Zheng, 2014). In 

(Xi et al., 2017), the authors have combined turbo equalizers with fast self-optimized 

LMS, where the resulting channel estimator is found to yield a low bit error rate 

performance for a 2 × 4 MIMO communication model. The proposed approach in (Yang 

and Zheng, 2014) iteratively estimates the channel using an improved version of the 

normalized-LMS with maximum a posteriori probability (MAP) with two transmitters 

and six receivers. (Biagi, 2014) and (Beaujean and Bernault, 2003) have adopted a single-

input-multiple output (SIMO) type of diversity. The channel estimator in (Biagi, 2014) 

introduces pulse position modulation for power efficiency and positioning, while a Rake 

receiver is considered for diversity. The authors of (Beaujean and Bernault, 2003) have 

developed a design for 1 × 4 MIMO considering long range communications in shallow 

water. On the other hand, channel estimation and equalization for amplify-and-forward 

cooperative relay based OFDM systems in UWAC channels was investigated in 

(Panayirci et al., 2016), assuming a Rayleigh fading channel model between source, relay 

and destination, an efficient algorithm is developed based on the space-alternating 

generalized expectation-maximization (SAGE) technique. Furthermore, numerous 

channel estimation techniques have been developed based on Alamouti’s coding schemes 

(Alamouti, 1998). For instance, (Li et al., 2010) proposed a space-time coding OFDM-

based algorithm for a 2 × 12 UWA MIMO communication system. In (Eghbali et al., 

2014), a differential space-frequency  block coded (SFBC)-based MIMO OFDM UWAC 

system was presented with a channel estimator and a differential maximal ratio combiner 

for data symbol detection for a single-input single-output communication model, and by 

deploying two transmitters with various numbers of receivers. (Gwun at al., 2013) 

considered synthetic data for channel generation using the BELLHOP Acoustics Toolbox 

(Porter, last accessed, 2018). Assuming different diversity models, the approach utilizes 
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L1-norm minimization to detect channel taps with high power, and then estimates the 

channel using LMS. 

In this chapter, assuming a sparse underwater channel undergoing Rayleigh fading with 

transmitter diversity in the form of multiple-input-single-output (MISO) with Alamouti’s 

coding. Using the data in the pilot symbols of the OFDM system and the information 

carrying symbols on the optimization of the channel estimation, the proposed non-data-

aided based algorithm iteratively estimates the channel according to the MAP criterion 

using the Expectation-Maximization (EM) algorithm. In addition, Karhunen-Loeve 

expansion and ESPRIT algorithms are presented for a lower computational load on the 

channel estimator, and delay estimation of the sparse channel, respectively. 

The reminder of this chapter is organized as follows. Section 4.2 provides the Alamouti’s 

transmit diversity scheme proposed for an OFDM system. In Section 4.3, the sparse-time-

varying underwater channel model is presented. Section 4.4 presents the proposed EM-

based MAP channel estimator. Section 4.5 includes synthetic data generation description 

for simulation of the underwater channel, and the computer simulation results are 

presented to assess the performance of the proposed approach. Finally, section 4.6 

contains concluding remarks. 

4.2 Alamouti’s Transmit Diversity Scheme For OFDM Systems 

In this section, a generalized Alamouti’s (Alamouti, 1998) space-time block coded 

transmit diversity scheme for an OFDM-based UWAC system is used. Thus, second order 

diversity can be achieved assuming two-transmit antennas and one-receiver. During the 

𝑛𝑡ℎ OFDM block (symbol) interval (𝑛𝑇, (𝑛 + 1)𝑇), the data symbols 𝑑𝑘(𝑛), 𝑘 =

0, 1, … , 𝑁 − 1, modulated by the 𝑘𝑡ℎsubcarrier are simultaneously transmitted from the 

two antennas indexed by 𝜇 = 1, 2. They are assumed to have unit variance and be 

independent for different k’s and n’s. For every kth subcarrier, the proposed Alamouti’s 

encoding scheme maps every two consecutive symbols 𝑑𝑘(2𝑛),  and 𝑑𝑘(2𝑛 + 1),  to the 

following (2×2) matrix: 

time→ 

space ↓ [
𝑑(2𝑛, 𝑘) 𝑑(2𝑛 + 1, 𝑘)

−𝑑∗(2𝑛 + 1, 𝑘) 𝑑∗(2𝑛, 𝑘)
], 

(4.1) 
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where (*) stands for the complex conjugate operation. The rows of the matrix shown in 

(4.1) are transmitted with successive time intervals with the first and second symbol 

simultaneously through the first and second antenna, respectively. Defining 𝐃(2𝑛) and 

𝐃(2𝑛 + 1) as an 𝑁 × 𝑁 diagonal matrices with 𝐃(2𝑛)[𝑘, 𝑘] = 𝑑𝑘(2𝑛) and 𝐃(2𝑛 +

1)[𝑘, 𝑘] = 𝑑𝑘(2𝑛 + 1). The received signal can be expressed in vectoral form as 

𝐘(2𝑛) = 𝐃(2𝑛)𝐇1(2𝑛) +  𝐃(2𝑛 + 1)𝐇1(2𝑛 + 1) +  𝐕(2𝑛), (4.2) 

𝐘(2𝑛 + 1) = −𝐃†(2𝑛)𝐇1(2𝑛 + 1) +  𝐃†(2𝑛 + 1)𝐇2(2𝑛 + 1)

