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 ANALYSIS OF STRUCTURES FORMED WITH SHUNT CAPACITORS 

SEPERATED BY TRANSMISSION LINES 

 

 

ABSTRACT 

There are many works in literature about ladder networks containing inductors and 

capacitors. But usually it is not desired for the designed circuit to have inductors since 

they are heavy, bulky and available only for a limited range of values and are difficult to 

implement at microwave frequencies, they are approximated with distributed 

components. Richard’s transformation is used to convert lumped elements to transmission 

line sections. 

  

Now consider a low-pass lumped ladder network. If the series inductors between the shunt 

capacitors are replaced with equal length transmission lines, a practically important mixed 

structure is obtained. Since the lengths of all the transmission lines are the same, these 

lines are called commensurate lines or unit elements (UE). It is very practical to fabricate 

this structure. If the transmission lines are quarter wavelength long, they are referred to 

as admittance inverters. These structures are useful especially for narrowband (<10%) 

bandpass and bandstop filters. 

  

In this thesis, as opposed to the structures existing in the literature and explained above 

briefly, it is not necessary to have quarter wavelength transmission lines. So it is possible 

to design broadband circuits. Also the transmission lines separating the parallel capacitors 

are not redundant elements, they are used as circuit elements effective for the desired 

response. Additionaly if it is preferred not to have shunt capacitors, they can be replaced 

with open-ended stubs via Richard’s transformation. So the resultant circuit is extremely 

suitable for microstrip fabrication. 

  

In this thesis, the analysis of the mentioned mixed structure has been performed first time 

in the literature in the following manner. The description of the structure by means of two 

frequency variables (one for shunt capacitors and one for transmission lines) has been 
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detailed. Then broadband matching networks for military and commercial applications 

have been designed by using this practically important mixed structure via the algorithm 

that has been developed. In the algorithm, the explicit expressions for the coefficients of 

the descriptive two-variable polynomials in terms of the coefficients of the single variable 

boundary polynomials have been derived for various numbers of elements. These 

coefficient relations have been obtained first time in the literature. Since the lumped 

section contains only shunt capacitors (a degenerate network), it is impossible to use the 

two-variable polynomials to calculate the capacitor values. So a synthesis algorithm for 

the structure has been developed to be able to get the capacitor values from the two 

variable polynomials. 

  

Normalized prototype circuits can be designed via the developed algorithm. So the 

prototype circuit can be denormalized via the frequency and impedance normalization 

numbers selected by the designer considering the interested frequency band and 

impedance level. 

 

Keywords: Ladder networks, Richards transformation, Lumped elements  
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İLETİM HATLARI İLE AYRILMIŞ PARALEL KONDANSATÖRLER İÇEREN 

YAPILARIN ANALİZİ 

 

 

                                                   ÖZET 

Bobin ve kondansatörlerden oluşan merdiven devreler hakkında literatürde birçok 

çalışma bulunmaktadır. Fakat genellikle, ağır ve büyük oldukları için, üretilebilecek 

değer aralıklarının sınırlı olması ve mikrodalga frekanslardaki üretim güçlüklerinden 

dolayı, tasarlanan devrelerde bobin olması istenmez dağıtılmış elemanlar (iletim hatları) 

ile yaklaşık olarak gerçeklenmeye çalışılırlar. Toplu elemanların dağıtılmış elemanlara 

çevrilmesinde Richards dönüşümü kullanılır. 

 

Paralel bağlı kondansatörlerin arasındaki seri böbinleri, eşit uzunlukta iletim hatları ile 

değiştirelim. Bu iletim hatları Birim Eleman (BE) olarak isimlendirilir. Eğer hat 

parçalarının uzunluğu çeyrek dalga boyu olarak seçilirse admitans inverterleri elde edilir. 

Bu yapılar, özellikle dar bantlı (<10%) band geçiren ve band durduran filter olarak 

kullanılmaktadır. 

 

Bu tezde, yukarıda kısaca açıklanan yapılardaki iletim hatlarının, literatürdekinin aksine, 

çeyrek dalga boyu uzunluğunda olma zorunluluğu yoktur. Bu sayede geniş bantlı devreler 

tasarlanabilmektedir. Ayrıca kondansatörler arasındaki iletim hatları sadece 

kondansatörleri ayıran, elemanlar olarak yer almayıp, devrenin istenen cevabı vermesi 

için devre elemanı olarak kullanılmaktadır. Eğer devrede toplu eleman (paralel 

kondansatör) olması istenmezse, Richards dönüşümü kullanılarak açık-uçlu hat parçaları 

ile değiştirilebilirler. Sonuç olarak elde edilen devre mikrostrip üretimi için son derece 

elverişli bir yapı olacaktır. 

 

Bu tezde, yukarıda açıklanan devre yapısının literatürdeki ilk analizi yapılmıştır. Pratik 

açıdan çok önemli bu yapının iki-değişkenli tanımı detaylı olarak verilmiş, geliştirilen 

algoritma ile bu yapı kullanılarak bir çok askeri ve ticari uygulamada yer alabilecek 

genişbant empedans uyumlaştırma devresi tasarımları gerçekleştirilmiştir. Bu 
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tasarımların yapılabilmesi için, devreyi tanımlayan iki-değişkenli polinomların 

katsayıları, tek-değişkenli sınır polinomlarının katsayıları kullanılarak hesaplanmıştır. 

Tüm bu katsayı ifadeleri, devredeki eleman sayısına yani devre derecesine bağlıdır. 

Devrede en fazla üç kondansatör ve iki hat parçası bulunduğunda katsayı ilişkileri elde 

edilebilmiştir. Literature bu katsayı ilişkileri kazandırılmıştır. Toplu eleman içeren kısım 

sadece paralel bağlı kondansatörlerden oluştuğu için (dejenere devre), algoritma 

sonucunda elde edilen iki-değişkenli polinomlar kullanılarak, kondansatör değerlerinin 

hesaplanması için yeni bir yaklaşım geliştirilmiştir. 

 

Ayrıca, geliştirilen algoritma ile normalize edilmiş prototip uyumlaştırma devresi 

tasarımları yapılmaktadır. Dolayısıyla, tasarımcı tarafından, uygulamanın gerektirdiği 

frekans ve empedans değerlerine uygun normalizasyon sayıları seçilerek tasarlanan 

devrenin istenen frekans bölgesinde ve empedans seviyesinde çalışması 

sağlanabilmektedir. 

 

Anahtar Sözcükler: Merdiven devreler, Richards dönüşümü, Toplu elemanlar 
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1. INTRODUCTION 

The broadband matching problems are solved by using distributed elements in high 

frequency applications instead of using lumped components. Because of the 

implementation problems for lumped components in circuits, the distributed elements are 

prefered for the circuit designs in microwave frequencies. The lumped elements are used 

as the equivalence of the distributed components according to the physical size. To 

receive better performance, ideal lumped and distributed components can be utilized 

together to form a lossless matching networks with mixed, lumped and distributed 

components by the help of the Richards transformation. 

 

In this thesis, the research is based on the analysis of the lossless ladder circuits which 

ones are formed with parallel capacitors separated with the unit elements. Inductors aren’t 

used in this design because of the size and weight. This component causes implementation 

problems in microwave filters or broadband matching networks. The restrictions about 

bandwidth in microwave circuits design is another reason for the useless of the inductor. 

In literature, there are lots of studies about the ladder networks which involve only 

distributed components, lumped components or both of them. (Yarman, 2008) is a study 

for ladder networks with only lumped elements. (Aksen, 1994) is a study for low-pass 

ladder networks which contains inductor and capacitor as lumped elements and the 

lumped elements are separated by Unit Elements. This study is based on the coefficients 

of the variables up to 5 components. (Sertbaş, 1997) is an analysis according to the high 

pass, bandpass and stopband networks which contains distributed components. (Şengül, 

2006) is an examination to circuit design which are formed due to the structures and rules 

of the other three researches. 

 

(Şengül, 2009) is about the mixed elements ladder networks which have the same 

responses with the distributed components. In order to form mixed element networks, 
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Richards Transformation (λ=tanh𝛽𝑙) is used to transform the lumped elements to the 

distributed elements and with the help of the Kuroda identities (Kurokawa, 1965), the 

way of placement of the transmission lines can be changed . 

 

A low pass ladder network can be formed with the lumped elements and there are 

transmission lines between these lumped elements. The transmission lines are replaced 

with the inductors. The resistances can be the first element and the last of these circuits. 

These transmission lines have quarter-wavelength long. These structures useful for 

narrowband, bandpass and bandstop filters. In this thesis, all of the wavelengths are equal 

and the value of the quarter wavelength length of the transmission line is not an 

indispensable condition to develop wideband circuit designs. These transmission lines are 

used like a circuit components to get requested response of the circuit. In addition of all 

these option, the capacitor can be replaced with the open circuit transmission lines with 

the help of the Richards transformation. 

 

After explanation of the circuit structure, the analysis of these ladder networks with mixed 

elements. The approach is to explain the mixed and distributed elements in lossless two 

port network. With the help of the Richards transformation, the multivariable synthesis 

procedure can be used to generalize the approach due to the mixed lumped and distributed 

elements. The Richards variable λ is identified for distributed elements and the frequency 

variable p is identified for lumped elements. To get the values of capacitor and 

transmission line, the coefficients of the two variable g(p,𝜆) and h(p,λ) polynomials must 

be calculated with the restricted one variable polynomials g(p), h(p) and g(λ), h(λ). The 

number of the components are started from the 2 and up to 5 in this thesis. The capacitor 

is the only one to use in this design so there is a need to find a new way to calculate the 

values of the capacitors. With the selection of proper value for normalization, the circuit 

can be operated with desired value of frequency and impedance. 
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2. LUMPED AND DISTRIBUTED COMPONENTS 

Growing needs of people causes important and significant developments in 

communication and circuit technology, especially in MIC technology. Naturally this 

development face with difficulties about design of networks by using lumped and 

distributed components. Lumped and distributed components are utilized mostly in RF 

and microwave engineering due to their frequency parameters. While engineers fabricate  

these networks according to needs, their main wish is minimization of the loss power or 

voltage through the  transmission lines used as a way for conveying the voltage or powers 

from the generator to the load components. As you can see, best transmission lines are 

the lossless ones for designers. 

2.1 Transmission Line Components  

Lumped and distributed components are used for solving filter and broadband matching 

distress in RF and microwave circuits. These lumped components are electrical 

components acted as inductor, capacitor or resistor in low frequencies mostly in RF 

designs. They use in low frequencies because of the restriction of the small dimension 

(Ld). This dimension must be less than the ratio of wavelength (ƴ ) at specific frequency. 

The wavelength (ƴ ) is calculated by dividing the speed of light to given  frequency. There 

is no general acceptance in literature so ƴ/20 or ƴ/10 can be accepted. The restriction is 

that the Ld must be less than ƴ /20or ƴ/10. If the circuit components respond this rules, the 

network will be called lumped otherwise distributed network. The lumped elements are 

used in RF owing to some advantages in low frequencies. Some have smaller sizes and 

smaller coupling, amplitude, phase changes. 

 

One of the transmission line components is the distributed components which are used in 

high frequencies owing to implementation problem of lumped elements in high 

frequencies. One of the problem is caused by inductor, inductors don’t allow the current 
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to pass through so it becomes an open-circuit in high frequency. The other one is 

capacitor. The capacitor becomes a short-circuit so voltage can’t be measured on its part. 

The situation is useless for matching and filter design in microwave circuits. According 

this situation, distributed components are used instead of lumped elements with 

transmission lines in distributed circuit. The inductor is converted to the short ended 

transmission line and the capacitor is converted to open-ended transmission line. The 

transmission line which one has impedance and delay of transmission line (τ) is the last 

member of the distributed elements. In Figure 2.1 show the transformation a lump circuit 

to distributed one. By this way, designers don’t have to deal with the complex frequency. 

The calculation can be done with using impedance, length of the circuit elements values 

and the others. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Capacitor and transmission line equivalent 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Inductor and transmission line equivalent 

 

 

C 

 

Z=Z0 coth(p, τ) 

Open ended TL  

C=1/Z0 

Z0, τ 

L 

 

Z=Z0 tanh(p, τ) 

Short ended TL  

L=Z0 

Z0, τ 
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p is the complex frequency.  

 p = α + jw                                                            (2.1)                                                                  

 

τ is the delay of transmission line. Z is the impedance. Z0 is the characteristic impedance. 

ƴ is the wavelength. α is the attenuation constant. 

 

Although, there is a solution for the calculations in design circuits at high frequencies by 

the help of the distributed components. The shunt capacitor causes problems in circuits. 

Because of this problems, Richards transformation (Richards, 1948) approach is used for 

transforming transcendental functions of the distributed networks to rational functions. 

By the help of the Richards transformation (λ= tanh(pτ)), the mixed lumped and 

distributed networks become very important for the development in microwave 

technology. Richards approach provides multivariable synthesis process where the 

Richard value λ for the distributed elements and frequency variable p for the lumped 

elements.          

