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DETECTION OF FRAUDULENT ACTIVITIES IN MOBILE DISPLAY 

ADVERTISING 

 

 

ABSTRACT 

Most of the marketing expenditures in mobile advertising are conducted through real-

time bidding (RTB) marketplaces, in which ad spaces of the sellers (publishers) are 

auctioned for the impression of the buyers’ (advertisers) mobile apps. One of the most 

popular cost models in RTB marketplaces is cost per install (CPI). In a CPI campaign, 

publishers place mobile ads of the highest bidders in their mobile apps and are paid by 

advertisers only if the advertised app is installed by a user. CPI cost model causes some 

publishers to conduct some infamous fraudulent activities, known as click spamming and 

click injection. A click spamming publisher executes clicks for lots of users who haven’t 

made them. If one of these users hears about the advertised app organically (say, via TV 

commercial) and installs it, this installation will be attributed to the click spamming 

publisher. In click injection, the fraudulent publisher’s spy app monitors the user’s 

activities in the app market to detect when a mobile app is downloaded on her device, 

and triggers a click attributed to the fraudster right before the installation completes. In 

this study, we propose a novel multiple testing procedure which can identify click 

spamming and click injection activities using the data of click-to-install time (CTIT), the 

time difference between the click of a mobile app’s ad and the first launch of the app after 

the installation. In a sample set of publishers, we show that our procedure has a false-

positive error rate of at most 5%. Finally, we run an experiment with 15263 publishers. 

According to the results of the experiment, a total of 1474 fraudulent publishers are 

successfully detected. 

 

 

Keywords: Mobile Advertising, Fraud Detection, Click Spamming, Click Injection, 

Multiple Testing 
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MOBİL GÖRÜNTÜLEME REKLAMCILIĞINDA YAPILAN SAHTEKARLIK 

AKTİVİTELERİNİN BELİRLENMESİ 

 

 

ÖZET 

Mobil reklamcılıkta pazarlama harcamalarının çoğu gerçek zamanlı ihaleler aracılığı ile 

gerçekleştirilmektedir. Gerçek zamanlı ihalelerde, satıcıların (reklam yayınlayıcılarının) 

reklam alanları, alıcıların (reklam verenlerin) mobil uygulamalarına ait reklamlarının 

kullanıcı tarafından görüntülenebilmesi için ihaleye çıkartılır. Gerçek zamanlı ihalelerde 

en çok kullanılan fiyatlandırma modeli indirme başına fiyatlandırmadır. Bu modelde en 

yüksek fiyatı veren reklam verenin uygulaması yayınlayıcının uygulamasında gösterilir. 

Yayınlayıcıya ödeme bir kullanıcının bu yayınlanan reklamı tıklayarak indirmesi şartıyla 

yapılır. Bu model bazı yayınlayıcıların tıklama bombardımanı (click spamming) ve 

tıklama enjeksiyonu (click injection) olarak bilinen sahtekâr aktivitelerde bulunmasına 

neden olur. Tıklama bombardımanında yayınlayıcı gerçekte kullanıcı tarafından 

yapılmamış birçok tıklama üretir. Bu durumdan habersiz olan kullanıcı, reklamı yapılan 

uygulamayı farklı bir reklam kanalı (televizyon reklamı gibi) aracılığı ile öğrenip 

indirirse tıklama bombardımanını yapan yayınlayıcı bu indirmeden haksız yollarla para 

kazanmış olur. Tıklama enjeksiyonunda ise sahtekâr bir uygulamayı indirmek üzere olan 

bir kullanıcıyı takip edip, indirmeyi tamamlamadan hemen önce o kullanıcı üzerinden 

reklama tıklama gönderebilir. Dolayısıyla da bu indirme işlemi üzerinden haksız kazanç 

elde etmiş olur. Bu çalışmada çoklu test etme yöntemini kullanarak bu sahtekârlıkların 

belirlenebileceği bir yöntem önerdik. Bu yöntemde indirme ve ilk kez uygulamanın 

açılması arasında geçen zaman üzerinden istatistiksel karar verme yöntemleri 

kullanılarak sahtekârlar tespit edilmeye çalışıldı. Kullanılan yöntemde yanlış pozitif hata 

oranının en kötü ihtimalle %5 olması sağlandı. Önerilen yöntem 15263 yayınlayıcının 

üzerinde test edildi ve 1474 tanesinin sahtekârlık yaptığı tespit edildi. 

 

Anahtar Sözcükler: Mobil Reklamcılık, Sahtekârlık Tespiti, Tıklama Bombardımanı, 

Tıklama Enjeksiyonu, Çoklu Test Etme 
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1. INTRODUCTION 
 

The time spent on mobile devices increased drastically in recent years and a significant 

portion of this time is spent in mobile applications. The widespread usage of both 

smartphones and mobile applications (apps) has led to the rapid growth of mobile 

advertising. Mobile display advertisements are displayed as banner images that are shown 

on mobile devices. They can appear in either web browsers or applications. If a mobile 

ad is designed for only mobile applications, it is called in-app advertising.  Most of the 

marketing expenditures in mobile advertising are conducted through real-time bidding 

(RTB) marketplaces, in which the main objective of the buyers (advertisers) is to acquire 

the most app installation from the audience at the lowest cost and the main goal of the 

sellers (publishers) is to sell their ad spaces at the highest price. An advertiser decides the 

bid in the RTB marketplace and the attributes of the targeted users (such as the 

geolocation and demographics of the target users). Besides, ad agencies can be utilized 

for dissemination of these ads. An ad agency is a company that runs an ad campaign of a 

specific product with a predefined budget and campaign duration on behalf of clients. A 

publisher, which is usually the owner of a mobile app, on the other hand, sells the ad 

space of the app to advertiser at the winning price of an RTB auction. RTB marketplaces 

finalize an auction in milliseconds according to the bids of the advertisers. Thus, RTB 

allows advertisers and publishers to buy and sell ad space through real-time auction.  

 

There are two main platforms in which RTB marketplaces are operated: ad exchanges 

and ad networks. An ad network, the RTB platform we focus on in this study, allows 

advertisers to publish their mobile advertising campaigns with a predetermined budget, 

campaign duration and a desired bid rate. Meanwhile, ad networks collect inventory of 

ad space from a range of publishers and sell it to advertisers with the highest bid offers in 

its RTB marketplace. Also, it allows advertisers to target desired customers. Ad networks 

usually offer different pricing models to the advertisers, such as cost per action, cost per 

install, cost per click, or cost per impression. In cost per impression model, advertiser is 
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charged when the advertisement appears on the screen. In cost per click model, bid price 

is paid, if the user just clicks advertising that is shown in an application by user. In cost 

per action model, a predetermined action by used will be required to charge the advertiser. 