+  𝐕(2𝑛 + 1), 
(4.3) 

where 𝑯𝜇(𝑛) = [𝐻𝜇(𝑛, 0), 𝐻𝜇(𝑛, 1), … , 𝐻𝜇(𝑛, 𝑁 − 1)]𝑇 denotes the channel transfer 

function for the N subcarriers between the 𝜇𝑡ℎ transmitter and the receiver, 𝐕(2𝑛) and 

𝐕(2𝑛 + 1) are 𝑁 × 1 vectors of zero-mean Gaussian additive noise samples, and (†) 

denotes the conjugate transpose. However, the complex channel gains between adjacent 

OFDM blocks are assumed to be approximately equal, then the received signal, 𝒀 =

[𝒀𝑇(2𝑛), 𝒀𝑇(2𝑛 + 1)]𝑇 , can be expressed 

𝒀 = 𝑫𝑯 + 𝑽, (4.4) 

where 𝐇𝜇(𝑛) = [𝐇𝜇,0(𝑛), 𝐇𝜇,1(𝑛), … , 𝐇𝜇,𝑁−1(𝑛)]
𝑇
denotes the channel transfer function 

for the 𝑁 subcarriers between the 𝜇𝑡ℎ transmitter and the receiver,  

[𝐻1
𝑇(2𝑛), 𝐻2

𝑇(2𝑛)]𝑇, 𝑽 = [𝑉1
𝑇(2𝑛), 𝑉2

𝑇(2𝑛)]𝑇, and 

𝑫 =  [
𝑫(2𝑛) 𝑫(2𝑛 + 1)

−𝑫†(2𝑛 + 1) 𝑫†(2𝑛)
] 

4.3 Representation of The Discrete UWA Channel 

The time-varying UWA channel impulse responses (CIRs) from the 𝜇𝑡ℎ transmit antenna 

to the receiver are sparse and, in the 𝑛𝑡ℎ OFDM block (interval  ∈ (𝑛𝑇, (𝑛 + 1)𝑇) ), it is 

characterized by 

ℎ𝜇(𝑛, 𝑡) =  ∑ 𝐴ℓ
𝜇

(𝑛)  𝛿(𝑡 − 𝜏ℓ
𝜇

(𝑛))),

𝐿−1

ℓ=0

 (4.5) 

where 𝐿, 𝐴ℓ
𝜇

(𝑛) and 𝜏ℓ
𝜇

(𝑛) denote the number of nonzero paths, the real channel path 

amplitudes and the time-varying path delays, respectively. The path gains are assumed to 

be constant over a duration of one OFDM symbol. That is 𝐴ℓ
𝜇

(2𝑛) ≈ 𝐴ℓ
𝜇

(2𝑛 + 1). The 
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path delays, 𝜏ℓ
𝜇

(𝑛), are caused by the motion of the transmitter/receiver pair as well as 

the scattering of the moving sea surface or reflection due to sound speed variations 

(Berger at al., 2010). For the duration of an OFDM symbol, the time variations of the path 

delays can be approximated well by a Doppler rate as, 𝜏ℓ
𝜇(𝑛) =  𝜏ℓ

𝜇
−  𝛾ℓ

𝜇
𝑛 where 𝛾ℓ

𝜇
 is 

the Doppler scaling factor. In addition, it is assumed that all paths have a similar Doppler 

scaling factor 𝛾ℓ
𝜇

(𝑛)  ≈  𝛾ℓ, where 𝛾𝜇 =  𝑣𝜇/𝑐, 𝑣𝜇 being the velocity of the 

𝜇𝑡ℎtransmitter and  𝑐 is the speed of the acoustic signal  (∼ 1500 m/s). Note that, in 

general the Doppler scaling factor can be different for each path (Mason et al., 2008). 

However, it was stated in (Hu et al., 2015) that, as long as the dominant Doppler shift is 

directly caused by the transmitter/receiver pair motion, this assumption can be justified. 

Moreover, in order to mitigate the frequency-dependent channel Doppler shifts due to 

fast-varying UWAs, first the received passband signal is resampled with a resampling 

factor 𝛾𝜇 that corresponds to a rough Doppler estimate. Then, a fine Doppler shift 

compensation is applied on the received baseband signal. Assuming that the Doppler shift 

is estimated and compensated perfectly at the receiver and that all paths have similar 

Doppler scales, it has been shown that the discrete channel matrix of the UWA channels 

between the 𝜇𝑡ℎ transmitter and the receive antennas are close to diagonal (Hu et al., 

2015). Taking these assumptions and approximations into account, the frequency 

response of the time-varying multipath UWA channel can be obtained from (5) as 

𝑯𝜇(𝑛, 𝑘) =  ∑  ℎ𝜇(𝑛, ℓ) 𝑒(
−𝑗2𝜋𝜏̃ℓ

𝜇
(𝑛)

𝑁
)

𝐿−1

ℓ=0

, (4.6) 

where 𝑁 = 𝑇/𝑇𝑠, and 𝜏̃ℓ
𝜇(𝑛) =  𝜏ℓ

𝜇
/𝑇𝑠 is the ℓ𝑡ℎ normalized path delay. ℎ𝜇(𝑛) represents 

fading coefficients defined as ℎ𝜇(𝑛, ℓ) =  𝐴ℓ
𝜇

(𝑛) exp (
−𝑗2𝜋𝜏̃ℓ

𝜇
(𝑛)

𝑁
). 