                                            

 
 

Figure 2.3  Two-port network 

 

Zint is the input impedance. Zout is the output impedance. Ld  is the length of transmission 

unit. Z0 is the characteristic impedance of transmission line. V represents the source of 

voltage. Rin  is the generater resistance. RL is the load resistance in the load of the network. 

 

Rin 

RL V 

Zint 
Zout 

Network  

Zo,τ 

Ld 
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The input impedance is calculated like this according to the wave which is provided from 

the source, follows the transmission line to the load. By using these parameters, the input 

impedance can be calculated. 

λ=tanh(pτ)                                                                   (2.2) 

 

Zint=Z
0

RL  +λ Z0

Z0  +λRL

                                                              (2.3) 

 

Zint=Z0

R0 L + tanh (pτ)  Z0

Z0  + tanh (pτ) RL

                                          (2.4) 

The output impedance can be calculated. 

Zout=Z0

Rin  + tanh (pτ)  Z0

Z0  + tanh (pτ) Rin

                                             (2.5) 

or 

Zout=Z0

Rin  +λ Z0

Z0  +λRin

                                                      (2.6) 

The open circuit TL is formulated in condition of the value of the terminated impedance 

(ZL) is infinity. The formulation shows the calculation: 

Zint= lim
ZL→∞

Z0

ZL +λ Z0

Z0  +λZL

=Z0                                          (2.7) 

  

The short circuit TL is formulated with the condition of the value of the terminated 

impedance (ZL) is zero. The formulation shows the calculation: 

 Zint= lim
ZL→0

Z0

ZL +λ Z0

Z0  +λZL

=λZ0                                           (2.8) 

2.2 Transmission Line as a Circuit Elements 

Transmission line can be explained in electrical parameter. These electrical parameters 

are characteristic impedance (Zo), phase constant (β), attenuation constant (α), physical 

length (Ld) and propagation value (¥). By the help of these parameters, parameters can be 

calculated to use in Richard domain and calculation of efficiency of the networks. 
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f is the operation frequency in circuits. ƴ is the wavelength of the transmission line. 

 

A transmission line analysis can be done with calculating the impedance of a circuit which 

one is formed with resistance, inductor in serial and admittance and capacitor in parallel 

like in Figure 2.4. 

 

For a lossy transmission line, the formulation of characteristic impedance of line will be; 

Z0=√
R+jwL

G+jwC
                                                  (2.9) 

 

 

Figure 2.4 Lumped element representation of a transmission line 

 

The calculation of the propagation constant is for lossy transmission line. 

 

The phase constant is represented with β. G is the conductance. Ld  is the physical length 

of the transmission line. Pv is the phase velocity. ϕ is the phase delay measured in radians. 

   ¥ =√(R+jwL)(G+jwC)                                                     (2.10)                            

or 

¥=α+jβ                                                               (2.11) 

For a lossless transmission line, R and G are 0 and the formulation of characteristic 

impedance of line will be: 

  R   L 

G C V

i 
V 

+ 

 

v 

 

 - 

+ 

 

v 

 

- 

I 
I 

Z0,Ld 

or 

Z0,τ 

 Lumped element representation Transmission line 
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𝑍0 = √
L

C
                                                                (2.12) 

The propagation constant is formulated as: 

¥=√LC                                                                   (2.13) 

2.3 The Utilization of Transmission Lines in Two Port Networks 

Impedance and admittance methods are used to calculate the efficiency of gain power 

transmissions of circuits in low frequencies. These parameters are not useful for high 

frequencies because they require voltage and current which ones are calculated with the 

open – short methods (like Thevenin). In high frequencies, these methods are impractical 

so a new approach is required like scattering parameters. The scattering parameters are 

calculated according to the flowed waves with forward and backward directions in 

transmission lines.  

 

The sign of the applied wave to the network show as a and  the reflected wave show as b 

in input and output port of circuits like in Figure 2.5. If Z0 (the characteristic impedance 

of  transmission line ) is equal to the RL ( the load resistance ), the reflection is not occured 

from the load resistance. That means the applied power from the source is entirely 

dissipated in RL. In the condition of Z0≠RL, the some amount of the power  will dissipate 

in transmission line or the reflecion wave is occured from the RL. The efficiency of gain 

power transmission is not provided as desired. 

 

As seen in Figure 2.5, the normalized applied voltage wave (incident wave) is a1 in 

forward direction at the first port and the reflected volage wave b1 is backward direciton 

in the first port. The a2 is the normalized applied voltage wave and the b2 is the reflected 

voltage at the secound port of the network. 
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          Figure 2.5  Two − port network with waves 

 

The calculations of the normalized incident and reflected waves are  a and b in input and 

output ports. They are defined as:  

a1=
(V1+Rin Iint) 

2√Rin

                                                         (2.14) 

 

b1=
(V2-RinIint)  

2√Rin

                                                         (2.15) 

 

a2=
(V1+RLI0)

2√RL

                                                            (2.16) 

 

b2= 
(V2-RLI0)

2√RL

                                                           (2.17) 

The value of the  total voltage Vn and total curent In are defined in two-port. n representes 

the port number. 

V1=(a1+b1)√Rin                                                        (2.18) 

Network 

Z0 τ 

b1 

a1 

b2 

a2 

Zint Zout 

V 

Rin 

RL 

l=0 l=z 

+ 

 

 

 

V1 

 

 

 - 

+ 

 

 

 

V2 

 

 

 - 
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I1=
a1-b1

√Rin

                                                                  (2.19) 

 

V2=(a2+b2)√RL                                                      (2.20) 

Due to these waves parameters, the reflection parameters of input, outport ports and 

load  can be calculated  

I2=
a2-b2 

√RL

                                                                (2.21) 

Sint represents the input reflection coefficient.  

   Sint=
b1

a1

=
Zint - Rin

 Zint + Rin 
                                              (2.22) 

Sout represents the output reflection coefficient. 

       Sout=
b2

a2

=
Zout-ZL

Zout+ZL

                                                  (2.23) 

SL represents the load reflection coefficient. 

   SL=
ZL-Zout

ZL+Zout

                                                         (2.24) 

Sin representes the reflection coefficient from the generater: 

    Sin=
Zin-1

Zin+1
                                                            (2.25) 

The reflected power can be calculated by taking square of the reflection coefficient. The 

reflected power is defined as 𝑃𝑅. 

                                            PR=b
2                                                                                            

(2.26)                                         

The incident power can be calculated with taking square of the incident coefficient. 

 

The incident power is defined as 𝑃𝑖. 

                                                Pi=a2                                                              (2.27) 

The total power in ports  can be calculated with difference of the power incident wave 

and power reflected wave. 𝑃1 is representation of the power in port 1. 
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                                               P1=Pi-PR=a1
2-b1

2
                                              (2.28) 

P2 is the total power  in port 2. 

  P2 = Pi-PR=a2
2-b2

2
                                           (2.29) 

The total power of the system is calculated with the summation of the dissipated total 

powers in two ports. PT represents the total power of the network. 

       PT = P1 + P2                                                    (2.30) 

Transducer power gain of the two port is defined as: 

                                          TPG=1-|SL|2                                                        (2.31) 

2.4 The Definition of Scattering Parameters and Scattering Matrix 

Scattering parameter (Fettweis, 1982) for the explanations of power transfer is pratical 

and useful tool for networks work at high frequecies. This method is used for  finite 

values at output and input of the network. The tools use open circuits to find values of 

voltage and current of the network. Another difference between scattering parameter 

and others are structure of values in networks. In scattering parameters, the waves of 

voltage and current are utilized to calculate the efficiency of the network. 

 Previous Seciton 2.3 is about the structure of waves. In this sections, these waves are 

used to form scattering parameters. In Figure 2.5, the parameters a and b are used for the 

definition of the scattering parameters. Scattering parameters are the values of the 

scattering matrix for two port network as: 

b= [
b1

b2
] , a= [

a1

a2
] , S= [

S11 S12

S21 S22
]                                     (2.32) 

S represent the scattering matrix, Sij represent the values of the scattering parameter, i is 

for the number of the matrix raw, j is for the number of the coloumn of the matrix. 

 

The relations between the scattering matrix and waves are defined as in below. 
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If a2 is 0,  there is no reflection wave from the terminated load resistance (ZL) because of 

the equal match between ZL and Zout. 

Input reflection is: 

S11=
b1

a1

                                                                (2.33) 

Transducer power gain  from  input to outport port is: 

S21=
b2

a1

                                                                 (2.34) 

If a1 is 0, there is an equal match between Zint and Rint. 

 

Output reflection is:      

S22=
b2

a2

                                                                (2.35) 

Transducer power gain in reverse direction is: 

S12=
b1

a2

                                                               (2.36) 

The formula of dissipated power in two port is written in equation (2.37). This formula 

can be written with the scattering parameter like: 

Pd=a*
Ta(I-S*

T
S)                                                       (2.37) 

I represent the identity matrix, * is the transposed conjugate of a matrix. If scattering 

matrix is unitary means, Pd is always greater or equal to the zero. 

 

For lossless network, 

I-S*
T
S=0   S*

T
S=I                                                   (2.38) 

The equation (2.32) is a link for scattering parameters with each other. 

S11*S11+S21*S21=1                                               (2.39) 

 

S22*S22+S12*S12=1                                               (2.40) 
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S12*S11+S21S22* =0                                              (2.41) 

 

S21*S22+S12S11=0                                                (2.42) 

If the network is reciprocal, scattering matrix is symmetrical. Symmetrical means the 

transposed of a network is equal to its own matrix. For a lossless network, the 

transmittance of forward and reverse direction are equal each other 

S
T
=S                                                             (2.43) 

 

S21=S12                                                          (2.44) 

Scattering transfer matrix (T) is used for cascade connections instead of only scattering 

matrix (Fetweis, 1970). The relations of normalized waves with the trasfer matrix 

parameters according this formula: 

[
b1

a1
] =T [

a2

b2
] , T= [

T11 T12

T21 T22
]                                      (2.45) 

The transfer scattering parameters are: 

T11=
-detS

S21

  T21=-
S22

S21

 T12=
S11

S21

 T22=
1

S21

                            (2.46) 

Reciprocal scattering matrix causes  the result of determinant of transfer scattering matrix 

to be 1 (det T =1). 

2.5 Canonic Representation of  Scattering and Scattering Transfer Matrix 

f, g and h are three canonic polynomials and these parameters are for the explanation of 

the scattering matrix parameters and the scattering transfer matrix. As seen in the 

formulas of scattering matrix and transfer matrix: 

S=

[
 
 
 
 
h

g

σf*

g

f

g

-σh*

g ]
 
 
 
 

   T= [

σg
*

f

h

f
σh*

f

g

f

]                                              (2.47) 

f* means f(-p) where p is the complex frequency (p=α+jβ). These are the properties of the 

parameters of the 3 canonic polynomials. 
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f(p), h(p) and g(p) are real polynomials in complex frequency p. g is strictly Hurwitz 

polynomial (Fettweis, 1982). f, g and h parameters have a relation according to this 

formula: 

g g
*
=hh*+ff*                                                         (2.48) 

σ is the constant 1 or -1. 

 

Supposing the two-port network is resiprocal, the value of the f polynomial can be even 

or odd. This situation effects the value of σ canstant 1 or -1 with f is even and f is odd. 

With this properties the formula of (2.48) can be changed to this: 

gg
*
=hh*+σf

2
                                                       (2.49) 

According to another role, degree of g polynomial is equal or larger than the degree of h 

polynomial and  the degree of polynomial f. The transmission zeros at infinity is 

calculated with taking difference of the degree of polynomial g and the degree of 

polynomial f.. The  directions are S21 and S12 scattering parameters and the calculation 

will be done with 3 canonic polynomials (f, g, h). Due to the (2.49) formula, S12 is equal 

to f/g and S21 is equal to f*/g. With the (2.49), this formula can be written: 

ff*

g2
=

gg
*
-hh*

g2
                                                     (2.50) 

If  ff* is a real even polynomial,  locations of zeros are symmetry with the jw axis. By the 

help of the g’s strictly Hurwits property, any cancellation can not be occured in ff* in the 

closed right half plane. Real part of p is equal to zero or a possitive number. Due to the 

these conditions, the number of finite transmission zeros can be received from the degree 

of f and the infinity transmission zeros can be received  with difference of deg g and deg 

f. Number of the finite and infinity transmission zeros are determined  from the degree of 

g polynomial on condition of 0 ≤ Re(p). 

 

The input impedance of Figure 2.3 with output is terminated with a resistance (Z0) 

can be calculated with  polynomials. 

   Zint=
1+S11

1-S11

=
g+h

g-h
=

n

d
                                                 (2.51) 
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By calculating the even part of the Zint, all of the transmission zeros can be identified. 