In the cost per install model (CPI), the bid price is paid after installing the application that 

is shown as a display ad. The most popular pricing model among advertisers is CPI 

(Nieborg, 2016). 

 

Even though mobile advertising is a billion-dollar industry, millions of dollars are lost 

because it is subjected to fraudulent activities. Mobile ad fraud is an attempt by fraudulent 

publishers to defraud advertisers for gaining undeserved profit. It is a popular subject in 

mobile marketing industry. In this study, we use statistical analysis to detect mobile 

frauds to prevent financial losses in mobile display advertising campaigns that prefer CPI 

pricing models.     

 

1.1 Working Mechanism of Mobile Advertising 

 

RTB landscape can be separated into two sides naturally; publisher side (supply side) and 

advertiser side (demand side).  Demand side platform (DSP) is a software that is utilized 

to buy advertising in an automatic fashion by advertisers and ad agencies. In the advertiser 

side, DSP is requested by advertiser to run and manage an ad campaign. In the publisher 

side, process is started with a user interaction on publisher application. User preferences, 

context, location, and the mobile device information are sent by the mobile app to supply 

side platform (SSP) which is a software to sell mobile ads in an automatic fashion on 

behalf of publishers. Firstly, previous contracts are checked to send a request to an 

available contract of an advertiser. If there is not a contract or the advertisers who have 

contract are not interested in the impression, ad request is sent to ad exchange or ad 

network for RTB. Then, bid request is generated by RTB exchange or SSP for incoming 

ad requests and is sent to all subscribed DSPs. A bid request includes a couple of 

information such as a unique id of the request which is provided by RTB, the time of bid 

initiated, the current geographic location of the device, etc. The bid price is decided by 

DSP according to the ad campaign of the ad agency. The bid prices and bid responses are 

sent by all DSPs. A bid response contains information about id, price, currency, etc. After 
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the auction ends, RTB decides the winner of the auction based on bid prices. The winning 

note is sent to the winning DSP with the winning price which is the second highest offer 

(second price auction). The ad is requested from ad agency and sent to RTB. Finally, ad 

is forwarded to the publisher and user can see the ad on mobile application. The 

interactions among the involved parties can also be seen in Figure 1.1.  

 

  
Figure 1.1. Working mechanism of mobile advertising 

 

After that point, if the user clicks the ad and installs the advertised application, the 

advertiser has to pay the bid price according to the cost per install pricing model. In a CPI 

campaign, publishers place mobile ads of the highest bidders in their mobile apps in an 

effort to attract installation of the advertised application. The advertiser is charged the 

winning bid rate only when the advertiser’s application is installed by the user.      

 

After installation is verified by both the ad network and the advertiser, the ad network 

receives a portion of the CPI price for finding the publisher that grants the installation, 

and the publisher receives the rest. Verification of an installation takes place with the help 

of a system known as mobile ad attribution. Attribution is used to track the details of each 

mobile ad transaction such as the time stamp of the ad click and the ad installation. 

Attribution is also used to keep track of the publisher whom a succeeding installation 

should be attributed to. Each click by a user is associated with the publisher’s app in 

which the click occurs. If there exist multiple clicks by a user before the installation of 

the advertised app, the latest attributed publisher will be paid by the advertiser due to the 

regulations of CPI pricing model. 
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1.2 Problem Definition  

 

All these transaction and tracking activities are accomplished almost instantaneously in 

RTB marketplaces and they generate billions of dollars of revenue annually for mobile 

advertising industry. On the other hand, millions of dollars are lost because of the 

fraudulent activities of publishers receiving undeserved gain (Shields, 2016). Three main 

types of fraud in mobile advertising are (i) fake installations with bots and emulators, (ii) 

click injection, and (iii) click spamming. In the first type, using bots, fraudster tries to 

make fake installations more and more similar to genuine installations. In the second 

fraud type, fraudster’s spy app detects when other apps are downloaded on a device and 

trigger clicks right before the installation completes, which inequitably attributes the 

installation to the fraudster’s app. In the last type of fraud, fraudster executes clicks for 

lots of users who haven’t made them. If a user installs the advertised app organically after 

hearing about the app in another advertising channel (for instance, a TV commercial), 

this installation will still be attributed to the fraudulent publisher according to the working 

mechanism of attribution system. Click spamming is the most common fraud type in app 

marketing and its most apparent harm is lost campaign budget of advertisers, by paying 

to the click spammer publishers for users who have never generated impressions in the 

publisher’s app (Monasterio, 2017). Since click spamming captures organic traffic and 

then claims the credit for these users, it is also known as organic pouching.  

 

Conversion Rate (CR) is a standard metric in app marketing that is calculated by dividing 

the total number of installations by the total number of clicks. A common characteristic 

of click spamming publishers is that their conversion rate is much lower than usual since 

spamming generates lots of false clicks which never end up with an installation. Although 

low CR is a good indicator for click spamming, a meaningful conversion rate emerges 

only after a significant campaign duration is completed and hundreds of thousands of 

clicks are attributed to the publisher. The lack of an early warning mechanism for click 

spamming causes the loss of considerable amount of campaign budgets for advertisers.  
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Another well-known way of identifying click spamming is to analyze the distribution of 

click-to-install times (CTIT) (Monasterio, 2017). Click-to-install time refers to the time 

difference between the click of a mobile app’s ad by a user and the first launch of the app 

on the mobile device of the same user after the installation. It is easy to note that the 

spamming publisher can trigger false clicks but cannot trigger an installation. This makes 

click and installation events independent from each other and causes the click-to-install 

times of installations coming from a click spamming publisher to be distributed uniformly 

over time. Because click injection is more a sophisticated version of click spamming, 

CTIT can also be a good indicator for injection. In click injection, the fraudster can 

monitor a user by the help of a spy app and capture the moment when the user starts to 

install application. Therefore, the fraudster can trigger a click just seconds before the 

installation is completed. This action causes the distribution of CTIT values to take a 

uniform shape like in the case of click spamming. Even though CTIT is known to be 

utilized intuitively by many advertisers for filtering out spamming and/or injecting 

publishers, to best of our knowledge, a prescribed set of rules for fraud detection with 

CTIT has not been defined in the literature so far. In this study, we aim to derive a 

statistical method for the detection of click spamming and/or injecting publishers in real 

time by analyzing their CTIT data building up over time.  