In real underwater environment, diffuse multipath components are diffracted or scattered 

by the rough sea and bottom surface. The multipath components 𝐴ℓ,𝑖
𝜇

 and 𝜏̃ℓ,𝑖
𝜇

 are treated 

as random to describe the random movements of the scattering points in the underwater 

acoustic field (Qarabaqi and Stojanovic, 2013). Assuming the components in the 

summation above are independent and identically distributed, by the central limit 

theorem, that the channel coefficients ℎℓ
𝜇

(𝑛) in (6) are assumed to be complex Gaussian 

random variables with power delay profile 𝑃(𝜏ℓ
𝜇

), where 𝜏̃ℓ
𝜇

 =  𝜏̃ℓ,
𝜇

(𝑛) for every OFDM 

block index n. It has been experimentally verified that an exponential decay is a valid 
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model for the power delay profile 𝑃(𝜏ℓ
𝜇

) =  𝐶 exp (
−𝜏ℓ

𝜇

𝜏𝑟𝑚𝑠
) of UWA channels (Jenserud 

and Ivansson, 2015) and delays, {𝜏ℓ
𝜇

}, are independent and uniformly distributed over the 

length of the cyclic prefix. 𝐶 is a normalizing constant, chosen to satisfy 𝐶 ∑ 𝑒(
−𝜏

ℓ
𝜇

𝐿
)𝐿−1

ℓ=0  =

1.  

Depending on the sea conditions, each channel gain |ℎℓ
𝜇

(𝑛)|
2
 can be assumed to have a 

different distribution. With increasing the distance between the transmitter and the 

receiver, large sea dynamics prevent direct path contributions and mostly the diffuse 

multipaths dominate, resulting in channel gains having Rayleigh distribution. In this 

work, it is assumed a priori that the channel path gains obey a Rayleigh distribution. 

Normalized to unity, the discrete channel autocorrelation coefficients in frequency-

domain for different OFDM blocks, 𝑛, defined as 𝑟𝑓(𝑚) =  {𝐻𝜇(𝑛, 𝑘) 𝐻𝜇,†(𝑛, 𝑘 + 𝑚)} 

can be found as (Hu et al., 2015) 

𝑟𝑓(𝑚) =  
1 − 𝑒

−𝐿(
1

𝜏𝑟𝑚𝑠
+ 

𝑗2𝜋𝑚
𝑁

)

𝜏𝑟𝑚𝑠  (1 −  𝑒
−𝐿

𝜏𝑟𝑚𝑠) (
1

𝜏𝑟𝑚𝑠
+  

𝑗2𝜋𝑚
𝑁

)

, 
(4.7) 

where 𝑚 = 0, 1, … , 𝑁 − 1. 

4.4 EM-Based Map Sparse Channel Estimation 

In this section, a novel non-data-aided channel estimation algorithm is presented by 

representing the discrete multipath sparse channel based on the Karhunen-Loeve 

orthogonal representation and make use of the maximum a posterior Expectation 

Maximization technique (MAP-EM). Only few pilot symbols are used for initialization 

of the EM algorithm. By using the singular value decomposition (SVD), 𝑁 × 𝑁 

frequency-domain channel autocorrelation matrix, 𝑹𝑓 = [𝑘, 𝑘 + 𝑚] =  𝑟𝑓(𝑚), can be 

expressed as 𝑹𝑓 = 𝑈𝐴𝑈†, where 𝚲 is a 𝑁 × 𝑁 diagonal matrix with elements 𝜆0 > 𝜆1 >

⋯ >  𝜆𝑁−1 representing the eigenvalues and 𝑈 = [𝑢0, 𝑢1, … , 𝑢𝑁−1], where 𝑢ℓ  ∈  𝐶𝑁×1 

are the corresponding eigenvectors of 𝑹𝑓 . 

Rotating the channel vector, 𝑯𝜇 =  |𝐻𝑘,𝜇 (𝑛)| in (4.6) representing the channel transfer 

function, by the linear transformation 𝑯𝜇 = 𝑼𝑮𝜇. All components of 𝑮𝜇 ∈  𝐶𝑁×1 become 
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independent, zero-mean Gaussian random variables {𝜆𝑛}𝑛=0
𝑁−1. Hence, define 𝚲̃ =

diag(𝚲, 𝚲), then the prior pdf of 𝑮 = [𝑮1
𝑇 , 𝑮2

𝑇]𝑇 can be expressed as 

𝑝(𝑮) ~ 𝑒−𝑮†  𝚲̃−1 𝑮,, (4.8) 

Given the transmitted data symbols, 𝑫, coded according to Alamouti’s scheme and the 

discrete channel representation 𝑮 and taking into account the independence of the noise 

components, the conditional probability density function of the received signal 𝒀 can be 

expressed as, 

𝑝(𝒀|𝑫, 𝑮) ~ 𝑒
−

1
𝜎2 (𝒀−𝑫𝐔̃ 𝑮)† (𝒀−𝑫𝐔̃ 𝑮)

, (4.9) 

where 𝐔̃ = diag(𝑼, 𝑼) ∈  𝐶2𝑁×2𝑁. 