Even part of the Zint is calculated as: 

Zint=
1

2
(Zint+Zint*)=

1

2
(
n

d
+

n*

d*

) =
1

2
(
nd*+n*d

dd*

) =
ff*

(g-h)(g
*
+h*)

             (2.52) 

Because of the numerator and denominator terms in last part of the formula, the jw 

zeros are eliminated. The 0.5(nd*+n*d) is equal to the ff* and the finite transmission 

zeros can be found in this part. Under this situation, all of the transmission zeros can be 

determined by equation (3.4). 
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3.TWO VARIABLE CHARACTERIZATION OF MIXED 

STRUCTURES 

For implementation of the lumped and distributed components together in cascaded  

lossless two port (Şengül, 2010), the two variable characterization method is needed. By 

the help of the Richard’s  transformation, one of the variable is Richards variable λ and 

the other one is the complex frequency variable p. Lumped sections can be formed 

according to the p and the distributed sections can be formed due to Richards variable. If 

these two variable are assumed indipendent variable with each other, the implementation  

of the lumped and distributed components can be achieved by the using multivariable 

methods (Şengül, 2009).  

 

The relation between the f, g, h two variable polynomials with scatter parameters is shown 

as: 

S(p,λ)=
1

g(p,λ)
[
h(p,λ) σf(p,λ)

f(p,λ) -σh(p,λ)
]                                     (3.1)  

 

 S11=
h(p,λ)

g(p,λ)
, S12=

σf(p,λ)

g(p,λ)
, S21=

f(p,λ)

g(p,λ)
,  S22=

-σh(p,λ)

g(p,λ)
                     (3.2) 

Scatttering parameters in (3.1) are formed with one variable scattering parameters s(p) 

and s(λ). S(p) and S(λ) are the explanation of the scattering parameters of lumped (p) and 

distributed (λ) sections. In a project, the number of the components  are   the determination 

of transmission zeros in networks. 
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g(p,λ) is a scattering Hurtwitz polynomial with two variable. The formula of g(p,λ) is 

formed with the coefficients: 

g(p,λ)= ∑∑ g
ij
piλ

j

Np

j=0

Nλ

i=0

                                              (3.3) 

Variable p is for the lumped and λ is for the distributed sections. Nλ is the number of the  

the distributed elements (Unit Element) and Np is the number of the lumped elements in 

cascaded network. 

 

Another representation of the g(p,λ) is for the thesis which has the first row for the 

distributed coefficients and the last column is for the coefficients of lumped. The others 

are unknown coefficients whichs are solved with the algorithm improved in this thesis to 

find accurate values of capacitors and impedance of UEs:  

g(p,λ)=pTMgλ                                                      (3.4) 

 

Mg= [

g
00

⋯ g
0Nλ

⋮ ⋱ ⋮
g

Np0
⋯ g

NpNλ

]                                        (3.5) 

In (2.49) formula, G(p,λ)=gg* means multiplication of the g function with pozitif variable 

(p,λ) and the same function with negative variable (-p,-λ). The degree of result function 

can be used to identify the finite and infinity transmission zeros of the network. 

 

g(p,λ) is one of the polynomial used in equation (3.4). The first row is for the distributed 

coefficients and the last column is for the coefficients of the lumped elements. These are 

the known coefficients in this thesis. There are other known coefficients whichs values 

are zero in matrix. All accept these known coefficients are the unkown coefficients and 

can be calculated with using algorithm identificated in this thesis. 

 

The formulation of the zeros coefficients: 

                                           h(p,λ)=pTMhλ                                                       (3.6) 
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Mh= [

h00 ⋯ h0Nλ

⋮ ⋱ ⋮
hNp0 ⋯ hNpNλ

]                                                  (3.7) 

In (2.48) formula, H(p,λ)=hh* means multiplication of the h function with pozitif variable 

(p,λ) and the same function with negative variable (-p,-λ).  

 

h(p,λ) is one of the polynomial used in equation (2.48). The first row is for the distributed 

coefficients and the last column is for the coefficients of the lumped  elements. These are 

the known coefficients in this thesis. There are  other known coefficients whichs values  

are zero in matrix. Accept these known coefficients, the others are the unknown 

coefficients calculated by using algorithm identificated in this thesis. 

 

If a two-port network has UEs in cascaded mode, the f(p,λ) is defined as: 

f(p,λ)=pk1 (1-λ
2)

u
2⁄                                                 (3.8) 

In formula (3.8), k1 is the number of transmission zeros at dc and it  is equal 0 in this 

thesis because there is no serial capacitor and paralel inductor components in network. U 

represents the number of  cascaded UEs in networks. 

 

For k1 =0,                

                                          f(p,λ)=pk1 (1-λ
2)

u
2⁄ =f(p)f(λ)                                     (3.9) 

In this thesis, g00=1, h00=0 and f00=1 are chosen for the same input and output 

normilization for f00=0k2(1-02)u/2 no matter value of the u in this condition, the answer is 

always 1. 

 

In (2.48) formula, F(p,λ)=ff* means multiplication of the f function with pozitif variable 

f(p,λ) and the same function with negative variable f(-p,-λ). F function is used for the 

identification of the finite transmission zeros in network. 

 

In low pass ladder, the number of k1 is equal zero at infinity because there are no 

capacitior in series and inductor in paralel at the circuits.  
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3.1 Analysis of Mixed Element Structures 

In this thesis, the low pass ladders have paralel capacitors separated with unit elements. 

The capacitors are the lumped components (p) and the unit elements (λ) with impedance 

(Z0) and transmission delay (τ) are distributed elements. The aim of this algorithm to find 

the unknown coefficients in Mh and Mg. By using G(p,f) and H(p,f), the proper value of 

capacitors and unit elements can be calculated for  broadband matching examples. The 

total degree (Np+Nλ) of the networks are 2 to 5 in this thesis. 

3.1.1 Mixed element structures formed with one capacitor and one UE 

  
 

Figure 3.1 Mixed element structures formed with one capacitor and one unit element 

  

This network has one capacitor (Np=1) and one unit element (Nλ=1). According to 

equation (2.48), two variable functions  f, g, h are shown as: 

 

For  u=1 and f(p)=1,   

f(p,λ)=pk1 (1-λ
2)

u
2⁄ =p0 (1-λ

2)
1

2⁄                              (3.10) 

For (3.10),                                

F(p,λ)= f(p,λ)f(-p,-λ)= (1-λ
2)                                 (3.11) 

 

H(p, λ)=h(p, λ)h(-p,-λ)                                              (3.12) 

 

h(p, λ)=0+h01λ+h10p+h11p λ                                   (3.13) 

ZL C1 

Z1 Zin 

ZL 

Z1 
Zin 

C1 V 
V 
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The matrix of Mh has 2×2 dimensions and h00 is 0. According to the equation (3.8), the 

matrix is: 

Mh= [
h00 h01

h10 h11
]                                                        (3.14) 

The known parameters are h00, h01, ℎ11 and the unknown coefficient is h10. The 

boundaries are the last column for distributed and the first row for lumped elements. 

G(p, λ)=g(p, λ)g(-p,-λ)                                                (3.15) 

The matrix of Mg has 2×2 dimensions and g00 is 1. According to the equation (3.5), the 

matrix is: 

Mg= [
g

00
g

01
g

10
g

11
]                                                         (3.16) 

The known parameters are g
00

, g
01

, g
11

 and the unknown coefficient is g
10

. The 

boundaries are the last column for distributed and the first row for lumped elements. 

                                            G(p, λ)= H(p, λ)+ F(p,λ)                                                (3.17) 

According to these properties and explanation about F, G, H polynomials. The unknown 

coefficients of G and H can be calculated by algorithm which one is the main goal of the 

thesis. 

G(p, λ) - H(p, λ) - F(p,λ)=0                                        (3.18) 

The equations are formed with using Matlab according to the result of equation  (3.18). 

The result  is the main equation which has parameters like  powered λ and p (disjoint p,λ 

and adjacents pλ onces) and powered coefficients. This equation is needed to be  

paranthesized due to the same powered λ for getting new equations which ones have only 

parameters contains powered p and powered coefficients. Finally, this equation is 

paranthesized according to the same powered p and get equations containing powered 

coefficients or parameters of Mh  and Mg. These last equations are all equal to zero. By 

the help of these equations, the unknown coefficients can be calculated. 

 

The equations are provided with using Matlab. These equations are: 

g
11
2 - h11

2
=0                                                            (3.19)  
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g
01
2 - h01

2
=0                                                            (3.20)   

 

g
11

- g
10

g
01

+ h01h10=0                                          (3.21) 

                      

g
10
2 - h10

2
=0                                                           (3.22) 

The unknown coefficients g10 and h10 are calculated with these equations. 

 

From the equation (3.22), 

g
10

=|h10|→ m1=
h10

g
10

                                                  (3.23) 

From the equation (3.19), 

g
11

=|h11|→ m2=
h11

g
11

                                                   (3.24) 

From  the equation (3.21),  

g
10

=
 g

11

g
01

-mh01

                                                          (3.25) 

If m2 is equal to 1, the first component is capacitor. If m2 is equal to -1, the first component 

is unit element. The constant value of m1 is -1. 

3.1.2 Mixed element structures formed with two capacitors and one UE 

This network has two capacitors (Np=2) and one  unit element (Nλ=1). The matrix of Mh 

has 3×2 dimensions and h00 is 0. According to the equation (3.7), the matrix is: 

Mh= [

0 h01

h10 h11

0 h21

]                                                             (3.26)        

The known parameters are h00, h01, h11, h21, h20 and the unknown coefficient is  h10. The 

boundaries are the last column for distributed and the first raw for lumped elements. 
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The matrix of Mg has 3×2 dimensions and g20 is 0 and g00 is1. 

Mg= [

1 g
01

g
10

g
11

0 g
12

]                                                           (3.27) 

The known parameters are  g
00

, g
01

, g
11

, g
12

 and the unknown coefficient is g
10

. The 

boundaries are the last column for distributed and the first raw for lumped elements. 

 

 

 
 

Figure 3.2 Mixed element structures formed with two capacitors and one UE 

 

According to these properties and explanation about F, G, H polynomials.The unknown 

coefficients of G and H can be calculated with algorithm. 

 

The equations are formed with using matlab according to the resut of this equation (3.18). 

The result  is the main equation which has parameters like  powered λ and p ( disjoint p, 

λ and adjacents pλ onces) and powered coefficients. This equation is needed to be 

paranthesized due to the same powered λ for getting new equations which ones have only 

parameters contains powered p and powered coefficients. Finally, this equation is 

paranthesized according to the same powered p and get equations contain powered 

coefficients or parameters of Mh  and Mg. These last equations are all equal to zero. By 

the help of these equations, the unknown coefficients can be calculated. 

 

These equations are provided with using matlab. These equations are: 

g
01
2 − h01

2
=1                                                                   (3.28)  

                                                        

g
21
2 − h21

2 = 0                                                                     (3.29) 

ZL 

Z1 Zin 

C1 C2 
V 
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g
20
2 − h20

2 = 0                                                                     (3.30) 

 

g
10
2 − h10

2 − 2(g
20

) = 0                                                     (3.31) 

 

g
11
2 − h11

2 − 2(g
01

g
21 

− h01h21)=0                                (3.32) 

 

g
11

g
20

− h11h20 − g
10

g
21

+  h10h21=0                             (3.33) 

 

 g
11

− g
10

g
01

+ h01h10=0                                                (3.34) 

The unknown parameters g10 and h10 are calculated with these equations. 

 

For this structure, m1= -1, m2= -1. 

 

From the equation (3.31): 

g
10

=|h10|→m1=
h10

g
10

                                                        (3.35) 

From the equation (3.29): 

g
21

=|h21|→ m2=
h21

g
21

                                                       (3.36) 

From the equation (3.34): 

g
10

=
 g

11

g
01

− m1h01

                                                            (3.37) 

From  the equation (3.31):        

m1=m2                                                                    (3.38) 
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3.1.3 Mixed element structures formed with one capacitor and two UEs 

 

 
 

Figure 3.3 Mixed element structures formed with one capacitor and two UEs 

 

This network has one capacitor (Np=1) and two Unit Elements (Nλ=2). The matrix of Mh 

has 2×3 dimensions and h00 is 0.  According to the equation (3.12), the matrix  is: 

Mh= [
0 h01 h02

h10 h11 h12
]                                           (3.39) 

The known parameters are h00, h01, h02, h12, and the unknown coefficients are h10, h11. 

The boundaries are the last column for distributed and the first row for lumped elements. 

 

The matrix of Mg has 3×2 dimensions and g00 is 1. 

Mg= [
1 g

01
g

02
g

10
g

11
g

12

]                                          (3.40) 

The known parameters are  g
00

, g
01

, g
02

, g
12

 and the unknown coefficients are  g
10 

, g
11

. 

The boundaries are the last column for distributed and the first row for lumped elements. 