 

The rest of the paper is organized as follows: In Section 2, we provide a brief literature 

review on the fraud detection methods in web and mobile advertising and the statistical 

methods related to our analysis. In Section 3, the method of multiple testing is explained. 

In Section 4, we discuss the details of how our customized multiple testing approach can 

be used for the detection of click spamming and/or click injection activities. In Section 5, 

we present the data set and the experimental results. In section 6, we conclude by 

summarizing our findings and discussing future research opportunities.  
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2. PREVIOUS WORK 

 

Fraudulent activities in digital advertisement is a research topic that has been widely 

investigated in the marketing and computer science literature. Soubusta (2008) provides 

information of analysis on click spamming in online advertising. He explained what  click 

fraud is and how it works. Also, several solutions are offered for click spamming in online 

advertising. For example, according to Soubusta (2008), price models such as pay per 

action or pay per percentages of impressions can decrease the loss based on click 

spamming. Also, this study provides clear understanding on the effects of click spamming 

on the web. Classification based approach was developed by Daswani et al. (2008) to 

explain online advertising and online frauds similarly Soubusta. They classify not only 

the revenue types but type of spam activities in online advertising. They explain 

syndication and referral deals, besides the well-known revenue models (cost per mille, 

cost per impression, and cost per action) for online advertising activities. According to 

Daswani et al. (2008) there are three main type of spams which are impression spam, 

click spam, and conversion spam. Furter, attack types, some countermeasures, and 

economics of click fraud are discussed in the same study.   

 

There are different types of fraud. For example, impression fraud is basically caused by 

pay per view pricing model on the web. Springborn and Barford (2013) describe the 

characteristic of pay per view ecosystem and developed a method to distinguish 

fraudulent impressions from non-fraud ones. For developing this method, they made 

analysis of purchased traffic on websites and collected data from these websites. One of 

the most prevalent fraud type, which both web and mobile platforms suffer from, is click 

spamming. A lot of studies are conduced to understand the clicking behaviors. Hill et al. 

(2014) develops tools and techniques to detect invalid clicks in websites. They provide a 

system to obtain historical click quality characterization based on web analytic data. In 

this way, the system identifies click abnormities. Also, Perera et al. (2013) argues that 
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click patterns can be utilized to identify fraudulent activities. They provided an approach 

to detect fraud by using a set of features which are derived from existing attributes and 

used learning algorithms to understand differences of click patterns between fraud and 

legit publishers. The mobile advertising data are complex and include heterogeneous 

information, and complicated patterns with missing values. Therefore, Fraud Detection 

in Mobile Advertising (FDMA) 2012 Competition was organized. 127 teams joined the 

competition from more than 15 countries. Oentaryo et al. (2014) provided information 

about competition that include data set, task objectives and evaluation of results of 

competitors ranked in the first three places. According to competition results, data mining 

based fraud detection can be usable in practice. Immorlica et al. (2005) used machine 

learning techniques that are based on click through rates to detect click fraud in pay-per-

click pricing model. Fraudsters usually conduct click spamming on the web by 

disseminating malicious software (malware) that are capable of generating fake click on 

behalf of the infected users. Blizard and Livic (2012) outlined an example analysis of a 

click-spamming malware and showed that the malware can cause a loss on the order of 

hundreds of thousands of dollars for a 3-week period. Jain and Talwar (2007) argued that 

dual pricing can reduce the effects of fraudulent activities in real time auctions. Iqbal et 

al. (2018) presented a method for fighting click‐fraud by detecting botnets with automated 

clickers from the user side. They also evaluated the performance of their proposed method 

by integrating it into desktop operating systems. Zingirian and Benini (2018) showed a 

vulnerability of the pay-per-click model in web advertising and proposed a statistical 

tradeoff-based approach to manage this vulnerability. There are a lot of patents to find 

and/or identify click fraud on the web. One of them is provided by Kitts et al. (2008). 

They developed methods and systems to detect automated click fraud programs. When a 

request is received for a web page, the probability of being a genuine bot user is 

determined. A score is determined according to historic behavior of the related user. In 

this way, user who is human can be separated from the user who is bot. Another patent to 

prevent click fraud in online adverting is taken out by Linden and Teeter (2012). They 

provided a method that includes server side and client side codes to achieve their goal 

which is identification of valid and invalid clicks. Smith et al. (2011) developed systems 

and methods for detecting click spam in web advertising and patented this methodology. 



 

 
8 

Their system identifies normal users visiting a web site and determines an occurrence of 

spamming on the web site based on the identified normal users.  

 

Pay-per-click pricing model of web advertising requires instant payment to the publisher 

upon click. Click spamming has a direct negative effect on the profitability of the 

advertisers on web advertising whereas in the CPI pricing model of mobile advertising, 

click spamming can affect an advertiser only if click ends up with an installation. 

Therefore, fraud in mobile advertising is a relatively new research area when compared 

with fraud in web advertising.  

 

Mobile application markets have many freely distributed applications that are supported 

by in-app advertisements. Most of the fraudulent activities are performed by the 

publishers of these applications. Both placement fraud and bot fraud in these apps cause 

impression and unintentional clicks from users (Liu et al. 2014). Liu et al. (2014) 

investigated display fraud by analyzing UI of apps to detect unintentional clicks for 

increasing ad revenue. However, this technique cannot determine clicks that are triggered 

in the background. Unintended click can be performed both in foreground and 

background (Crussell et al. 2014).  

 

Cho et al. (2015) made an automated click generation attack on eight popular ad networks 

and showed six of them vulnerable to this type of attacks. Cho et al. (2016) expanded 

their previous study. They suggested defense mechanisms and discussed economic aspect 

of security failure. Dave et al. (2012) conducted large-scale measurement study on major 

ad networks about click spamming and proposed a methodology to measure click 

spamming rate for advertisers. Badhe (2016) suggested a new system which consists of a 

server side solution for click fraud. Badhe (2016) offered an exchange mechanism that 

scans the ads before passing them over to the end mobile device. This mechanism 

provides checking for any auto redirection to different domain from initial domain where 

all ad assets requested. However, ad exchanges have to deal with billions of ads daily. 