In non-data-aided MAP channel estimation approach, 𝑮̂𝑀𝐴𝑃 is chosen to maximize the 

posterior probability density function as, 

𝑮̂𝑀𝐴𝑃 = arg max
𝑮

𝑝(𝑮|𝒀), (4.10) 

A direct solution of this equation is mathematically intractable. Consequently, employing 

an iterative EM algorithm can simplify the problem, where the algorithm will inductively 

re-estimate the 𝑮, so that a monotonic increase in the a posteriori conditional pdf in (10) 

is guaranteed. The monotonic increase is realized via the maximization of the auxiliary 

function 

𝑄(𝑮|𝑮(𝑞)) =  ∑ 𝑝(𝒀, 𝑫, 𝑮) log 𝑝(𝒀, 𝑫, 𝑮(𝑞))

𝐷

, 
(4.11) 

where the summation is taken over all possible transmitted data coded signals and 𝑮(𝑞) is 

the estimation of 𝑮 at the 𝑞𝑡ℎ iteration. Note that, the approximation 

𝑝(𝒀, 𝑫, 𝑮) ~ 𝑝(𝒀, 𝑫, 𝑮(𝑞))  𝑝(𝑮) can be justified since the data symbols 𝑫 = {𝑫𝜇(𝑛, 𝑘)} 

are assumed to be transmitted independently of each other and identically distributed and 

the fact that 𝑫 is independent of 𝑮. Consequently, 𝑝(𝒀, 𝑫, 𝑮(𝑞)) ~ 𝑝(𝒀, 𝑫, 𝑮(𝑞))  𝑝(𝑮). 

Hence (4.11) can be evaluated by means of the expressions (4.8) and (4.9). Given the 

received signal, 𝒀, the EM algorithm starts with an initial value 𝑮(0) of the unknown 

channel parameters 𝑮. The (𝑞 + 1)𝑡ℎ estimate of 𝑮 is obtained by the maximization step 

described by 

𝑮(𝑞+1) =  arg max
𝑮

𝑄(𝑮|𝑮(𝑞)), (4.12) 
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After a long algebraic manipulations, the expression of the re-estimate 𝐺𝜇
(𝑞+1)

 (𝜇 = 1, 2) 

can be obtained as follows: 

𝐺1
(𝑞+1)

= (𝐼 +  𝜎2𝚲−1)−1 𝑼†  (𝚪1
† (𝑞)

 𝒀(2𝑛) −  𝚪2
† (𝑞)

 𝒀(2𝑛 + 1)), (4.13.1) 

𝐺2
(𝑞+1)

= (𝐼 +  𝜎2𝚲−1)−1 𝑼†  (𝚪2
† (𝑞)

 𝒀(2𝑛) +  𝚪1
† (𝑞)

 𝒀(2𝑛 + 1)), (4.13.2) 

where it can be easily seen that, (𝐼 +  𝜎2𝚲−1)−1 = diag[(𝐼 + 𝜎2/𝜆0)−1, (𝐼 + 𝜎2 /

𝜆1)−1, … , (𝐼 +  𝜎2/𝜆𝑁−1)−1], and 𝚪𝜇
𝑞
 in (13) is an 𝑁 × 𝑁 dimensional diagonal matrix 

that represents the a posteriori probabilities of data symbols at the 𝑞𝑡ℎ iteration step 

whose 𝑘𝑡ℎ diagonal component is defined as 

𝚪𝜇
𝑞(𝑘, 𝑘) = ∑ ∑ 𝑎𝜇𝑝(𝑑(2𝑛, 𝑘) = 𝑎1, 𝑑(2𝑛 + 1, 𝑘)

𝑎2∈ 𝒜𝑘𝑎1∈ 𝒜𝑘

= 𝑎2|𝒀, 𝑮(𝑞), 

(4.14) 

and 𝒜𝑘 denotes the alphabet set taken by the 𝑘𝑡ℎ OFDM symbol. Note that, the optimal 

rank-r estimator of 𝑮𝜇, say 𝑮𝜇,𝑟, can be easily obtained by replacing 𝚲𝑟 =

diag {𝜆0, 𝜆1, … , 𝜆𝑟−1, 0, 0, … , 0} with 𝚲 in (4.13). When the EM algorithm converges, the 

MAP estimate of  𝑯𝜇 can be determined as 

𝑯𝜇,𝑀𝐴𝑃 = 𝑼𝑮𝜇,𝑀𝐴𝑃,,    for 𝜇 = 1, 2. (4.15) 

where, 𝑮𝜇,𝑀𝐴𝑃 is the EM-converged value of 𝑮𝜇
(𝑞)

 in (4.13) after some number of 

iterations. 

4.4.1 initialization 

The initial values for the unknown channel parameters are chosen to ensure a fast start up 

in the equalization/detection process following the channel estimation process. 2𝑃 pilot 

symbols {𝑑(2𝑛)} and {𝑑(2𝑛 + 1)}  ∈  𝒜𝑝 are modulated by the 𝑖𝑝
𝑡ℎ subcarrier 

transmitted at time slots {(𝑛, 𝑛 + 1)} for 𝑝 = 1, 2, … , 𝑃, 𝑖𝑝 ∈ {0, 1, … , 𝑁 − 1}, are used. 