 

According to these properties and explanation about F, G, H polynomials. The unknown 

coefficients of G and H can be calculated with algorithm. 

 

The equations are formed with using Matlab according to the resut of this equation (3.18). 

The result is the main equation which has parameters like  powered λ and p (disjoint p,λ 

and adjacents pλ onces) and powered coefficients. This equation is needed to be  

paranthesized due to the same powered λ for  getting new equations which ones have only 

parameters contains powered p and powered coefficients. Finally, this equation is 

paranthesized according to the same powered p and get equations contain powered 

ZL 

Z1 Z2 Zin 

C1 V 
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coefficients or coefficients of Mh  and Mg . These last equations are all equal to zero. By 

the help of these equations, the unknown coefficients  can be calculated. 

 

These equations are provided by using Matlab. These equations are: 

g
12
2 − h12

2
= 0                                                            (3.41)                                                       

 

g
02
2 − h02

3
=0                                                             (3.42) 

                                                        

g
11

g
02

− h11h02 − g
01

g
12

+  h01h12=0                              (3.43) 

 

g
11
2 − h11

2 − 2(g
12

g
10 

− h12h10)=  0                              (3.44)                                     

 

g
01
2 − h01

2 − 2g
02

=2                                                            (3.45) 

                                             

 g
11

− g
10

g
01

+ h01h10=0                                                  (3.46) 

                                          

g
10
2 − h10

2
=0                                                                     (3.47)                                  

For this structure, m1= -1, m2= +1. 

 

The unknown parameters g
11

, g
10

, h11 and h10 are calculated by these equations. 

 

From the equation (3.47): 

g
10

=|h10|→m1=
h10

g10

                                                      (3.48)                                    

From the equation (3.41), 

g
12

=|h12|→m2=
h12

g
12

                                                     (3.49) 
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From  the equation (3.46), 

g
10

=
 g

11

g
01

-m1h01

                                                          (3.50) 

From  the equation (3.43), 

h11=
 g

11
 g

02
- g

01
 g

12
+ h01 h12

 h02

                                       (3.51) 

From the equation (3.44) with using (3.51), 

g
11

=g
02

(g
01

g
12

 - h01h12) - h02
2

g
12

- m1h12

g
01

- m1h01

                          (3.52) 

3.1.4 Mixed element structures formed with two capacitors and two UEs 

 

 
 

Figure 3.4 Mixed element structures formed with two capacitors and two UEs 
 

This network has two capacitors (Np=2) and two  unit elements (Nλ=2). The matrix of Mh 

has 3×3 dimensions and h00 is 0.  According to the equation (3.8), the matrix  is: 

   𝑀ℎ = [

0 h01 h02

h10 h11 h12

0 h21 h22

]                                              (3.53) 

The known parameters are  h00, h01, h02, h12, h22, h20 and the unknown coefficients are 

h10, h11, h21. The boundaries are the last column for distributed and the first row for 

lumped elements. 

 

The matrix of Mg has 3×3 dimensions and g
20

 is 0 and g
00

 is 1. 

Mg= [

1 g
01

g
02

g
10

g
11

g
12

0 g
21

g
22

]                                             (3.54) 

ZL ZL 

Z1 Z1 Z2 Z2 Zin Zin 

V V 

C1 C2 C2 C1 
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The known parameters are  g
00

, g
01

, g
02

, g
12

 ,g
22

, g
20

 and the unknown coefficients are  

g
10

, g
11

,  g
21

. The boundaries are the last column for distributed and the first row for 

lumped elements. 

 

According to these properties and explanation about F, G, H polynomials. The unknown 

coefficients of G and H can be calculated with algorithm. 

 

The equations are formed with using Matlab according to the resut of this equation (3.18). 

The result is the main equation which has parameters like powered λ and p (disjoint p, λ 

and adjacents pλ onces) and powered coefficients. This equation is needed to be  

paranthesized due to the same powered λ for getting new equations which ones have only 

parameters contains powered p and powered coefficients. Finally, this equation is 

paranthesized according to the same powered p and get equations contain powered 

coefficients or coefficients of Mh  and Mg. These last equations are all equal to zero. By 

the help of these equations, the unknown coefficients  can be calculated. 

 

These equations are provided by using Matlab. These equations are: 

g
10
2 − h10

2
=0                                                           (3.55) 

                                                      

 g
11

− g
10

g
01

+ h01h10=0                                       (3.56) 

                               

g
21

g
10

− h21h10 = 0                                                  (3.57) 

                                               

g
01
2 − h01

2 − 2g
02

=2                                                (3.58)          

                                    

g
11
2 - h11

2
-2(g

12
g

10 
- g

22
-h12h10+g

01
g

21 
- h01h21)=0                           (3.59) 

                                        

g
21
2 − h21

2
=0                                                            (3.60) 
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g
11

g
02

− h11h02 − g
01

g
12

+  h01h12=0                            (3.61) 

 

g
11

g
22

− h11h22 − g
21

g
12

+  h21h12=0                            (3.62) 

 

g
02
2 − h02

2
=1                                                                   (3.63) 

 

g
12
2 − h12

2 − 2(g
02

g
22 

− h02h22)=0                             (3.64) 

 

g
22
2 − h22

2
=0                                                                  (3.65) 

The unknown parameters  g
10

, g
11

, g
21

 and   h10, h11, h21 are calculated with these 

equations. 

 

From the equation (3.55), 

g
10

=|h10|→m1=
h10

g
10

                                                      (3.66) 

From the equation (3.65), 

g
22

=|h22|→m2=
h22

g
22

                                                      (3.67) 

From the equation (3.60), 

  g
21

=|h21|→m3=
h21

g
21

                                                     (3.68) 

From the equation (3.57), 

                        m1 =  m3                                                       (3.69) 

From  the equation (3.56),  

g
10

=
 g

11

g
01

-m1h01

                                                       (3.70) 



29 

 

From  the equation (3.61), 

h11=
 g

11
 g

02
- g

01
 g

12
+ h01 h12

 h02

                                    (3.71) 

From  the equation (3.56), 

g
21

=
 g

11
 g

22
 -  h11 h22

g
12

 - m1h12

                                                 (3.72) 

From  the equation (3.59) with using (3.72), 

g
11

=g
02

(g
01

g
12

- h01h12) - h02
2

g
12

- m1h12

g
01

- m1h01

+h02
2

(g
01

- m1h01)(
g

02
h22

h02
- g

22
)

g
12

- m1h12

        (3.73) 

For this structure, 𝑚1 = −1. 

 

If  𝑚2 is equal  to -1, the first component is capacitor.  

 

If  𝑚2 is equal  to 1, the first component is Unit Element. 

3.1.5 Mixed element structures formed with three capacitors and two UEs 

This network has three capacitors (Np=3) and  two  unit elements (Nλ=2). The matrix of 

Mh has 4×3 dimensions and h00 is 0.  According to the equation (3.12), the matrix  is: 

Mh=  [

0 h01 h02

 h10 h11 h12

0 h21 h22

  0    0    h32

]                                                   (3.74) 

The known parameters are  h00, h01, h02, h12, h22, h20, h32, h30, h31 and the unknown 

coefficients are h10, h11, h21. The boundaries are the last column for distributed and the 

first row for lumped elements. 
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Figure 3.5 Low order structure formed with three capacitors and two UEs 

 

The matrix of Mg has 4×3 dimensions and  g
20

, g
30

, g
31

 are 0 and g
00

 is 1. 

                                𝑀g=

[
 
 
 

1 g
01

g
02

 g
10

g
11

g
12

0 g
21

g
22

  0    0    g
32]

 
 
 

                                      (3.75) 

According to these properties and explanation about F, G, H polynomials. The unknown 

coefficients of G and H can be calculated by algorithm. 

 

The equations are formed with using Matlab according to the resut of this equation (3.18). 

The result is the main equation which has parameters like  powered λ and p (disjoint p, λ 

and adjacents pλ onces) and powered coefficients. This equation is needed to be  

paranthesized due to the same powered λ for getting new equations which ones have only 

parameters contains powered p and powered coefficients. Finally, this equation is 

paranthesized according to the same powered p and get equations contain powered 

coefficients or parameters of Mh  and Mg. These last equations are all equal to zero. By 

the help of these equations, the unknown coefficients  can be calculated. 

 

These equations are provided with using Matlab. These equations are: 

 g
32
2 − h32

2
=0                                                              (3.76)  

                                                               

g22
2 −h22

2 − 2(g12g32 − h12h32) = 0                                      (3.77) 

                                   

g12
2 −h12

2 − 2(g02g22 − h02h22) = 0                                     (3.78) 

                                    

C2 
C3 C1 

Z1 Z2 Zin 

ZL 

V 
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g
02
2 − h02

2
=1                                                          (3.79)  

                                                         

g
21

g
32

− h21h32 = 0                                                    (3.80) 

                                                          

g
11

g
22

− h11h22 − g
01

g
32

+  h01h32  − g
12

g
21

+ h12h21=0                (3.81) 

                                 

g
11

g
02

− h11h02 − g
01

g
12

+  h01h12=0                                  (3.82)  

                                  

g21
2 −h21

2 + 2(g10g32 − h10h32) = 0                                  (3.83) 

                                                         

g
11
2 − h11

2 + 2( g22 − g
12

g
10 

+ h12h10 − g
01

g
21 

+ h01h21)=0            (3.84) 

                                     

g
01
2 − h01

2 − 2g
02

=2                                                   (3.85) 

                                                    

g
21

g
10

− h21h10 = 0                                                      (3.86) 

                                                          

g
11

− g
10

g
01

+ h01h10=0                                            (3.87) 

                                            

g
10
2 − h10

2
=0                                                             (3.88)                                

For this situation, 𝑚1 = −1 𝑎𝑛𝑑 𝑚2 = −1. 

 

From the equation (3.88): 

g
10

=m1|h10|→m1=
h10

g
10

                                          (3.89) 

From the equation (3.89): 

h10= m1 g10
                                                          (3.90) 
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From the equation (3.76): 

g
32

=|h32|→m2=
h32

g
32

                                              (3.91) 

From the equation (3.91): 

h32= m2 g32
                                                          (3.92) 

From the equation (3.86): 

g
21

=|h21|→m1=
h21

g
21

                                              (3.93) 

From the equation (3.93): 

h21= m1 g21
                                                        (3.94) 

From the equation (3.80-86): 

m1 =  m2                                                             (3.95) 

From  the equation (3.87): 

g
10

=
 g

11

g
01

− m1h01

                                                   (3.96) 

From  the equation (3.82): 

h11=
 g

11
 g

02
−  g

01
 g

12
+ h01 h12

 h02

                                 (3.97) 

From  the equation (3.81): 

g
21

=
 g

11
 g

22
−  h11 h22  − g

01
g

32
+ h01h32

g
12

− m1h12

                        (3.98) 

From  the equation (3.84, 3.97, 3.98): 

g
11

=g
02

(g
01

g
12

− h01h12) − h02
2

g
12

− m1h12

g
01

− m1h01

+h02
2

(g
01

− m1h01)(
g

02
h22

h02
− g

22
)

g
12

− m1h12

       (3.99) 

The order of the components are parallel capacitor, unit element, parallel capacitor, unit 

element and parallel capacitor, unit element in networks. 
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3.2 Characteristic Impedance and Capacitance Calculations 

After the calculation of the unknown coefficients of g and h polynomials, the value of the 

cascaded lossless commensurate lines (Şengül, 2008) and the value of the capacitors are 

calculated due to the scattering transfer parameters. 

3.2.1 Characteristic impedance calculations of unit elements 

The realization problem of the lumped components in circuits with using microwave 

frequencies cause needs to use another approach. Distributed components are the solution 

for this problem. With the Richards transformation, distributed components can be seen 

like lumped element networks. The formulation of λ is in equation (2.2). p=σ+jw is the 

complex frequency. 

 

In this thesis, the networks are assumed as lossless, reciprocal two ports. Definition of 

these networks are provided of using f, g, h polynomials in Belevitch form. The scattering 

transfer matrix (T) is formed according to a cascaded two networks (N1 and N2) and the 

formula of the scattering transfer matrix is in equation (2.46). 