Checking these ads one by one could be infeasible. This problem can be solved with 

taking random sampling according to Badhe (2016). Gupta et al. (2014) discloses 

different types of mobile frauds. They argued the source of requests may be used for 
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distinguishing valid and invalid requests in order to detect frauds. Monasterio (2017) 

proposed a histogram for the click-to-install time distribution of non-fraudulent 

publishers and utilizes a fitting test to tag click spamming activities. However, this fitting 

test method can only be utilized at the end of ad campaign duration and cannot be used 

in real time. 
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3. MULTIPLE TESTING 

 

In this chapter, the statistical methods to detect frauds is examined and suitability of 

multiple testing in our case is discussed. Let us first introduce the histogram of click-to-

install time (CTIT) values for two publishers as an example of how the distribution of 

CTIT values may differ in legit and fraudulent publishers.  In Figure 3.1, the histogram 

on the left shows the distribution of click-to-install times for a legit publisher. It can be 

noted that most of the installations are accomplished within the first hour after the click 

event occurs since they decide to install and launch the app shortly after they deliberately 

click the publisher’s ad. The histogram on the right, on the other hand, demonstrates the 

distribution of click-to-install times for a fraudulent publisher. This publisher spams lots 

of users with lots of clicks, and a few users unaware of this click event (and, thus, the 

advertised app) will occasionally install the app after hearing about it from other 

marketing channels or via word of mouth. Hence, the time between click and installation 

events can be weeks, or even months, which results in a hump on the right of the graph 

of fraudulent publisher.  

 

 
Figure 3.1. The distribution of CTIT values for a legit publisher (left) and a fraudulent 

publisher (right) 

 

Publishers dealing with click injection can also be distinguished from legit publishers via 

distribution of CTIT values like in the case of click spamming.  In Figure 3.2, the 

histogram belongs to a publisher who engages in click injection. There is an abnormal 

hump at the left of the graph (second bar in the histogram) due to the nature of the click 
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injection. A click injection fraudster can trigger a click after the installation. Therefore, 

the time between click and first launch is usually inclined to be less than 20 seconds. This 

is the reason of CTIT values accumulated on the left side of the histogram.     

 

 
Figure 3.2. The distribution of CTIT values for a fraudulent publisher (click injection) 

 

 

Another interesting fact about the distribution of click-to-install times lies behind the 

descriptive statistics of these values. Table 3.1 provides the sample size, mean, standard 

deviation, median, and range for the CTIT values of the same two publishers discussed 

earlier. The table also shows the statistics for the all-time installations of a DSP company 

for benchmark purposes. The mean of CTIT vales for a legit publisher can still be very 

high (approximately 4.75 hours) due to a few installations with very high CTIT values. 

This situation is not an indicator of click spamming since some users forget to launch a 

mobile application after the installation and thus even non-fraudulent publishers may 

rarely run across very high CTIT values. Therefore, “mean” is not a reliable statistic to 

make any deduction about spamming. The median value of fraudulent publisher, on the 

other hand, is quite large compared to the medians of DSP and legit publisher according 

to the table. Indeed, a very large median (approximately 27 hours in this instance) means 

that at least half of the sample has an unacceptable level of CTIT. A large median value 

also explains why the histogram of the fraudulent publisher is skewed to the right in 

Figure 3.1. Further, the median value of the fraudulent publisher who makes click 

injection is quite small. These results suggest that a statistical test measuring the positive 
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deviations from a sufficiently large or small “median” can be confidently used to detect 

fraud publishers.  

 

The non-parametric sign test for a median (Sprent, 1989) with 𝐻0:  𝜂 = 𝜂0  and 𝐻𝑎: 𝜂 >

𝜂0 (or 𝐻𝑎: 𝜂 < 𝜂0) is an effective way of deciding whether the median of CTIT values 

for a publisher (𝜂) takes on a particular value (𝜂0) or a value greater (or less) than 𝜂0. The 

main question here is how to decide 𝜂0. We have to select a sufficiently large value for 

𝜂0 such that we can safely accuse the publisher of spamming if the null hypothesis is 

rejected. Similarly, sufficiently small value has to be selected to accuse publisher of 

making click injection.  

 

Table 3.1. The descriptive statistics of CTIT values for legit and fraudulent publishers 

  
All-time Installs of a 

DSP Legit Publisher 

Fraudulent 

Publisher 

(Spamming) 

Fraudulent 

Publisher 

(Injection) 

Sample Size 1602268 106 148 622 

Mean (sec) 68991 17016 187398 14 

Median (sec) 250 236 96941 2 

Standard Deviation 

(sec) 553750 78452 338678 

 

18 

Minimum (sec) 1 35 51 1 

Maximum (sec) 15851602 523212 3730800 86 

Range (sec) 15851601 523177 3730749 85 

 

 

The following sign tests are designed to detect two main types of mobile fraud. While the 

test (1) is for click spamming, the second test is for click injection. 

 

𝐻0: 𝜂 = 𝜂0 seconds 

𝐻𝑎: 𝜂 > 𝜂0 seconds 

𝐻0: 𝜂 = 𝜂0 seconds 

𝐻𝑎: 𝜂 < 𝜂0 seconds 

 

However, our analysis shows that, when the test is applied for the all-time installs of a 

publisher (all the installations attributed to a publisher during the lifetime of an ad 

campaign), there is a significant chance of the publisher passing the test even though it is 

fraudulent (i.e. probability of type-II error is large). This situation occurs mainly because 

some publishers mix both click spamming and legit activities together in order to disguise 

(1) (2) 
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their fraud. Therefore, it is possible for a fraudulent publisher to have remarkable number 

of very large CTIT values even though the median CTIT value is still less than 𝜂0 seconds 

(or greater than 𝜂0 seconds in click injection case). Besides, conducting the test for the 

all-time installations of a publisher would mean to evaluate the publisher after an ad 

campaign has ended. Filtering out a spamming publisher from future campaigns is still 

beneficial in the long run, but it cannot prevent the advertiser from paying for the 

installations that are already attributed to the fraudster at the recent campaign. 

 

One way to overcome these challenges is multiple testing, the testing of more than one 

independent hypothesis. In multiple testing, instead of running a single sign test for a 

publisher at the end of campaign duration, we periodically run sign tests as new 

installations arrive from the publisher. This enables us to detect even occasional click 

spamming activities of fraudulent publishers in earlier stages of the campaign. 