In order to interpolate the channel estimates, initially, there exist a minimum subcarrier 

spacing, Δ𝑠𝑐, between pilots given by Δ𝑠𝑐 < 1/𝜏𝑚𝑎𝑥, where 𝜏𝑚𝑎𝑥 is the maximum delay 

spread of the channel in the frequency domain. For a constant envelope signal 

constellation, i.e., for phase shift keying (PSK) modulated alphabet set, the initial value 

of the channel parameters 𝐇𝜇
(0)

, 𝜇 = 1, 2,  can then be determined as follows. The received 
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signal in (4.4), containing only the pilots in two successive OFDM blocks can be 

expressed as 

𝒀𝑝 =  𝑫𝑝𝑯𝑝 + 𝑽𝑝,, (4.16) 

where 𝒀𝑝, 𝑯𝑝, 𝑽𝑝 ∈  𝐶2𝑃×1 and 𝑫𝑝 ∈  𝐶2𝑃×2𝑃 are obtained from 𝒀, 𝑯, 𝑽 ∈  𝐶2𝑁×1 and 

𝑫 ∈  𝐶2𝑁×2𝑁 respectively by taking only the components at the pilot subcarriers 𝑖𝑝 ∈ 𝑃 =

 {𝑖1, 𝑖2, … , 𝑖𝑃}. Hence, if the Alamouti assumption holds, the least squares (LS) estimation 

of the channel is obtained directly from (4.16) as 

𝐇̃1,𝑖𝑝

(0)
(2𝑛) =  

1

2
 (𝐃𝑝

†(2𝑛) 𝐘𝑝(2𝑛) − 𝐃𝑝(2𝑛 + 1)𝐘𝑝(2𝑛 + 1)) ∈  𝐶𝑃×1, (4.17.1) 

𝐇̃2,𝑖𝑝

(0) (2𝑛) =  
1

2
 (𝐃𝑝

†(2𝑛 + 1) 𝐘𝑝(2𝑛) +  𝐃𝑝(2𝑛)𝐘𝑝(2𝑛 + 1)) ∈  𝐶𝑃×1, (4.17.2) 

where 𝑯̃𝑖𝑝

(0)
≜  [𝑯̃1,𝑖𝑝

(0) 𝑇(2𝑛), 𝑯̃2,𝑖𝑝

(0)𝑇(2𝑛)]
𝑇

∈  𝐶2𝑃×1. 

Finally, from the P LS channel estimates, 𝐇̃𝜇,𝑖𝑝
(0)

 (2𝑛), 𝑖𝑝 ∈  𝑃, the complete initial channel 

estimates in the frequency-domain, 𝐇̃𝜇,𝑖𝑝
(0)

 (2𝑛), 𝑘 = 0. 1, … , 𝑁 − 1, can be easily 

determined by using an interpolation technique, i.e., Lagrange interpolation algorithm. 

Initial values, 𝑮𝜇
(0)

, can then be determined by using the relation, 𝐆𝜇
(0)(2𝑛) =  𝐔†𝐇𝜇(2𝑛) 

for 𝜇 = 1, 2. 

Taking the pilot symbols into account, the soft data decisions 𝚪𝜇
(𝑞) 

 in (4.13) are updated 

with 𝚪̌𝜇
(𝑞) = diag [ 𝛾𝜇

(𝑞) (0),  𝛾𝜇
(𝑞) (1), … ,  𝛾𝜇

(𝑞) (𝑁 − 1)] and 𝚪̌𝜇
(𝑞) (𝑘), is given as 

Γ𝜇
(𝑞) (𝑘), =  {

𝑑𝑘(2𝑛)            if  𝑘 ∈ 𝒫

Γ𝜇
(𝑞) (𝑘, 𝑘)        if  𝑘 ∈ 𝒫̅

 

Note that, the implementation complexity of the EM algorithm, presented above, can be 

reduced substantially due to the fact that the magnitude of the eigenvalues 𝜆𝑘, 𝑘 =

0, 1, … , 𝑁 − 1 of the channel correlation matrix in (4.7) becomes negligible for 𝑘 >

2𝐵𝑇 + 1, where 𝐵 is the one-sided bandwidth and 𝑇 is the length of the channel impulse 

response. As pointed out in (Edfors et al., 1998), for an OFDM system 2𝐵𝑇 = 𝐿, where 

𝐿 is number of symbols in the cyclic prefix since  𝑇 = 𝐿𝑇𝑠, and 2𝐵 = 1/𝑇𝑠. Since 𝐿 is 

much smaller than N, the total number of subcarriers, the complexity of the MAP 

estimation algorithm based on the Karhunen-Loeve expansion proposed in this work will 

be low while it is being optimal. 
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4.4.2 Computation of 𝚪𝝁
(𝒒) 

 for QPSK Signalling 

Let 𝑎 =  (± 1 ± 𝑗) represents an independent identically distributed data sequence using 

QPSK modulation technique. Since the data sequence 𝑎𝜇(𝑘) is independent for 𝜇 = 1,2 

and 𝑘 = 0, 1, … , 𝑁 − 1, then 𝚪𝑚(𝑘) in (4.14) can be computed as follows: 

𝚪𝜇
(𝑞) (𝑘) =  

∑ ∑ 𝑎𝜇
∗  𝑒

2
𝜎2 𝑅𝑒 [𝑎𝜇

∗  𝑍 𝜇 (𝑞)(𝑛,𝑘)]
𝑎2∈ 𝒜𝑘𝑎1∈ 𝒜𝑘

∑ ∑       𝑒
2

𝜎2 𝑅𝑒 [𝑎𝜇
∗  𝑍  𝜇 (𝑞)(𝑛,𝑘)]

𝑎2∈ 𝒜𝑘𝑎1∈ 𝒜𝑘

, (4.18) 

where, for every pair of discrete time instances (2n, 2n+1)  with 𝕪𝑘(1) ≡  𝕪𝑘(2𝑛) and 