 

The formation of the T with N1 transfer matrix T1 and N2 scattering transfer matrix T2 are 

represented as: 

T=T1×T2                                                          (3.100) 

The matrix formation of (3.74) is: 

T1=
1

f1

[
m1g

1*
h1

m1h1* g
1

]    T2=
1

f2

[
m2g

2*
h2

m2h2* g
2

]                       (3.101) 

The properties of f, g, h polynomials in (T, T1, T2) are same and the properties must be 

proper for the Feldtkeller equation. According the equations (3.100) and (3.101), the 

relation of the g, f, h polynomials in (T, T1, T2) can be showed with these equations. 

 
g

f
= g

1
g

2
+m1h1*h2                                                (3.102) 
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h

f
= m1m2h

1*
h2+m1g

1
g

2
                                      (3.103) 

 

f=f1f2                                                                        (3.104) 

 

m=m1m2                                                             (3.105) 

With using these 4 equations and T2=𝑇1
−1𝑇 , the f, g, h polynomials coefficients of the 

second cascaded network (N2) can be calculated. With these results, the impedance of the 

N2 can be calculated. 

   h2=
hg

1
-gh1

m1f1f1*

     𝑔2 =
g

1*
g-hh1*

f1f1*

                                  (3.106) 

In Figure 3.1, the calculation of the impedances of unit element Z1 in network N1 is: 

Z1=
𝑔1(1) + ℎ1(1)

𝑔1(1) − ℎ1(1)
= 

1+S11(λ)

1+S11(λ)
                                 (3.107) 

Z2 is the impedance of second network N2. For the calculation, 𝑔2(λ) and  ℎ2(λ)  

polynomials whichs are the polynomials of the two variable polynomials 𝑔2(𝑝, λ)  and 

ℎ2(𝑝, λ)  are needed. The formula is: 

Z2=Z1

g
2
(1)+h2(1)

g
2
(1)-h2(1)

                                                     (3.108) 

Nλ is the number of cascaded Unit Elements in two-port network.  

 

The definition of the g
2
(λ) and h2(λ) are; 

g(λ)= ∑ Mkλ
k-1

 

Nλ

k=1

                                                   (3.109) 

 

h(λ)= ∑ Nkλ
k-1

Nλ

k=1

                                                      (3.110) 

The coefficients are formed with these equations.  
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Mk= ∑ (-1)
s Nλ⁄

Nλ

s=1

y
s
                                                (3.111) 

 

Nk= ∑ xs

Nλ

s=1

                                                                (3.112) 

and, 

 xs= h
s-1

g(1) − g
s-1

h(1)                                        (3.113) 

     

  y
s
=g

s-1
g(1) − hs-1h(1)                                         (3.114)                                     

3.2.2 Capacitance calculations 

In this section, the values of shunt capacitors are calculated with synthesis algorithm 

explained in (Şengül, 2018). Shunt capacitors are the only components from the lumped 

sections because they offer low rate for range and difficulty for utilization at microwave 

frequencies. 

 

For low order networks, inductors can be only located in serial to the capacitor. In this 

network, transmission lines (unit elements) which have the same length, are used instead 

of the inductors. Unit elements are practical to receive the wanted response with shunt 

capacitor. Without the unit elements, there will be no filter or matching networks because 

the capacitors will be parallel to the source and the terminated impedance. In that 

situation, the gain of transmitted power will not depend on the frequency anymore. 

 

The lumped elements are defined in the last column of Mg and Mh  as seen in equations 

(3.4) and (3.6). The scattering transfer matrix T in equation (2.46) contained two-variable 

functions f, g, h is the definition to use for calculating the value of the capacitors. These 

variables are p (p=α+jw) for capacitors and λ for the unit elements. The polynomial g(p,λ) 

is a scattering Hurwitz real coefficients polynomial. 



36 

 

 

The formation of the scattering transfer matrix of mixed elements is: 

T(p,λ)=T(p)TR(p, λ)                                             (3.115)                                

T(p) is the scattering transfer matrix identification of the shunt capacitor and TR(p, λ) is 

the transfer matrix identification of  the remaining matrix without the extraction of the 

shunt capacitor identification. Remaining transfer scattering network can be calculated 

with getting inverse of the transfer matrix of shunt capacitor and multiply with the transfer 

matrix of the all network. 

TR(p,λ)=T-1(p)T(p,λ)                                          (3.116) 

T(p) is formed with h(p), g(p), f(p) functions. These functions are identify as: 

hi(p)= -
Ci

2
p,   g

i
(p)=

Ci

2
p+1,  fi(p)=1                             (3.117) 

The utilization of only capacitor in lumped sections, the circuit become a degenerated 

network. Because of this, the use of the first column is impractical to get all values of 

capacitors. Only the sum of the capacitors’ values can be calculated. To find the each of 

the capacitors’ values, the last column of the Mg and  Mh are used in this thesis. 

 

The formulation of the total capacitors’ value with using the first column of Mg and Mh 

is: 

Ct=
g

10 
+ 𝑚h10

g
00

− 𝑚h00

                                                   (3.118) 

First value of i is zero, before the calculation of capacitor is initialized.    

            

First step, a = Np-i, b=Np-(i+1) and c= Nλ. Np is the number of capacitors and Nλ is the 

number of Unit Elements in two-port network. The formulation (3.119) shows the first 

value of capacitor in two-port network. 

 

For i=i+1, 

Ci=
g

ac
+ 𝑚hac

g
bc

− 𝑚hbc

                                                      (3.119) 
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m=
g

ac

hac 
                                                               (3.120) 

Second step, with the calculation of C1, T(p) can be constituted according to equation 

(3.117). 

Ti(p)= [

mg(-p)

f(p)

h(p)

f(p)

mh(-p)

f(p)

g(p)

f(p)

]                                             (3.121)                                                       

The next step, TR is calculated due to equation (3.116) and we get MRg  and MRh  due to 

equation (3.116). 

g
R
(p,λ)=pTMRgλ,  hR(p,λ)=pTMRhλ                             (3.122) 

Final step, if the value of the last capacitor is C2, C2 is calculated with the coefficients of 

MRg and MRh which are formed in equation (3.117). 

        C2=
g

10
+ mRh10

g
00

− mRh
00

                                               (3.123) 

Third step, the capacitor is calculated as equation (3.124) a = Np-i, b=Np-(i+1), c= Nλ . 

Ci+1=
g

ac
+ 𝑚hac

g
bc

− 𝑚hbc

                                               (3.124) 

        

 m=
g

ac

hac

                                                              (3.125) 

A new scattering transfer matrix Ti+1(p) is formed with equation (3.121).  

hi+1(p)= - 
Ci+1

2
p,   g

i+1
(p)=

Ci+1

2
p+1,  fi+1(p)=1                     (3.126)            

The T(i+1)(p) is used in equation (3.126) to form a new remaining scattering transfer matrix  

 

TR(i+1)(p,λ) as: 

TR(i+1)(p,λ)=T(i+1)
-1 (p)T(i+1)(p,λ)                                    (3.127)                                            

If  Np – i =1, the last capacitor will be calculated.  
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         Ci+1=
g

10
+ mRh10

g
00

− mRh
00

                                               (3.128) 

                                            

mR=
g

10

h10

                                                                   (3.129) 

Otherwise, the third step is used again until the Np – i =1.  
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4. BROADBAND MATCHING NETWORKS 

The aim of the broadband matching is to design an equalizer network to get equal 

impedance between generated (Zin) and input (Zint) or  load  (ZL) and output (Zout)  

(Bowik, Byler and Ajluni, 2008). These equivalence is used to get maximum power gain 

which is the ratio of power transferred to the load and the power constituted at the 

generator due to the specified frequency band.  

 

In ideal matching, the ratio is one without reflections and dissipated power in equalizer 

network between the generator and load impedance.  

 

There are three classifications in broadband matching problems (Yarman, 1985) due to 

the difference of passive elements at input and output ports. These classifications are 

single, double matching and active two port problems. If there is a purely resistance in 

input port and a complex load in output port, the matching problem will be classified as 

single matching problem. If the generator is the complex instead of a purely resistance, 

the matching problem will be classified as double matching. If the equalizer network 

consists active elements with complex in generator and load, the problem is classified as 

active two-port.  

 

The lossless network in matching is provided with perfect match impedance of generator 

resistance and input impedance or the load impedance and output impedance. That means, 

the reflection parameters in port 1 (Sin) and port 2 (Sout) are equal to zero according to 

equations (2.22) and (2.23). That results are valid for complex load, output impedance or 

generator impedance and input impedance. The transducer power gain is calculated with 

these equations (2.22) and (2.23) and get this equation: 

TPG(w)=1-|Sint|
2=1-|Sout|

2                                            (4.1) 
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For a lossless network, Sin and Sout are zero and TPG(w) is 1. The main goal of broadband 

matching is to be received maximum transducer power gain from the network in a 

frequency band. As seen in equation (4.1), the minimization value of reflections 

parameters effects the value of transducer power gain. 

 

After these explanations, the next sections are about the techniques for simple and double 

matching problems. 

4.1 Line Segment Technique for a Single Matching Problem 

In a single matching problem, the circuit has a resistance at input port and a complex load 

at output port. To get a transducer power gain, an equalizer network must be calculated. 

 

The representation of load impedance (ZL) and output impedance (Zout) are: 

ZL(jw)=RL(w)+ jXL
,              Zout(jw)=Rout+jXout                        (4.2) 

 

Sout=
Zout(jw)-ZL(jw)

Zout(jw)-ZL(jw)
             TPG(w)=1-|Sout|

2                          (4.3) 

As seen in equation (4.4), transducer power gain is obtained with the real and imaginary 

parts of load ZL(jw) and the output impedance Zout(jw). 

TPG(w)= 
4 RintRin

(Rint+Rin)2+(Xint+Xin)2
= 

4 RoutRL

(Rout+RL)
2
+(Xout+XL)

2
            (4.4) 

As seen in equation (4.4), the parameters of output impedances (Rout, Xout) should be 

calculated properly to get maximum TPG value. The real frequency approach (Carlin and 

Yarman, 1983) approach can be used to get those Zout value.  

 

To find the Rout, the unknown real parts of Zout is represented as a number of line segments 

(Carlin, 1977). The formulation is: 

Rout=k0+ ∑ bj(w)kj

n

j=1

                                                           (4.5) 
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bj(w) can be identified in Rout  according to the sampling frequency (wj, j=1,2,…..n).For 

w ≥ wj, bj(w) is equal to zero. For wj-1 ≤ w ≤ wi, bj(w) is equal to (w - wj-1)/(wi - wj-1). 

For w ≤ wj-1, bj(w) is equal to zero. 

 

After calculation of Rout, the imaginary part of the out impedance is calculated with 

Hilbert transformation (Carlin, 1977). The same line segments representation is used to 

identify the Xout. 

Xout= ∑ cj(w)kj

n

j=1

                                                                 (4.6) 

cj(w)  is calculated due to  Hilberts transformation technique as: 

cj(w)=
1

π(wj − wj-1)
I(w)                                                   (4.7) 

I(w) is calculated as: 

I(w)= ∫ ln |
y+w

y-w
|  dy                                                         (4.8)

wj

wj-1

 

After the calculation of the unknown output impedance, the transducer power gain 

equation (4.4) can be calculated. The actual result may not be desired one. The least 

square method can be utilized to minimize the difference between the target and actual 

power gain. The target value of transducer power gain is represented with Td. E is the 

difference of the actual and desired one. Nw is the number of sampling frequencies. 

E= ∑(T(wj,kj) − Td)
2 

 

  

Nw

j=1

                                                 (4.9) 

4.2 Solution for Double Matching Problems 

Direct computational technique (Carlin and Yarman, 1983) can be solution for double 

matching problem. In this method, the real part is identified as a real even rational 

function with the unknown coefficients to optimize the gain characteristic over a specified 

passband. 
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The direct computational technique is used with the output impedance which is unknown 

parameter.  The TPG equation is shown in equation (4.13) and the complex normalized 

input reflection coefficient (Sin) is used for the TPG.  

 

Sint is showed as: 

Sint=
Zint − Zin

Zint + Zin

                                                   (4.10) 

In these equation, Zint is the input impedance and Zin is the generator impedance at port 

one. ZL is the load impedance and Zout is the output impedance in network. 

 

The real normalized reflection coefficient of the generator (Sin) is show as: 

    Sin=
Zin-1

Zin+1
                                                      (4.11) 

The real normalized reflection coefficient of the  port 1 is showed as: 

   Sint=
Zint-1

Zint+1
                                                     (4.12) 

Transducer power gain is shown as with  Sin and Sint: 

TPG(w)=
(1-|Sin|

2)(1-|S
int

|
2
)

|1-SinSint|
2

                                         (4.13) 

The goal is identication of Sint as a function of  the impedance Z2. Sint is identified due to 

the scattering parameters of scattering matrix as: 

Sint=S11+
S12

2
SL

1-S22SL

=
S11-SLk

1-SLS22

       k=S11S22-S12
2

                      (4.14) 

With the help of the equations of (2.39-42), it can be showed that: 

         k=
S12

S21

=
S22

S11

                                                         (4.15) 

Using this identification, Sint is: 

Sint=
S12

S12*

SL-S22*

1-SLS22

                                                (4.16) 
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                                             S22=
Zout-1

Zout+1
    Zout=

n

d
                                                   (4.17) 

With the help of the equation (4.17), the even part of the Zout is 

               ev(Zout)=
1

2
(Zout+Zout*)=

n

d

n*

d*

=HH* H=
f*

d
                             (4.18) 

With using equations (2.40), (4.17) and (4.18), this equation can be written: 

S12S12*=1-S22S22*=
2(Zout+Zout*)

(Zout+1)(Zout*+1)
=

4HH*

(Zout+1)(Zout*+1)
                (4.19) 

With this equation, S12 is equal to this equation: 

S12=
2H

(Zout+1)(Zout*+1)
                                                    (4.20) 

Finally, Sint is equalt to: 

Sint=
H

H*

=
ZL − Zout*

ZL+Zout

                                                        (4.21) 

 

  H(jw)=
f(-jw)

g(jw)
=√Route

rmj∅H(w) ∅H(w)= arg f(-jw) - arg d(jw)           (4.22) 

  

 Sint=e
rmj∅H(w) ZL − Zout*

ZL+Zout

                                                  (4.23) 

The equation (4.23) shows that Zout has an effect to determine the ratio of transducer 

power gain with Zin and ZL. 