 

However, if one plans to make a decision by applying multiple testing, s/he should be 

extra cautious about false-positive decision making. Assuming that the type-I error of a 

single sign test is 𝛼, the probability of not making type-I error is (1 − 𝛼) because they 

are complementary events. For instance, if significance level 𝛼 = 0.10, then not making 

type-I error is  (1 − 𝛼) = (1 − 0.10000) = 0.90000. Let say we have two independent 

tests with 𝛼 = 0.10000. Probability of not making type-I error for both of them is 

0.90000 ∗ 0.90000 = 0.81000. For three independent tests, the probability will be 

0.90000 ∗ 0.90000 ∗ 0.90000 = 0.72900. The probability of not making type-I error 

for m independent tests is calculated with (1 − 𝛼)𝑚. Therefore, the probability of at least 

one false positive error among 𝑚 independent sign tests (family-wise error rate) is 𝛼̅ =

1 − (1 − 𝛼)𝑚. This means that the probability of having at least one rejected null 

hypothesis converges to 1 as the number of tests increases. In other words, if we assume 

one rejected null hypothesis in multiple testing is adequate to accuse a publisher of click 

spamming, we will falsely blame the publisher for fraud even though it is most probably 

legit. 

  

In the literature, there are classical multiple testing methods such as Šidák correction 

(Šidák, 1967), Holm method (Holm, 1979), and Bonferroni correction (Bland and 

Altman, 1995), which prevent large probability of rejecting some of the true null 
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hypotheses. Also, we developed a new procedure to make sure limited family-wise error 

rate at acceptable level.  

 

3.1 Šidák Correction Method 

 

The method is utilized to avoid problem of multiple comparisons. It is one of the simple 

methods to keep family-wise error rate for independent tests under control. The 𝑚𝑡ℎ null 

hypothesis is rejected, when p-value is less than  𝛼̅ = 1 − (1 − 𝛼)1/𝑚 for each test. If all 

null hypotheses are true, type-I error will be exactly 𝛼. For example, let’s say we have 3 

independent null hypotheses and 𝛼 = 0.05000. Family-wise error is calculated as 

0.05000, 0.02532 and 0.01695 respectively. If the p-values of matching tests are greater 

than the corresponding 𝛼̅, type-I error is equal to 0.05000. In addition, confidence interval 

is calculated as 100(1 − 𝛼)1/𝑚 for matching test decision.  

  

3.2 Bonferroni Correction Method 

 

This method is used for exactly the same reason as in Šidák method. Holm developed the 

method originally in 1979. In Holm method, significance level is divided by both total 

number of the independent tests and the index 𝑘, which is used if the first p-value is not 

low enough to validate rejection at 𝛼̅ =
𝛼

𝑚+1−𝑘
. This index is accepted as 1 in Bonferroni 

Correction. Therefore, the family-wise error controls with  𝛼̅ =
𝛼
𝑚

. This means that if the 

p-value of 𝑚𝑡ℎ test is less than 
𝛼

𝑚
, 𝐻0

(𝑚)
 that represents the null hypothesis of mth test is 

rejected, otherwise 𝐻0
(𝑚)

 fails to be rejected. Table 3.2 presents the calculated family-

wise error rates by Šidák and Bonferroni methods when 𝛼 is assumed to be 5%. The first 

column shows the number of tests. The family-wise error rates of Šidák method according 

to varying total number of tests is shown in the second column, while the rates of 

Bonferroni method are demonstrated in the third column. As seen in the table, the family-

wise error for a single test is the same for both correction methods. However, family-wise 

error rate that is calculated with Bonferroni method is always less than the family-wise 
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error rate of  Šidák method after the first test. Šidák method is slightly less stringent than 

Bonferroni correction. 

 

Table 3.2. Family-wise error rates for Šidák and Bonferroni methods 

Number  
Šidák Bonferroni 

of Test 

1 0,05000 0,05000 

2 0,02532 0,02500 

3 0,01695 0,01667 

4 0,01274 0,01250 

5 0,01021 0,01000 

6 0,00851 0,00833 

 

 

3.3 Method of Successive Runs 

 

In this study, we propose a new multiple testing procedure that has an improved ability 

to detect click spamming fraud compared to these classical methods, while still keeping 

the confidence of the procedure (i.e. probability of not making false-positive decisions) 

sufficiently high.  

 

In our multiple testing procedure, we run successive sign tests in real time while the 

campaign is still running. In other words, we run a sign test given in (1) for every 𝑛 

installations of a publisher to monitor the legitimacy of its installations. If we had decided 

the publisher is fraudulent by only one rejected null hypothesis in multiple testing, as 

mentioned earlier, we would have made a considerable number of false-positive 

decisions. Instead, in our procedure, we aim a family-wise error rate of α̅ = 0.05000 in 

the worst-case.  

 

In our study, the multiple testing procedure for detecting click spamming activity has 

been implemented in two steps as follows. 

 

 STEP 1. We assume the significance level of α = 0.05000 for each sign test for 

median, whose sample size is selected to be n = 10. Namely, we run the 
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hypothesis test of (1) for every 10 incoming installations and conduct m < ⌈N/10⌉ 

tests in total, where N is the total number of installations attributed to the publisher 

during the campaign duration.  

 STEP 2. We define a rule which identifies the spamming publishers due to the 

result of m sign tests with a family-wise error rate of α̅ = 0.05000. According to 

the rule, a publisher is determined to be fraudulent if it fails r successive sign tests, 

each with a significance level of α, among m tests. We do not have to run these 

tests till the end of the campaign duration (i.e. m does not have to be equal to 

⌈N/10⌉) since we may run across r successive rejected hypotheses in earlier stages 

of the campaign. Note that the value of r has to be updated as the number of tests 

(m) increases with the incoming installations. If we set a constant value for r, the 

family-wise error rate would continuously increase and eventually be much higher 

than our target value, α̅ = 0.05000, as the number of tests, m, increases.  

 

In order to compute the value of r for varying levels of m, we need to utilize the theory 

of success runs introduced by Feller (1968). Let r be a positive integer and let ε denote 

the occurrence of a success run of length r in m Bernoulli trials, each with a success 

probability of α. According to Feller (1968), the probability of no success run of length 𝑟 

in 𝑚 trials (denoted by 𝑞) can be approximated by Eq. (3)  

𝑞 ≈
1 − 𝛼𝑥

(𝑟 + 1 − 𝑟𝑥)(1 − 𝛼)
∙

1

𝑥𝑚+1
 

where x is the positive root of Eq. (4), which is not equal to 1 − α. 

1 − 𝑥 + (1 − 𝛼)𝛼𝑟𝑥𝑟+1 = 0 

Hence, the probability of at least one success run of length 𝑟 in 𝑚 trials is given by 𝑝 =

1 − 𝑞.  

 

For example, assume we conclude a publisher's median CTIT is greater than 2 hours (i.e. 

the publisher is fraudulent) if the null hypotheses of 𝑟 = 3 successive sign tests are 

rejected among 𝑚 = 300 tests. When we let 𝛼 = 0.05 and 𝑟 = 3 in Eq. (4), 𝑥 can be 

found as 1.000119. Replacing this value of 𝑥 in Eq (3), the probability of falsely 

concluding the publisher to be fraudulent (family-wise error rate) can be calculated as 

𝛼̅ = 𝑝 = 0.0348.  