𝕪𝑘(2) ≡  𝕪𝑘(2𝑛 + 1) , 

Z1
(𝑞)(𝑘) =

1

2
𝕪𝑘(1) ∑ G1

(𝑞) ∗ (𝑚)𝑚  U𝑚
 ∗ (𝑘) +  𝕪𝑘(2) ∑ G2

(𝑞) ∗ (𝑚)𝑚  U𝑚(𝑘),  (4.19.1) 

Z2
(𝑞)(𝑘) =

1

2
𝕪𝑘(1) ∑ G2

(𝑞) ∗ (𝑚)𝑚  U𝑚
 ∗ (𝑘) −  𝕪𝑘

∗ (2) ∑ G1
(𝑞) ∗ (𝑚)𝑚  U𝑚(𝑘), (4.19.2) 

By taking the summations then in the numerator and the denominator of (4.18) over the 

values of QPSK symbols 𝑎1, 𝑎2, for 𝜇 = 1, 2 and 𝑘 = 0, 1, … , 𝑁 − 1, the final result can 

be obtained as follows:  

Γ𝜇
(𝑞) (𝑘) = tanh[

2

𝜎2
 𝑅𝑒(𝑍 𝜇 (𝑞)(𝑘))] +

𝑗 tanh[
2

𝜎2  𝐼𝑚(𝑍 𝜇 (𝑞)(𝑘))]. 
(4.20) 

4.4.3 Final Sparse Channel Estimation 

The estimates of the transfer function coefficients, 𝑯𝜇,𝑀𝐴𝑃, obtained above do not take 

into account the sparseness of the channel impulse response. In order to improve the 

channel estimation performance further, a sparse solution for the UWA channel impulse 

response 𝐡̂𝜇 that best matches the model 𝑯𝜇,𝑀𝐴𝑃 =  𝐅𝐿𝐡𝜇 is provided for the given 𝑯𝜇,𝑀𝐴𝑃 

and a desired degree of sparseness, where 𝑭𝐿 is an 𝑁 × 𝐿 discrete Fourier transform 

(DFT) matrix. 

In order to exploit the sparsness of the channel, a well known signal processing algorithm, 

called ESPRIT (Roy and Kailath, 1989) is adopted to estimate the channel path delays 

from the correlation matrix, 𝐑𝑓. In general, 𝐑𝑓 is unknown to the receiver but can be 

estimated first through spatial smoothing and then through time-averaging over each 

consecutive time instants , 𝑛 = 0, 1, … as 
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  𝐑̅𝑓 =  𝐇̂𝜇(2𝑛)  𝐇̂𝜇
†(2𝑛), (4.21) 

Once the channel gains, ℎ̂𝜇(ℓ), and the normalized delays, 𝜏̂̃ℓ, of the sparse channel 

impulse response, are obtained, the transfer function coefficients of all subcarriers are 

estimated as 

𝐻̂𝑘,𝜇 (𝑛) =  ∑  𝑎̂𝜇( ℓ) 𝑒(
−𝑗2𝜋 𝜏̂̃ ℓ

 𝜇
(𝑛)

𝑁
)

𝐿−1

ℓ=0

, (4.22) 

ESPRIT algorithm is given in the following steps: 

1. Perform an eigenvalue decomposition on R̅𝑓 in (4.21) 

R̅𝑓 = U Σ U† 

where U =   [U𝑠, U𝑤] are the eigenvector matrices corresponding to the signal subspace 

and noise subspaces, and Σ𝑠, Σ𝑤 in 

Σ =  [
Σ𝑠 0
0 Σ𝑤

] 

are the eigenvalue matrices corresponding to the signal and noise subspaces, 

respectively. 

2. Determine the 𝐿 × 𝐿 matrix Φ by solving the (usually overdetermined) system 

of equations 

U2 =  U1Φ, 

where the (𝑁 − 1) × 𝐿 matrices U2and U1, are constructed by the first 𝑁 − 1 and last 

𝑁 − 1 rows of U𝑠, respectively. The solution for Φ can be obtained from U2 as 

Φ̂ =  (U1
†U1)

−1
(U1

†U2) 

3. Find an Eigen-decomposition of the matrix Φ̂. It can be shown that λ̂ℓ =

 𝑒−𝑗2𝜋 𝜏̂ℓ/𝑁 , ℓ = 0, 1, … , 𝐿 − 1, where λℓ is the ℓ𝑡ℎeigen value of Φ̂. 

4. Determine the channel path delays as 

𝜏̂ℓ =  
−𝑁

2𝜋
arg(λ̂ℓ), ℓ = 0, 1, … , 𝐿 − 1 

The UWA channel transfer function coefficients are then used for data detection, as 

explained the following section. 
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4.5 Simulation Results 

This section presents the computer simulation results of the proposed channel estimator 

assuming an OFDM-based UWAC system in the form of two-transmit antennas and one-

receiver. In order to simulate an underwater channel, BELLHOP-MATLAB wrapper 

acoustic toolbox is considered (Porter, last accessed, 2018). The proposed underwater 

region is Sapanca Lake in Turkey, located at a latitude and longitude of 40.7163 and 

30.2628, respectively. The lake has fresh water, the morphology of its bottom is near to 

flat, with a dimensions of approx. 16 km long, 5 km wide, and the deepest point of the 

lake is about 53 m. Considering a salinity of 0.5 ppt (parts per thousand), and 16 degrees  

as the averaged water temperature of Sapanca Lake (Akcaakan et al., 2014), the sound 

speed profile (SSP) is then obtained using Medwin formula (Bahrami et al., 2016). 