4.3 Parametric Representation of Brune Functions 

Brune functions are developed by Fettweis (Fettweis, 1979). This method is essentially 

proposed for single matching problems, and is depended  on the parametric representation 

of the positive real impedance Zout(p) of a lossless network. The positive real impedance 

Zout which is identification of impedance when looked from the second port to the 

generator, can be explained in a partial fraction expansion. Moreover the parameters 



44 

 

which ones are used to identify the the poles of Zout are based on the optimizaiton of the 

gain performance of the system  for wanted matching load. 

 

Zout(p) is  a positive real functions which has simple poles and it is assumed that it is a 

minimum reactance function because of it, it can be identify from its even part. In other 

words, the Zout(p) is equal to Zout(p)=even(p)+odd(p) and even(p) is equal to Rout(p). For  

even(p)=Rout(p), the Rout(p) is  Hilbert transformation of the Zout(p). 

 

The  representation of the pozitif real impedance function  Zout(p) is : 

Zout=C0+ ∑
Ci

p − p
i

   

k

i=1

                                                  (4.24) 

p is the  complex constant which  is the distinct poles of Zout(p) with Re(pi) < 0 and Bi is 

the complex residues, C0 is a real constant. 

Even Zout=
Zout(p)+Zout(p)

2
=

f(p)f ( − p)

n(p)n(−p)
                            (4.25) 

n(p) is the hurtwitz denominator of Zout(p) and f(p) is a real polynomial. It can be even 

or odd polynomial for lossless reciprocal two-ports. If the Zout is a minimum reactance 

function, its poles are located in the left half of the complex p plane. The Hurwitz 

denominator polynomial d(p) can be identified as: 

d(p)=Dk ∏(p − p
i
)

k

i=1

                                                   (4.26) 

Dk is a real nonzero constant. 

 

The equations (4.24) and (4.25) are used to get this formula: 

 C0+ ∑
Ci

p − p
i

k

i=1

=
f(p)f( − p)

n(p)n(−p)
                                            (4.27) 

With using equations (4.26) and (4.27), the Ci can be calculated with this formula: 

Ci = −
f(p

i
)f(−p

i
)

p
l
Dk

2 ∏ (p
i
2 − p

l
2)k

i=1

                                            (4.28) 
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If degree of the f polynomial is smaller than  k, C0 is equal to 0. If the degree of the 

polynomial f is equal to k, the value of C0 is 1/ 𝐷𝑘
2. 

 

With this equation (4.28),  the definition of the Zout can be written with terms of the 

polynomial f(p) and the roots of d(p). 

 

The monic poynomial can be written as: 

 f(p) =p
k1 ∑ bip

2i                    

k2

i=0

                              (4.29) 

The k1 and k2 are nonnegative integers, bi is an arbitrary real coefficients. If the zeros of 

f(p) is located on the real frequency  axis of the p plane, f can be identified as: 

 f(p)=pk1 ∏(p2+ai
2)

k2

i=0

                                            (4.30) 

If the number of poles  is even, the poles can be assumed as conjugate pairs. If the number 

of poles is odd, the pole can be chosen as real. 

 

For i=1...... num,pi= -αi+jβi, pi= -αi – jβi . If the number of poles are even, the num is equal 

half of number of holes for α is bigger than zero. If the number of poles are odd, num  is 

equal to (n-1)/2 for α is bigger than zero. 

 

According to these explanations, the parameters of output impedance can be written as: 

𝑅𝑜𝑢𝑡 = −∑
𝑝𝑖𝐶𝑖

𝑤2 + 𝑝𝑖
2 + 𝐶0

𝑘

𝑖=1

                  𝑋𝑜𝑢𝑡(𝑤) = −𝑤 ∑
𝐶𝑖

𝑤2 + 𝑝𝑖
2

𝑘

𝑖=1

                  (4.31) 

4.4 Real Frequency Matching with Scattering Parameters 

The matching problem can be formulated in terms of scattering parameters of the lossless 

equalizer network. The name of this frequency scattering approach is Simplified Real 

Frequency Technique (SRFT) (Yarman, 1985). A lossless matching network is identified 

with the scattering parameters which ones are formed with canonic polynomials f, g, h. 
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 The canonic polynomials are identified with the Belevitch representation. 

S11=
h(p)

g(p)
    S12=σ

f(-p)

g(p)
  S21=

f(p)

g(p)
   S22=

-σh(-p)     

g(p)
 σ=

f(p)

f(-p)
                   (4.32) 

In equation (4.32), g(p) is a Hurwitz polynomial, f(p) is a real monic polynomial and σ is 

a constant (σ= -1 or +1). If the two port N is reciprocal as well, then f is either even or 

odd. 

 

The relation of g, f, h polynomial with each other is: 

g(p)g(-p)=h(p)h(-p)+f(p)f(-p)                                           (4.33) 

The degree relation of g, f, h polynomial, degree of g polynomial can be equal or bigger 

than degree of h and f. 

 

As seen in these properties, f and h polynomials are the parameters of Hurwitz polynomial 

g. The definition of a network can be done with h(p) and f(p) polynomials. f(p)  is the 

zeros of transmission of the matching two-port network and depend on the number of 

distributed elements and lumped elements which are chosen by the designer. 

 

As the equalizer network type of components and numbers of the components are 

determined, f(p) can be calculated with the degree n due to those selections. After the 

coefficients of h(p) are initialized, g(p) can be calculated according to equation (4.33). 

The calculations of the polynomials are used to calculate the value of scattering 

parameters as in equation (4.32). With these scattering parameters, the input and output 

reflections can be calculated also to get the transducer power gain in equation (4.1). 

 

TPG can also be shown with combination of the equations (4.13) and (4.14). 

TPG(w)=
(1-|Sin|

2)|S21|
2(1-|SL|

2)

|1-S11Sin|
2
|1-SoutSL|

2
                                    (4.34) 

Sin is the input reflection coefficient and terminated in ZL. SL is the load reflection 

coefficient. Sout is the output reflection coefficient and terminated in Zin. S11 is the 

reflection coefficient of port one. S22 is the reflection coefficient of the port 2. 
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To calculate the transducer power gain, these are the needs and orders. Firstly, the real 

coefficients are needed to be initialized. Secondly, selection of the polynomial form of 

f(p) and its degree must equal or less than the degree of g(p). Thirdly, calculation of gg* 

according to ff*+hh* and the find the roots of G(p)=gg*. Fourthly, the location of LPH of 

roots are chosen and g(p) is formed with them. Finally, with the known parameters of f, 

g and h polynomials, the scattering parameters in equation (4.32) and reflection 

coefficients are calculated to use them to find transducer power gain in equation (4.34). 

 

The transducer power gain is become more efficient with less value of scattering 

parameter of  input, output and resistance in port one and load and increasing value of 

forward gain (S21) according to the equation (4.34). 
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5. EXAMPLES 

5.1 Broadband Matching Network Formed with Mixed Element Structure 

To design two-port broadband matching networks with lumped elements and distributed 

elements, two variable functions are needed to generalize the method. This method   

consists of Richards variable λ for distributed sections and frequency variable p for 

lumped sections. The purpose of the broadband matching is to get efficient design for the 

power transfer from the source to the load resistance. The efficiency can be measured in 

a specific frequency range with the transducer power gain which is the ratio of the power 

at the load to the available power at the source. 

 

The description of the transducer power gain is as: 

TPG(w)=
4 RintRin

(Rint+Rin)
2
+(Xint+Xin)

2
=

4 RoutRL

(Rout+RL)
2
+(Xout+XL)

2
                (5.1) 

The input impedance is represented in terms of Zi = Ri+ jXi, the load impedance is 

represented with Z0=R0+jX0, source impedance is represented as Zs=Rs+jXs and the 

output impedance is formulated as Zout=Rout+jXout as seen equation (5.1). 

 

As seen in equation (5.1), to calculate the transducer power gain, the value of the input 

and output impedance of the network are needed. First, the scattering parameters in 

equation (3.2) are needed to calculate the reflection coefficients from the load impedance. 

SL=
ZL-1

ZL+1
                                                                   (5.2) 

Then, with the reflection coefficients, the input reflection coefficient can be identified 

with these coefficients and the scattering parameters as in equation (3.2). 
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Si=S11+
S12S21SL

1-S22SL

                                                      (5.3) 

The output reflection coefficient is terminated at Zin (the generator impedance in port 1).  

So=S22+
S12S21Sin

1-S22Sin

                                                   (5.4) 

With the scattering parameters, transducer power gain can be calculated with these 

formula: 

TPG=(1-|Si|
2)

|S21|
2
(1-|S

0
|
2
)

|1-S11Si|
2
 |1-S22So|

2
                               (5.5) 

Finally, the input and output impedances are shown as: 

Zint=
1+Si

1-Si

                                                              (5.6) 

 

Zout=
1+So

1 -So

                                                              (5.7) 

The example is about getting an efficient network for transfer power by calculating 

equalized network. The efficiency is measured by getting the objective Transducer power 

gain TPG(w)=0.98 in this example. 

 

The circuit has a serial inductor (LL=2) to a parallel combination of resistance (R=1) and 

capacitor (CL=1) at load. The normalized load and generator impedance values are shown 

in Table 5.1. 
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Table 5.1 Given Normalized Load and Generator Impedance Data 

 

   w      RL XL Rin Xin 

0.0  1.0000 0.0000 1.0000 0.0000 

0.1 0.9901 0.1010 1.0000 0.1000 

0.2 0.9615 0.2077 1.0000 0.2000 

0.3 0.9174 0.3248 1.0000 0.3000 

0.4 0.8621 0.4552 1.0000 0.4000 

0.5 0.8000 0.6000 1.0000 0.5000 

0.6 0.7353 0.7588 1.0000 0.6000 

0.7 0.6711 0.9302 1.0000 0.7000 

0.8 0.6098 1.1122 1.0000 0.8000 

0.9 0.5525 1.3028 1.0000 0.9000 

1.0 0.5000 1.5000 1.0000 1.0000 

 

The circuit has three capacitors and two unit elements. The capacitors are defined in last 

column of Mg and Mh matrices. The unit elements are defined in first row of Mg and Mh  

matrices. 

 

The last column and the first row coefficients of Mh matrix are h(p)=p3-p2+p+1 and h(λ)= 

-λ respectively. The coefficients of the h and g functions due to distributed and lumped 

elements are chosen in random 1 or -1. After the choose of the coefficients value, the G(p) 

is formed as: 

G(p)=g(p)g(-p)                                                      (5.8) 

The LPH roots of the G(p) is g(p) part. After the chose of the LPH roots, the initial 

parameters will be ready. With these parameters, the calculation of  the unknown 

parameters of f(p,λ) and g(p,λ) which are described in third section are calculated (Mg and 

Mh) due to the algorithm is developed in this thesis. After the scattering parameters, input 

reflection coefficient (Si) and output reflection coefficient (So) are calculated, the input 

and output impedances are calculated. Later, these parameters are used in equation (5.1) 

to calculate TPG. The result is named as actual transducer power gain and represented as 

T. In this example, the desired transducer power gain is represented as Td. This process 

is repeated until getting the targeted min error calculated in least square equation (4.9) or 

end of given optimization number (in these example 4000). In the end, the process is 

finished with reaching maximum optimization number (4000). The elapsed time is 155.4 

seconds. 
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Mh= [

0
-1.4657

0

0

0.8982
-0.0880

-3.0708
0

-0.0991

-0.1066
-0.0164
-1.0855

]                                        (5.9) 

 

 Mg= [

1
1.4657

0

0

2.1947
4.5333

3.0708
0

1.0049

2.0281
2.0425
1.0855

]                                      (5.10) 

After getting Mg and Mh, the value of capacitors are calculated according to section 

(3.2.2). These parallel capacitor normalized values are C1=1.0715, C2=0.80556, C3 

=1.0543. The values of the unit elements are calculated with synthesis approach proposed 

in section (3.2.1). These values are Z1=1.47, Z2=1.6229, τ=1.8059. 