(4) 

(3) 
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In the second step of our procedure, we determine the rule of how many successive 

rejected hypotheses are enough for concluding a publisher is a spammer for different 

numbers of tests. The main objective of this rule is to guarantee that the probability of 

falsely accusing the publisher does not exceed a family-wise error rate of  α̅ = 0.05000. 

For example, for 𝑟 = 3, we look for the value of “𝑚” which makes 𝑝 close to 𝛼̅ =

0.05000 as much as possible. For varying values of 𝑚 in Eq (3), the value of 𝑝 = 𝑞 − 1 

is given in Table 3.3. As it can be noted in the table, 𝑝 can get the value which is closest 

to 𝛼̅ = 0.05000, when 𝑚 = 434. 

 

Table 3.3 The family-wise error rates respectively the values of m 

𝑚 𝑝  𝑚 𝑝 

425 0,04902  431 0,04970 

426 0,04913  432 0,04981 

427 0,04925  433 0,04992 

428 0,04936  434 0,05004 

429 0,04947  435 0,05015 

430 0,04959  436 0,05026 

 

Table 3.4 tabulates how the rule is being applied. 𝑚̅ represents the number of tests 

required to have a successive rejected hypothesis of length 𝑟 with a probability of α̅ =

0.05. [𝑚𝑙, 𝑚𝑢]  denotes the interval for the total number of tests where successively 

rejected hypotheses of length r are sought for click spamming. According to Table 3.4, 

our multiple testing procedure works as follows. When the first 10th installation attributed 

to a publisher is registered, we run the sign test given in (1) for the CTIT values of this 

sample. If the null hypothesis is rejected, we conclude that the publisher is a click 

spammer (since 𝑚 = 1 when 𝑟 = 1). Otherwise, we wait until another 10 installations 

are registered. When the next 10 installations are accumulated, we run the sign test again 

for the second set of 10 installations. Starting from the 2nd sign test to the 22nd test, we 

search for 2 successively rejected hypotheses. If we observe any “two rejected hypotheses 

in a row” until the 22nd test, we conclude that the publisher is a click spammer. Otherwise, 

we continue to monitor the installations attributed to the publisher. Likewise, we search 

for 3 successively rejected hypotheses from the 23rd test to the 434rd test, and 4 

successively rejected hypotheses from the 435th test to the 8524th test. We have never 

needed to go beyond the 8524th test, since none of the publishers in our experiment has 
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more than 8524 ∗ 10 attributed installations. If we conclude that a publisher is fraudulent 

at any point according to this procedure, the decision is guaranteed to have a false-positive 

error that is at most equal to the family-wise error rate of α̅ = 0.05000. If we do not 

observe any “𝑟 rejected hypotheses in a row” during the course of our procedure, we can 

conclude that there has not been enough evidence that the publisher is a click spammer. 

 

Table 3.4. The rule of multiple testing procedure 

𝑟 𝑚̅ [𝑚𝑙 , 𝑚𝑢] 

1 1 [1,1] 

2 22 [2,22] 

3 434 [23,434] 

4 8524 [435,8524] 
 

 

3.4 Accuracy Test for Method of Successive Runs 

 

We will now discuss the results of our accuracy tests conducted with a data set of app 

installations attributed to several publishers. This data set was supplied by a DSP 

company which provides a self-service mobile advertisement platform to its customers 

for managing their own ad campaigns. In our experiment, we run the tests with 30 

publishers from 30 different ad campaigns. Half of the publishers have been blacklisted 

as click spamming publishers by the DSP company due to prior experience. The 

remaining 15 publishers are known to be non-fraudulent that always bring in legitimate 

installations.  

 

Table 3.5 summarizes the data used and shows the results of our test. Each publisher is 

represented with a row in the table.  The grayed-out rows denote the publishers that are 

in fact fraudulent. The first five columns provide the publisher ID, the number of total 

installations during the campaign, the campaign duration, the mean value of all CTITs 

during the campaign, and the median value of all CTITs, respectively. The sixth column 

shows the total number of rejected tests during the campaign when we were applying 

method of successive runs. The number of rejected tests does not have to be zero for a 

non-fraudulent publisher. For example, first publisher is not identified as fraudulent, 
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although it has a total of 2 rejected tests. The reason it is not marked as a click spammer 

is that the rejected tests are not successive. The last column which has three parts specifies 

the order of the first test indicating a click spamming activity. The first part shows our 

method, the second one represents Bonferroni, and the last one is for Šidák. For instance, 

the second publisher is accused of click spamming for the first time in its 657 ∗ 10 =

6570th attributed installation with method of successive runs, since r= 4 consecutively 

rejected tests are observed at the 657th test in our multiple testing procedure. A dash sign 

(“−”) in the sixth column indicates that any evidence of click spamming has not been 

found during the campaign.   

 

According to the results of the experiment, our multiple testing procedure does not make 

any false-positive error. In other words, none of 15 legit publishers is accused of click 

spamming. Since we design the procedure in such a way that it does not have a false-

positive error greater than the family-wise error rate of α̅ = 0.05000, this is an expected 

outcome. On the other hand, in three tests, we observed false-positive errors which were 

made by Šidák and Bonferroni Corrections. As seen in the Table 3.5, even though 

Publisher 1, 9, 19 and 28 are legit publishers in reality, they are marked as fraud by Šidák 

and Bonferroni Correction methods. For example, the first publisher is found as a 

spammer in the 29th test by both of them because all ten installations for the test came 

after the first two-hour period and the p-value of the 29th test is calculated as 0.00098. 