Finally, the SSP succefully entered into BELLHOP’s environmental profile. The 

simulation parameters consider a range of communication of 5 km, and the base stations 

are placed at a depth of 20 m, and a flat bottom, where the UWA OFDM specifications 

can be found in table 3.2. However, BELLHOP outputs the channel impulse responses 

that contains both zero and nonzero paths. Consequently, a clustering process is 

performed over each two consecutive paths by summing up their powers if the difference 

of their corresponding delays is smaller than (1/𝐵), resulting into ℒ clusters. Then, a 

thresholding process is performed over the resulting clusters to project the sparsity of the 

underwater channel, and only paths with powers that satisfy ( 0.1 ∑ |ℎ℮| ℒ−1
℮=0  can 

successfully enter the simulation part. 

The performance of the proposed algorithm is evaluated by means of the mean square 

error (MSE) and symbol error rate (SER) as a function of signal-to-noise-ratio (SNR). 

The data detection is performed using minimum mean-square error (MMSE) equalizer. 

given by 

𝐃̃𝐷 =  𝐇̂𝜇,𝑀𝐴𝑃
† (𝐇̂𝜇,𝑀𝐴𝑃  𝐇̂𝜇,𝑀𝐴𝑃

† +  𝛾−1 𝐈𝐾)
−1

 𝐘𝐷 

where 𝛾  is the SNR and 𝐘𝐷 is the received signal at the data subcarriers. Finally, using 

the estimated channel vector 𝐺𝜇
(𝑞+1)

 in (4.13), (4.13) can be expressed in a vector form as 

𝐇̂𝜇,𝑀𝐴𝑃
(𝑛) (𝑛) =  Υ̂𝜇 h𝜇(𝑛) +  𝐍𝜇 

where the noise term 𝐍𝜇 includes the additive Gaussian noise and the estimation errors 

and Υ̂𝜇  is a 𝑁 × 𝐿 matrix  whose (𝑘, ℓ)𝑡ℎ element for 𝑘 = 0, 1, … , 𝑁 − 1, ℓ =
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0, 1, … , 𝐿 − 1, is Υ̂𝜇 [𝑘, ℓ] =  𝑒−𝑗
2𝜋

𝑁
𝑘𝜏̃ℓ

𝜇
(𝑛)

. Accordingly , the least-square estimation of 

𝐇̂𝜇,𝑀𝐴𝑃
(𝑛) (𝑛)  at discrete time instant 𝑛 can be obtained as, 

𝐡̂𝐿𝑆
𝜇 (𝑛) =  (Υ̂𝜇

†Υ̂𝜇)
−1

Υ̂𝜇
† 𝐇̂𝜇,𝑀𝐴𝑃

(𝑛) (𝑛) 

The performance of the channel estimator is compared with the Alamouti’s approach 

(after performing a linear interpolation process over the channel obtained in (4.17) and 

by taking its inverse discrete Fourier transform (IDFT)), and with MAP-EM algorithm, 

which is similar to the proposed model, except that, it does not take into consideration the 

sparsity exploitation (the usage of ESPRIT algorithm), and thus, an IDFT operation is 

performed on the channel obtained in (4.13).  

Assuming a Doppler shift compensation mechanism is applied at the input of the receiver, 

Figs. 4.1 and 4.2, respectively, show the average MSE and SER for different residual 

Doppler shift b values in the presence of a pilot spacing of order Δ𝑠𝑐 = 4. It can be 

observed from these curves that the sparsity feature of the proposed channel estimator 

provides a robustness to Doppler shifts up to 10−3 Hz, which is considered as a severe 

Doppler shift. In addition, the gap between the MAP-EM and the proposed approach seem 

to get narower over the expense of higher signal-to-noise ratio, but in underwater 

acoustical communications, experiencing a higher SNR is not always valid. Finally, the  

 

Figure 4.1 MSE vs. SNR performance of the MAP-EM-ESPRIT algorithm for different 

residual Doppler rates b= [ 10−3, 5 × 10−3, 10−3] with 𝛥𝑠𝑐= 4. 
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Alamouti’s LS estimation presented in Fig. 4.1 does not seem to be promising, and its 

behavior towards different residual Doppler shifts is negligible. In Fig. 4.2, the SER 

curves of the proposed approach are promising. The gap between the MAP-EM and the 

proposed approach increases as the signal-to-noise ratio increases. In addition, in the 

presence of low SNR, the gap in the SER curves between the proposed approach and the 

perfect CSI case is very narrow, which is preferable in underwater acoustic 

communication, since achieving high SNR may not be applicable using such type of 

signals in such environment. 

 

 

Figure 4.2 SER vs. SNR performance of the MAP-EM-ESPRIT algorithm for different 

residual Doppler rates b= [ 10−3, 5 × 10−3, 10−3]  with 𝛥𝑠𝑐= 4. 

Figs. 4.3 and 4.4, respectively, show the MSE and the SER performance of the proposed 

algorithm for the purpose of pilot design investigation. The parameters used consider 

different pilot spacings Δ𝑠𝑐 = [2, 4, 8] in the presence of a residual Doppler shift of order 

10−3 Hz. 
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Figure 4.3 MSE vs. SNR performance of the MAP-EM-ESPRIT algorithm for different 

pilot spacings 𝛥𝑠𝑐= [2, 4, 8], with b = 10−3Hz. 