 

The transducer power gain curve of the designed mixed element broadband matching 

network is given in Figure 5.2. 

 

 

 

 
 

Figure 5.1 Designed broadband matching network 
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Figure 5.2 Performance of the designed mixed element matching network 

5.2 Capacitance Value Calculations  

It is about the calculation of values of capacitors in a network as seen in Figure 3.4. The 

identification of Mg and Mh   are represented in equations (3.54) and (3.53), respectively. 

These value are needed to be calculated the values as explained in section (3.2.2). 

 

The initial parameters are the first raw and the last column of Mg and Mh, respectively. 

The first row is represented the distributed components with two elements. The last 

column is the lumped components with two elements for this example. The equations in 

section (3.1.4) are used to calculate g11, g10, g21 and h11, h10, h21 coefficients. The f 

polynomial is calculated  according to f(p,λ)=pk1(1-λ2)Nλ/2  and for this example 

f(p,λ)=p0(1-λ2)1. The calculated coefficients are shown as (Şengül and Çakmak, 2018):  

Mg= [
1 110/21 29/21

11/2 55 63/2

0 63 189

]     Mh= [
0 100/21 20/21

-11/2 -41 21/2

0 -63 -189

]                   

In these network, there are also two transmission lines to separate two capacitors. 

 

From equation (3.118), the total value of two capacitors is calculated. 

Ct=
g

10
+mh10

g
10

-mh10

=
11 2⁄ +(-1)( -11 2)⁄

1-(-1)0
=11                                  (5.11) 

Where m= 
g10

h10
= -1. 
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After this process, the following parameters can be formed via equation (3.117). 

hi(p)= -
11

2
p,   g

i
(p)=

11

2
p+1,  fi(p)=1                                    (5.12) 

With using the last column instead of first one, the capacitor can be calculated via 

equation (3.119). 

C1=
g

22
+mh22

g
12

-mh12

=
189+(-1)(-189)

63/2-(-1)( 21 2⁄ )
=9   m=

g
22

h22

= -1                   (5.13) 

With using equation (3.117) and the value C1, parameters of T(p) can be written as: 

h(p)= -
9

2
p,  g(p)=

9

2
p+1, f(p)=1                                                 (5.14) 

Next step is the formation of remaining scattering transfer matrix via equation (3.116). 

TR(p,λ)=T-1(p)T(p,λ)                                                      (5.15) 

                                                

TR(p,λ)= [
(-9p 2⁄ )+1 -9p/2

9p 2⁄
9p

2
+1

]

-1

×T(p,λ)                                (5.16) 

The value of  MRg and Mhr are parameters of TR(p,λ) calculation according to the equation 

(5.14) with f(p,λ)=f(p)f(λ)=1(1-λ2). The results are: 

MRg= [
1 110/21 29/21

1 10 21
]  MRh= [

0 100/21 20/21

-1 4 21
]                            

With using first column of these matrices, the last capacitor value can be calculated 

because the lumped section is not a degenerate network anymore. 

C2=
g

10
+mh10

g
00

-mh00

=
1+(-1)(-1)

1-(1)0
=2, m= g

10
h10=-1⁄                                (5.17) 

The characteristic impedance value of transmission lines are Z1=7 and Z2=3 via (Şengül, 

2008). The details are as: 

g(λ)=1+
110

21
λ+

29

21
λ

2
   and h(λ)=0+

100

21
λ+

20

21
λ

2                          (5.18) 
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For λ=1, the first impedance in network is calculated as: 

Z1=
g(1)+h(1)

g(1)-h(1)
=

280
21⁄

40
21⁄

=7                                                     (5.19) 

The calculation of the second impedance is according to equations (3.107-114). 

x1=h0g(1)-g
0
h(1)= 0×7.61-1×5.71= -5.71                              (5.20) 

 

  x2=h1g(1)-g
1
h(1)= 4.76×7.61-5.23×5.71=6.36                      (5.21) 

 

x3=ℎ2g(1) -g
2
h(1)= 0.95×7.61-1.38×5.71= -0.65                   (5.22) 

 

y1=g
0
g(1)-h0h(1)=1×7.61-0×5.71=7.61                                  (5.23) 

 

y2=g
1
g(1)-h1h(1)=5.23×7.61-4.76×5.71=12.62                      (5.24) 

 

y3=g
2
g(1)-h2h(1)=1.38×7.61-0.95×5.71=5.07                       (5.25) 

 

N1= x1= -5.71                                                             (5.26) 

 

N2= x1+x2= 0.65                                                        (5.27) 

 

N3= x1+x2+x3= 0                                                       (5.28) 

 

D1= y
1
= 7.61                                                            (5.29) 
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D2= y
2
-y

1
= 5.01                                                        (5.30) 

 

D3= y
3
-y

2
+y

1
= 0.06                                                  (5.31) 

 

g2(λ)=D1+D2λ + D3λ
2
 =12.68                                         (5.32) 

 

h
2
(λ)=N1+N2λ + N3λ

2
 = -5.06                                         (5.33) 

 

Z2=Z1

g(2)(1)+h
(2)

(1)

g(2)(1)-h
(2)

(1)
=7

7.62

17.74
=3                                   (5.34) 

All of the impedance values are calculated. 

                                                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



56 

 

 

 

 

6. CONCLUSION 

In this thesis, the analysis of the mixed element structure formed with shunt capacitors 

separated by equal length transmission lines has been performed first time in the 

literature. The description of the structure by means of two frequency variables (one for 

shunt capacitors and one for transmission lines) has been given. Then broadband 

matching networks for many applications have been designed by using this practically 

important mixed structure via the algorithm that has been developed. In the algorithm, 

the explicit coefficient relations of the descriptive two-variable polynomials in terms of 

the coefficients of the single variable boundary polynomials have been derived for various 

numbers of elements. These coefficient relations have been obtained first time in the 

literature. Since the lumped section is a degenerate network, it is impossible to use the 

two-variable polynomials to calculate the capacitor values. So a synthesis algorithm for 

the structure has been developed to be able to calculate the capacitor values from the two 

variable polynomials. 

 

If it is preferred not to have shunt capacitors, they can be replaced with open-ended stubs 

via Richard’s transformation and the resultant circuit will be extremely suitable for 

microstrip fabrication. 
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APPENDIX B 

B.1 Matlab Codes Main Program 

clc 

tic 

clear 

syms L fr 

global m2 dist lump w mu SG SL T0 ZG ZL f_poly f_p nC nUE 

  

%*****source and load impedance, souce and load relection coefficient 

calculation***** 

w=0:0.1:1; 

z=(i.*fr.*2)+1/(1+i*fr*1); 

ZL=subs(z,fr,w); 

r11=1; 

r33=i.*fr.*1; 

z11=r11+r33; 

z11=simplify(z11); 

ZG=subs(z11,fr,w); 

% ZG=ones(1,length(w)); 

SG=(ZG-1)./(ZG+1); 

SL=(ZL-1)./(ZL+1); 

%***************************************************************** 

  

%*****Initial values********************************************** 

nC=input('Enter number of Cs:'); % örnek için 3 

nUE=input('Enter number of UEs:'); %örnek için 2 

if nUE>1 

    hj0=[-1 1 -1 1]; %lumped, son kolon elemanlarý 

    h0i=[-1]; %dist, ilk satýr elemanlarý (en düþük ve en yüksek 

dereceli girilmiyor) 

else 

    hj0=[1 1 -1]; %lumped, son kolon elemanlarý 

end 

T0=0.98; %gain 

thau=0.6; %delay 

%***************************************************************** 
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%*****Optimisation vector construction**************************** 

dist=nUE; 

lump=nC; 

dimension=dist+lump; 

  

if dist==lump 

    m2=input('Enter m2 value (+1/-1):'); %örnek için +1 gir 

end 

  

for a=1:lump+1; 

   v(a)=hj0(a); 

end 

if nUE>1 

    for a=1:dist-1; 

        v(lump+1+a)=h0i(a); 

    end 

    v(dimension+2)=thau; 

else 

    v(dimension+1)=thau; 

end 

%***************************************************************** 

f_p=(1-L^2)^(dist/2); 

mu=1; 

%*****optimisation part******************************************* 

const=length(v); 

LB=[ones(1,const-1).*(-Inf) 0]; 

UB=ones(1,const).*Inf; 

  

OPTIONS=optimset('MaxFunEvals',1000,'MaxIter',4000); 

v_new = lsqnonlin('error_find',v,[],[],OPTIONS); 

%***************************************************************** 

  

%*****Gettin h0i, hj0 and thau after optimisation***************** 

for a=1:lump+1; 

   hj0(a)=v_new(a); 

end 

if nUE>1 
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    h0i(1)=hj0(length(hj0)); 

    for a=1:dist; 

        h0i(a+1)=v_new(lump+1+a); 

    end 

    h0i(dist+1)=0; 

    thau=v_new(dist+lump+2); 

else 

    h0i(1)=hj0(length(hj0)); 

    h0i(dist+1)=0; 

    thau=v_new(dist+lump+1); 

end 

  

%***************************************************************** 

gj0=LLEL(hj0,[zeros(1,length(hj0)-1) 1]); %lumped 

g0i=LLELd(h0i,f_p); %dist 

  

%*****Calculation of optimised h and g matrices******************* 

if dist==1 & lump==1; 

    m1=-1; 

   [Ah,Ag]=hg11n(h0i,hj0,m1,f_p); 

elseif dist==1 & lump==2; 

    m1=-1; 

    m2=-1; 

   [Ah,Ag]=hg12n(h0i,hj0,m1,f_p); 

elseif dist==2 & lump==1; 

     m1=-1; 

    [Ah,Ag]=hg21n(h0i,hj0,m1,f_p); 

elseif dist==2 & lump==2; 

    m1=-1; 

   [Ah,Ag]=hg22n(h0i,hj0,m1,m2,f_p); 

elseif dist==2  & lump==3; 

    m1=-1; 

   [Ah,Ag]=hg23n(h0i,hj0,m1,f_p); 

end 

  

Ah 

Ag 

thau 

%***************************************************************** 
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%****Calculation of load and source impedances, source and load 

reflection coefficients over new frequency range***** 

w=0:0.1:2; 

ZL=subs(z,fr,w); 

ZG=subs(z11,fr,w); 

% ZG=ones(1,length(w)); 

SG=(ZG-1)./(ZG+1); 

SL=(ZL-1)./(ZL+1); 

  

%***************************************************************** 

  

%*****According to optimised h and g matrices, getting the values of 

h, hpara, g, gpara and f***** 

for a=1:length(w); 

   d=i*tan(w(a)*thau); 

   hv(a)=0; 

   for b=1:lump+1; 

      for c=1:dist+1; 

         hv(a)=hv(a)+Ah(b,c)*((i*w(a))^(b-1))*(d)^(c-1); 

      end 

   end 

end 

  

for a=1:length(w); 

   d=-i*tan(w(a)*thau); 

   hpv(a)=0; 

   for b=1:lump+1; 

      for c=1:dist+1; 

         hpv(a)=hpv(a)+Ah(b,c)*((-i*w(a))^(b-1))*(d)^(c-1); 

      end 

   end 

end 

  

for a=1:length(w); 

   d=i*tan(w(a)*thau); 

   gv(a)=0; 

   for b=1:lump+1; 
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      for c=1:dist+1; 

         gv(a)=gv(a)+Ag(b,c)*((i*w(a))^(b-1))*(d)^(c-1); 

      end 

   end 

end 

  

for a=1:length(w); 

   d=-i*tan(w(a)*thau); 

   gpv(a)=0; 

   for b=1:lump+1; 

      for c=1:dist+1; 

         gpv(a)=gpv(a)+Ag(b,c)*((-i*w(a))^(b-1))*(d)^(c-1); 

      end 

   end 

end 

  

%***************************************************************** 

fv=subs(f_p,L,i.*tan(w.*thau)); 

fpv=conj(fv); 

  

%*****Calculation of tpg over the frequency range***************** 

S22=-mu.*hpv./gv; 

S12=mu.*fpv./gv; 

S21=fv./gv; 

S11=hv./gv; 

  

SL=(ZL-1)./(ZL+1); 

S1=S11+(S12.*S21.*SL)./(1-S22.*SL); 

Z11=(1+S1)./(1-S1); 

r1=(Z11-conj(ZG))./(Z11+ZG); 

SG=(ZG-1)./(ZG+1); 

S2=S22+(S12.*S21.*SG)./(1-S11.*SG); 

Z22=(1+S2)./(1-S2); 

  

tpg=(4.*real(ZL).*real(Z22))./((real(ZL)+real(Z22)).^2+(imag(ZL)+imag(

Z22)).^2); 

%***************************************************************** 

  



66 

 

%*****Plotting the result***** 

hold on 

renk=(round(rand(3,1)))'; 

div=(round(rand(3,1)))'+1; 

color=[renk(1)/div(1) renk(2)/div(2) renk(3)/div(3)]; 

plot(w,T0,'r*',w,tpg,'color',color) 

axis([0 2 0 1]) 