The family-wise error which belongs to this test is  α̅ =
0.05

29
 = 0.00172 for Bonferroni 

method, α̅ = 1 − (1 − 0.05)
1

29 = 0.00177. Therefore, 𝐻0
(29)

, which is the null hypothesis 

of 29th test is rejected and the publisher looks like a spammer. Even though, 𝐻0
(29)

 was 

rejected, the publisher was found legit in our method because of our rejection rule. As 

seen in Table 3.5, there are 2 reject decisions in method of successive runs, 3 successive 

rejects are needed to accuse someone of being a fraud after the 22nd test. Hence, since at 

least one of the 28th and 30th, or 30th and 31st tests were not rejected, our procedure decided 

the publisher is legit correctly. 
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Table 3.5. Accuracy Test Results 

    
  

 

 The Order of the Test Indicating Click 
Spamming 

Publisher 

Number of 

Total 

Installs 

Campaign 

Duration 

(days) 

Mean Median 

Total 

Number of 

Rejected 

Tests 

In Method 

of 

Successive 

Runs 

Method of 

Successive 

Runs 

Bonferroni 

Correction 

Method 

Šidák 

Correction 

Method CTIT CTIT 

(seconds) (seconds) 

1 308 36 138454 64 2 - 29 29 

2 8424 79 4433 201 172 657 - - 

3 749 3 6983 727 0 - - - 

4 1038 11 25180 1103 0 - - - 

5 94 2 1441 1462 0 - - - 

6 2420 23 2808 1869 0 - - - 

7 1351 175 14223 2376 4 135 - - 

8 288 163 15881 2607 2 - - - 

9 875 44 4068 3011 0 - 21 21 

10 1876 174 11426 3590 3 - - - 

11 265 6 3332 3666 2 14 14 14 

12 1091 128 10995 4293 6 67 - - 

13 249 7 9993 4487 0 - - - 

14 373 4 5204 5018 0 - - - 

15 133 39 6665 5383 0 - - - 

16 827 34 15788 5919 24 6 5 5 

17 416 29 8139 6240 1 - - - 

18 1075 3 13493 6406 42 17 16 16 

19 361 58 11967 6999 5 - 6 6 

20 295 17 95731 7173 8 13 12 12 

21 400 24 64212 7330 5 40 7 7 

22 1045 79 29884 7879 31 24 9 9 

23 335 118 19482 8235 0 - - - 

24 150 9 17020 8999 1 - - - 

25 62 5 22196 9441 1 - 3 3 

26 2487 94 23964 9945 54 15 48 48 

27 90 8 16608 10315 1 - 9 9 

28 610 32 25412 10732 10 - 9 9 

29 877 6 19497 11383 19 19 18 18 

30 2621 44 31341 19686 97 15 3 3 
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Although there are 4 type-I errors that are found by Šidák and Bonferroni Correction 

methods, publisher 25 is detected by these methods unlike the method of successive runs. 

Since Šidák and Bonferroni Correction methods slightly stringent than method of 

successive runs, they detect most of the fraudulent publishers earlier than our method. 

However, they have much higher type-I error rates. For example, while publisher 21 is 

detected with the last installation by our method, Šidák and Bonferroni Correction 

methods detected it earlier with the 7th test. As seen in the table, the orders of all of the 

test indication click spammers are the same for Šidák and Bonferroni, because values of 

the family-wise error are close to each other. For instance, the family-wise error of the 

third test is 0.01695 for Šidák Correction, while it is 0.01667 for Bonferroni method. 

 

As seen Table 3.6, the results also indicate that while 12 out of 15 fraudulent publishers 

have been successfully detected with method of successive runs, Šidák and Bonferroni 

correction methods have detected 11 out of 15 fraudulent publishers. On average, while 

we detect the click spamming activities before 32% of the entire set of installations have 

arrived with the method of successive runs, click spamming activities are detected before 

6.70% of the total installations have arrived with the other methods. In the best case 

(Publisher 30), the click spamming is detected before (15 ∗ 10)/2621 = 6% of the total 

installations have arrived. The best case of the other methods is observed in the case of 

the same publisher. The spammer is detected before (3 ∗ 10)/2621 = 1.14% of the total 

installations have arrived.  In the worst case for our method (Publisher 21), the click 

spamming can be detected only after (40 ∗ 10)/400 = 100% of the total installations 

have arrived. Publisher 27 is detected after the last installation is arrived, being the worst 

case of Šidák and Bonferroni methods. This result suggests that we have recognized that 

Publisher 21 and 27 are fraudsters at the very end of the ad campaign.  Even though the 

detection of these spamming publishers does not help us in this experimented campaign, 

filtering out the publisher from the future campaigns will protect us against its prospective 

fraud. Apart from these results, Publisher 2 is also worth mentioning because it is 

blacklisted as click spammer in spite of its relatively low median CTIT value. If we had 

conducted the sign test for once with the all-time installations of this publisher, we would 

have concluded it is not fraudulent due to the median CTIT of 201 seconds. This example 

shows why the multiple testing procedure is superior to single testing.  
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Table 3.6. Summary of accuracy test results 

Method 
Detected 

Fraud 
False Positive 

Decision Rate 

Average 

Detecting  

Installation 

Šidák 11/15* 27% 6.70% 

Bonferroni 11/15* 27% 6.70% 

Our 

Method 12/15* 0% 32% 

 

On the other hand, we fail to detect the click spamming activities of the remaining four 

fraudulent publishers (Publisher 5, 24, 25, and 27) by our method. Publisher 2, 5, 7, 12 

could not be detected by the other methods during their campaign period, which makes 

the false-negative error rate of the experiment to be β̅ = 11/15 = 73%. The common 

characteristic of all four publishers 5, 24, 25, and 27, whose click spamming activities 

have not been detected, is the low number of installations due to the short campaign 

duration. We observe that most of the clicks attributed to these publishers had not ended 

up with installations at the time point we collected their data for our experiment. Note 

that the bid price is still paid to publishers, if the click event takes place during the 

campaign interval regardless of the time of the installation event. Most probably, these 

clicks will never yield a legit installation, but can still bring in undeserved money for 

these publishers if any user installs the advertised app organically via another advertising 

channel. On the other hand, common characteristic of the other publishers whose 

fraudulent activities are not detected is that their spam attacks started near the end of the 

campaign durations except Publisher 5. This situation is based on the nature of Šidák and 

Bonferroni Correction methods. In these methods family-wise errors decrease 

continuously. However, p-value of tests has a limit to decrease because of the sample 

size. Hence, if the sample size is 10 for tests, p-value can be 0.00098 in the worst case 

when all ten installations have arrived after at least 2-hours from the related click. After 

a certain amount of testing, family-wise error will be always smaller than the p-value. 

Therefore, null hypothesis will not be rejected after that point because of the reject rule 

which says that the null hypothesis is rejected, if the p-value is bigger than family-wise 

error for that test. While family-wise error for Bonferroni method is always smaller than 

the p-values of tests after the 52nd test whose p-value is 0.00096, limit for Šidák method 

is 53rd test with 𝛼̅ =0.00097. After 53rd test, p-value of test will consistently be greater 
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than family-wise error independently from CTITs. For example, family-wise error is 

calculated as 𝛼̅ = 0.00050 with Bonferroni method for the 100th test. The publisher 

cannot be accused of being fraud even if the CTITs of 10 installations are greater than 2-

hours because p-value of 0.00098 is greater than α̅ = 0.00050.  Even though Šidák and 

Bonferroni methods are useful for short-term campaigns, they are useless for long term 

campaigns and for publishers who have approximately more than 530 installations in a 

campaign because of their stringency. 