Fig. 4.3 show the MSE performance for Alamouti’s LS estimation, MAP-EM, and the 

proposed approach. As can be seen from the curves, the Alamouti’s estimation is weak 

even when low pilot spacings is used. On the other hand, the curves of the proposed 

approach show a quite enhancement when compared with the MAP-EM. That is, the gap 

between the MAP-EM and the proposed approach is in the order of several dB, and shows 

a promising performance. 

 

 

Figure 4.4 SER vs. SNR performance of the MAP-EM-ESPRIT algorithm for different 

pilot spacings 𝛥𝑠𝑐= [2, 4, 8], with b = 10−3Hz. 
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Finally, the SER presented in Fig. 4.4 show a large gap between the MAP-EM and the 

proposed approach. In addition, the proposed approach can sufficiently handle a pilot 

spacing of Δ𝑠𝑐 = 4. The gap in the SER achieved in between Δ𝑠𝑐 = 2 and Δ𝑠𝑐= 4 can be 

ignored for the purpose of spectrum saving. In addition, at low SNR values, the gap 

between the curves of the perfect CSI and the curves of the proposed approach is narrow 

for all pilot spacing values. These insightful curves show a promising SER performance 

in such SNR values, which are preferable since achieving high SNR in not always 

accomplishable 

4.6 Conclusion 

In this chapter, a channel estimation algorithm has been developed for OFDM-based 

UWAC that considers Alamouti’s space-time block transmit diversity scheme with two-

transmit antennas and one receiver. The non-data-aided proposed algorithm iteratively 

estimates the complex channel parameters of each subcarrier using the Expectation 

Maximization method, which in turn converges to a true maximum a posteriori 

probability estimate of the unknown channel. In addition, Karhunen-Loeve expansion has 

been applied to reduce the complexity of the channel estimator, while the ESPRIT 

algorithm has been used for the delay estimation of the taps with high powers to exploit 

the UWA channel sparsity. Considering QPSK signalling, the computer simulations 

presented show robustness in channel estimation in terms of mean square error and 

symbol error rate for extreme residual Doppler spreads and various pilot spacings. 
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5. CONCLUSIONS 

In this work, three computational-friendly pilot-assisted OFDM-based channel estimation 

techniques for underwater acoustic communicaion systems were proposed. The first two 

approaches are designed for single-input single-output (SISO) communication system 

with channels that undergo Rician fading, where matching pursuit (MP) and orthogonal 

matching pursuit (OMP) algorithms for Doppler and delay estimation, respectively. Then 

maximum a posteriori probability is used to estimate the channel gains. Finally, these two 

approaches use maximum likelihood (ML) for the prior densities estimation. The system 

model of the MP-MAP algorithm considers a colored type of noise, where the channel 

paths experience the same Doppler factor, and hence there is no Doppler “spread” but just 

an uncompensated residual Doppler. While the OMP-MAP approach considers white 

noise with a non-uniform Doppler scales, and hence, each path has a different Doppler 

factor. The mean square error (MSE) and the symbol error rate (SER) perormances of the 

MP-MAP and OMP-MAP shown in the computer simulations sections show robustness 

against high scale Doppler shifts in the presence of fair resolution factor of the dictionary 

matrix, and a promising performance for 16QAM dignalling. In addition, the computer 

simulation results in the OMP-MAP section are compared to the fast iterative shrinkage-

thresholding algorithm (FISTA) algorithm (as a candidate of the basis purusit estimation), 

and with to two other channels that follow log-normal and Nakagami-m fading in the 

presence of random channel case. 

The third approach assumes multiple-input single-output (MISO) communication system 

that includes two-transmitters and one-receiver with channel that undergo Rayleigh 

fading with white noise and a uniform Doppler spread. The algorithm considers 

Alamouti’s coding for the diversity part. The proposed non-data-aided algorithm 

iteratively estimates the complex channel parameters of each subcarrier using the 

Expectation Maximization method, which in turn converges to a true maximum a 
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posteriori probability estimate of the unknown channel. Moreover, the Karhunen-Loeve 

expansion has been applied to this algorithm for complexity reduction of the channel 

estimator. Finally, ESPRIT algorithm was used for the delay estimation of the taps with 

high powers to exploit the underwater acoustic channel sparsity. The computer 

simulations presented show robustness in channel estimation in terms of MSE and SER 

for an extreme residual Doppler spread and various pilot spacing values (for underwater 

pilot deign purposes). In addition, the channel sparsness presented by ESPRIT algorithm 

has shown the significance of the proposed approach with narrow gap in the SER between 

the proposed approach and the perfect channel state inforamation curve, which lead to a 

better symbol error rate along the signal-to-noise values. 

Different contributions can be made over the work presented in this thesis. Mainly, the 

OFDM-based channel estimation work presented can be mainly extended by means of:  

1. Multiple-input muliple-output (MIMO) type of communication deployment, such 

that, the channel estimator can have a better experience of the fading channels. 

2. Impulsive type of noise consideration, that can be generated by man-made 

instruments, snapping shrimp and other underwater acoustic phenomena. 

3. Away from direct communication scenarios, a relay-assisted (cooperative) 

communication model, where a relay is placed between the transmitter and the 

receiver can increase the system’s capacity, and a multi-hop relay-based system 

can overcome the fading channels, and power limitations.  

4. Adaptive modulation techniques can also be deployed to improve the overall 

system’s capacity. 

5. The third proposed approach can be extended to different modulation techniques 

other than QPSK, for higher data rate. 

6. An experimental type of channel is also essential to be applied in simulations to 

refelect a realistic behavior of the channel estimator.  
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