%***************************************************************** 

toc 

% %************************************************************** 

B.2 Matlab Codes Error Calculation 

function eps=error(v,m2,dist,lump,w,mu,SG,SL,T0,ZG,ZL,f_poly,f_p) 

%*****error sub-program***** 

syms L fr 

  

global m2 dist lump w mu SG SL T0 ZG ZL f_poly f_p nC nUE 

  

%*****calculation of h0i, hj0 and thau from optimisation vector***** 

dimension=dist+lump; 

  

for a=1:lump+1; 

   hj0(a)=v(a); 

end 

if nUE>1 

    h0i(1)=hj0(length(hj0)); 

    for a=1:dist; 

        h0i(a+1)=v(lump+1+a); 

    end 

    h0i(dist+1)=0; 

    thau=v(dist+lump+2); 

else 

    h0i(1)=hj0(length(hj0)); 

    h0i(dist+1)=0; 

    thau=v(dist+lump+1); 

end 

%***************************************************************** 
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%*****Calculation of h and g matrices***************************** 

if dist==1 & lump==1; 

    m1=-1; 

   [Ah,Ag]=hg11n(h0i,hj0,m1,f_p); 

elseif dist==1 & lump==2; 

    m1=-1; 

    m2=-1; 

   [Ah,Ag]=hg12n(h0i,hj0,m1,f_p); 

elseif dist==2 & lump==1; 

    m1=-1; 

   [Ah,Ag]=hg21n(h0i,hj0,m1,f_p); 

elseif dist==2 & lump==2; 

    m1=-1; 

   [Ah,Ag]=hg22n(h0i,hj0,m1,m2,f_p); 

elseif dist==2  & lump==3; 

    m1=-1; 

   [Ah,Ag]=hg23n(h0i,hj0,m1,f_p); 

end 

%***************************************************************** 

  

%*****calculation of h, hpara, g, gpara and f values************** 

for a=1:length(w); 

   d=i*tan(w(a)*thau); 

   hv(a)=0; 

   for b=1:lump+1; 

      for c=1:dist+1; 

         hv(a)=hv(a)+Ah(b,c)*((i*w(a))^(b-1))*(d)^(c-1); 

      end 

   end 

end 

  

for a=1:length(w); 

   d=-i*tan(w(a)*thau); 

   hpv(a)=0; 

   for b=1:lump+1; 

      for c=1:dist+1; 

         hpv(a)=hpv(a)+Ah(b,c)*((-i*w(a))^(b-1))*(d)^(c-1); 

      end 
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   end 

end 

  

for a=1:length(w); 

   d=i*tan(w(a)*thau); 

   gv(a)=0; 

   for b=1:lump+1; 

      for c=1:dist+1; 

         gv(a)=gv(a)+Ag(b,c)*((i*w(a))^(b-1))*(d)^(c-1); 

      end 

   end 

end 

  

for a=1:length(w); 

   d=-i*tan(w(a)*thau); 

   gpv(a)=0; 

   for b=1:lump+1; 

      for c=1:dist+1; 

         gpv(a)=gpv(a)+Ag(b,c)*((-i*w(a))^(b-1))*(d)^(c-1); 

      end 

   end 

end 

  

fv=subs(f_p,L,i.*tan(w.*thau)); 

fpv=conj(fv); 

%***************************************************************** 

  

%*****calculation of tpg****************************************** 

S22=-mu.*hpv./gv; 

S12=mu.*fpv./gv; 

S21=fv./gv; 

S11=hv./gv; 

  

SL=(ZL-1)./(ZL+1); 

S1=S11+(S12.*S21.*SL)./(1-S22.*SL); 

Z11=(1+S1)./(1-S1); 

r1=(Z11-conj(ZG))./(Z11+ZG); 

SG=(ZG-1)./(ZG+1); 
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S2=S22+(S12.*S21.*SG)./(1-S11.*SG); 

Z22=(1+S2)./(1-S2); 

  

tpg=(4.*real(ZL).*real(Z22))./((real(ZL)+real(Z22)).^2+(imag(ZL)+imag(

Z22)).^2); 

%***************************************************************** 

  

eps=double(sum(((tpg-T0)./tpg).^2)) 

%***************************************************************** 

return 

B.3 Matlab Codes Last Column of g Matrix 

function gj0=gj0find(hj0); 

H_S=hj0; 

boy=length(H_S); 

Fara=zeros(1,(boy-1)); 

Fara(1,boy)=1; 

F_S=Fara; 

HS=paraconjugate(H_S); 

FS=paraconjugate(F_S); 

% Constructing the even polynomial  

G = conv(H_S , HS); 

F = conv(F_S,FS); 

  

G_S = G + F; 

     RO = roots(G_S); 

   s = length(RO); 

   for h = 1 : s 

      if real (RO(h)) < 0 

         rootlhp(h)= RO(h); 

      else 

         rootlhp(h)= 0; 

   end 

end 

[k , l , m ] = find(rootlhp); 

g_s = poly (m); 

g0iara=g_s; 
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b=length(g_s); 

for a=1:b; 

   g_s(a)=g_s(a)/g0iara(b); 

end 

gj0=g_s; 

B.4 Matlab Codes First Row of g Matrix 

%********************************************************* 

%  function for calculating the Hurwitz polynomial       * 

%                        g_Lambda                        * 

%                                                        * 

%    the arguments are passed from the main code         *   

%                                                        * 

%                                                        *       

%********************************************************* 

function g0i=g0ifind(h0i) 

%h0i=[-0.824 -4.325 0]; 

h_Lambda=h0i; 

n_Lambda=length(h0i)-1; 

F_temp=[-1 0 1]; 

F_Lambda=[-1 0 1]; 

for i=1:(n_Lambda - 1) 

    F_Lambda = conv(F_Lambda,F_temp); 

end 

HP_Lambda = paraconjugate(h_Lambda); 

% Constructing the even polynomial 

G = conv(h_Lambda , HP_Lambda); 

GP_Lambda = G + F_Lambda; 

RO = roots(GP_Lambda); 

s = length(RO); 

for h = 1 : s 

    if real (RO(h)) < 0 

        rootlhp(h)= RO(h); 

    else 

        rootlhp(h)= 0; 

    end 

end 

[k , l , m ] = find(rootlhp); 
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g_Lambda = poly (m); 

g_Lambda = g_Lambda./g_Lambda(length(g_Lambda)); 

g0i=g_Lambda; 

B.5 Matlab Codes Paraconjugate Calculations 

%********************************************************* 

%function for calculating paraconjugate polynomial          * 

% 

%the arguments are passed from the main code                    *    

%                                                              * 

%this function finds the paraconjugate of PS polynomial  *       

%********************************************************* 

  

function P_S=paraconjugate (PS) 

c = length (PS)-1; 

for k = 0:c 

   if rem(k , 2)== 0 

      P_S(c-k+1) = (+1)*PS(c-k+1); 

   else 

      P_S(c-k+1) = (-1)*PS(c-k+1); 

   end 

end 

return 

B.6 Matlab Codes One Capacitor and One UE 

function [Ah,Ag]=hg11n(h0i,hj0,m1,f_p); 

%*****hg11 sub-program***** 

  

%*****calculation of h and g matrices of the networks contains one 

distributed and lumped elements***** 

gj0=LLEL(hj0,[zeros(1,length(hj0)-1) 1]); %lumped 

g0i=LLELd(h0i,f_p); %dist 

  

h00=h0i(2); 

h01=h0i(1); 

g00=g0i(2); 
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g01=g0i(1); 

h11=hj0(1); 

g11=gj0(1); 

  

alfa=g01-m1*h01; 

g10=g11/alfa; 

h10=m1*g10; 

  

Ah=[h00 h01;h10 h11]; 

Ag=[g00 g01;g10 g11]; 

%***************************************************************** 

  

return 

B.7 Matlab Codes Two Capacitors and One UE 

function [Ah,Ag]=hg12n(h0i,hj0,m1,f_p) 

%*****hg12 sub-program***** 

  

%*****calculation of h and g matrices of the networks contains one 

distributed and two lumped elements***** 

gj0=LLEL(hj0,[zeros(1,length(hj0)-1) 1]); %lumped 

g0i=LLELd(h0i,f_p); %dist 

  

h00=h0i(2); 

h01=h0i(1); 

h11=hj0(2); 

h21=hj0(1); 

g00=g0i(2); 

g01=g0i(1); 

g11=gj0(2); 

g21=gj0(1); 

alfa=g01-m1*h01; 

g10=g11/alfa; 

h10=m1*g10; 

h20=0; 

g20=0; 
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Ah=[h00 h01;h10 h11;h20 h21]; 

Ag=[g00 g01;g10 g11;g20 g21]; 

%***************************************************************** 

 Return 

B.8 Matlab Codes One Capacitor and Two UEs 

function [Ah,Ag]=hg21n(h0i,hj0,m1,f_p) 

%*****hg21 sub-program***** 

  

%*****calculation of h and g matrices of the networks contains two 

distributed and one lumped elements***** 

gj0=LLEL(hj0,[zeros(1,length(hj0)-1) 1]); %lumped 

g0i=LLELd(h0i,f_p); %dist 

  

h00=h0i(3); 

h01=h0i(2); 

h02=h0i(1); 

h12=hj0(1); 

g00=g0i(3); 

g01=g0i(2); 

g02=g0i(1); 

g12=gj0(1); 

alfa=g01-m1*h01; 

beta=g12-m1*h12; 

g11=g02*(g01*g12-h01*h12)-h02^2*(beta/alfa); 

g10=g11/alfa; 

h11=(g11*g02-g01*g12+h01*h12)/(h02); 

h10=m1*g10; 

  

Ah=[h00 h01 h02;h10 h11 h12]; 

Ag=[g00 g01 g02;g10 g11 g12]; 

%***************************************************************** 

  

return 
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B.9 Matlab Codes Two Capacitors and Two UEs 

function [Ah,Ag]=hg22n(h0i,hj0,m1,m2,f_p) 

%*****hg22 sub-program***** 

  

%*****calculation of h and g matrices of the networks contains two 

distributed and two lumped elements***** 

gj0=LLEL(hj0,[zeros(1,length(hj0)-1) 1]); %lumped 

g0i=LLELd(h0i,f_p); %dist 

  

h00=h0i(3); 

h01=h0i(2); 

h02=h0i(1); 

h12=hj0(2); 

h22=hj0(1); 

g00=g0i(3); 

g01=g0i(2); 

g02=g0i(1); 

g12=gj0(2); 

g22=gj0(1); 

alfa=g01-m1*h01; 

beta=g12-m1*h12; 

g11=g02*(g01*g12-h01*h12)-

h02^2*(beta/alfa)+h02^2*((alfa*((g02*h22/h02)-g22))/beta); 

g10=g11/alfa; 

h11=(g11*g02-g01*g12+h01*h12)/(h02); 

g21=(g11*g22-h11*h22)/beta; 

h10=m1*g10; 

h22=m2*g22; 

h21=m1*g21; 

h20=0; 

g20=0; 

  

Ah=[h00 h01 h02;h10 h11 h12;h20 h21 h22]; 

Ag=[g00 g01 g02;g10 g11 g12;g20 g21 g22]; 

return 
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B.10 Matlab Codes Three Capacitors and Two UEs 

function [Ah,Ag]=hg23n(h0i,hj0,m1,f_p) 

%*****hg23 sub-program***** 

  

%*****calculation of h and g matrices of the networks contains two 

distributed and three lumped elements***** 

gj0=LLEL(hj0,[zeros(1,length(hj0)-1) 1]); %lumped 

g0i=LLELd(h0i,f_p); %dist 

  

h00=h0i(3); 

h01=h0i(2); 

h02=h0i(1); 

h12=hj0(3); 

h22=hj0(2); 

h32=hj0(1); 

g00=g0i(3); 

g01=g0i(2); 

g02=g0i(1); 

g12=gj0(3); 

g22=gj0(2); 

g32=gj0(1); 

  

alfa=g01-m1*h01; 

beta=g12-m1*h12; 

g11=g02*(g01*g12-h01*h12)-

h02^2*(beta/alfa)+h02^2*((alfa*((g02*h22/h02)-g22))/beta); 

g10=g11/alfa; 

h11=(g11*g02-g01*g12+h01*h12)/(h02); 

g21=(g11*g22-h11*h22-g01*g32+h01*h32)/beta; 

h10=m1*g10; 

h21=m1*g21; 

h20=0; 

g20=0; 

h30=0; 

g30=0; 

h31=0; 

g31=0; 
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Ah=[h00 h01 h02;h10 h11 h12;h20 h21 h22;h30 h31 h32]; 

Ag=[g00 g01 g02;g10 g11 g12;g20 g21 g22;g30 g31 g32]; 

%***************************************************************** 

  

return 

    

 

 