   

Unfortunately, for the short-term campaigns, our multiple testing procedure is not likely 

to detect the click spamming publishers since high-valued CTITs indicating spamming 

have not yet been generated at the time we collect the data. Nevertheless, these campaigns 

are short-dated and usually bring relatively small number of falsely-attributed 

installations from their publishers. Hence, we can safely assume the total loss due to these 

installations is still in an acceptable level. 
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4. DETECTION OF FRAUD USING MULTIPLE TESTING 

 

In this section, steps of detecting click spamming and click injection are explained. 

Insufficiency of using single testing is showed in the previous section. Mean of CTITs is 

not a useful source to detect frauds. Even median of CTITs which gives a better 

understanding of the publishers’ actions can mislead the advertisers when they decide 

fraudulent activities. For example, while having a median that is bigger than 2-hour can 

be proof of click spamming, having a small median does not guarantee that the publisher 

is not a spammer. Therefore, using non-parametric single sign test for median of CTITs 

can cause type-II errors often in the case of small median of CTITs. On the other hand, 

multiple testing is better than in terms of both type-I and type-II errors. Moreover, 

multiple testing methods provide an opportunity to test the publisher in real time unlike 

using fitting test for detection of fraud. The end of campaign duration has to be waited to 

make fitting test. This causes loss during the campaign durations. On the other hand, 

fraudsters can be detected during the campaign duration and they can be blocked to 

prevent financial losses with multiple testing methods through applicability in real time. 

The method of successive runs is better than other correction methods of multiple 

comparison because of the limitations of Šidák and Bonferroni methods. These methods 

do not have ability to detect frauds in long term campaign durations and for the publishers 

who have more than 530 installations in a campaign. Furthermore, these methods are 

vulnerable in terms of type-I errors unlike our method. Type-I error is a more dangerous 

error than type-II. That is because, while type-I error represents accusing a publisher who 

is legit of being fraud, type-II error means that a publisher who is a fraudster in reality is 

found legit. Even though a publisher is found legit falsely in a campaign (type-II error), 

it can be detected in the other campaigns. However, if a publisher is detected as a fraud, 

it is blocked permanently. Therefore, there is no compensation for making type-I error. 

This is the reason for selecting method of successive runs to detect fraud types in this 

chapter instead of other methods. Also, publishers should be evaluated campaign by 

campaign because legit publishers can decide to start fraudulent activities after a while. 
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Therefore, every installation should be examined for both click spamming and click 

injection.      

              

4.1 Detection of Click Spamming 

  

In this chapter, detection of click spamming is explained step by step. The method of 

successive runs is utilized to detect spammers. Pseudocode is shown in below:  

 

 Start Campaign 𝑛 

 Set 𝐼𝑛𝑠𝑡𝑎𝑙𝑙 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 =  0 

 Set 𝑀𝑖𝑛𝑢𝑠 = 0 

 For each arriving installation for 𝑛th campaign  

o 𝐼𝑛𝑠𝑡𝑎𝑙𝑙 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 =  𝐼𝑛𝑠𝑡𝑎𝑙𝑙 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 +  1 

o 𝐶𝑇𝐼𝑇𝑖𝑘𝑛 =  𝐼𝑛𝑠𝑡𝑎𝑙𝑙 𝑇𝑖𝑚𝑒𝑖𝑘𝑛 − 𝐶𝑙𝑖𝑐𝑘 𝑡𝑖𝑚𝑒𝑖𝑘𝑛 

o For each test 𝑡 ∈ 𝑇 

 If   𝐼𝑛𝑠𝑡𝑎𝑙𝑙 𝐶𝑜𝑢𝑛𝑡𝑒𝑟   %   10 =  0 

o 𝑆𝑖𝑔𝑛 =  𝐶𝑇𝐼𝑇𝑖𝑘𝑛
𝑡 − 7200 

o If 𝑆𝑖𝑔𝑛 <  0 

 𝑀𝑖𝑛𝑢𝑠 =  𝑀𝑖𝑛𝑢𝑠 +  1 

 Calculate 𝑃𝑣𝑎𝑙𝑢𝑒 of Test 𝑡 

 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡) = ∑ (𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 
𝑘

)𝑝𝑘(1 − 𝑝)𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒−𝑘
𝑀𝑖𝑛𝑢𝑠

𝑘=0
 

 If 𝑡 = 1 

o If 𝑃𝑣𝑎𝑙𝑢𝑒 (1) <  

 Publisher 𝑘 is a fraudster 

 Block Publisher 𝑘 

o Else 

 Wait for the next ten installs and conduct   

Test 2 

 If 𝑡 ≥ 2 

o 𝐼𝑓 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡)  <   & 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 1)  <   
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 Publisher 𝑘 is a fraudster 

 Block Publisher 𝑘 

o Else 

 Wait for the next ten installs and conduct   

Test 𝑡 + 2 

 If 𝑡 > 22 

o If 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡) <  & 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 1)  <    & 

𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 2)  <   

 Publisher 𝑘 is a fraudster 

 Block Publisher 𝑘 

o Else 

 Wait for the next ten installations and conduct   

Test 𝑡 + 3 

 If 𝑡 > 434 

o If 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡)  <   & 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 1)  <   & 

𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 2)  <   & 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 3)  <   

 Publisher 𝑘 is a fraudster 

 Block Publisher 𝑘 

o Else 

 Wait for the next ten installations and conduct   

Test 𝑡 + 4 

 If 𝑡 > 8524 

o If 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡)  <   & 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 1)  <   & 

𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 2)  <   & 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 3)  <     & 

𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 4)  <   

 Publisher 𝑘 is a fraudster 

 Block Publisher 𝑘 

o Else 

 Wait for the next ten installations and conduct   

Test 𝑡 + 5 

 If the publisher 𝑘 passes from all tests 

o Publisher 𝑘 is legit 
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𝐶𝑇𝐼𝑇𝑖𝑘𝑛: Click-to install time of 𝑖𝑡ℎ installation from publisher 𝑘 for campaign 𝑛 

𝑀𝑖𝑛𝑢𝑠: Number of negative values which are calculated from 𝐶𝑇𝐼𝑇𝑖𝑘𝑛 =

 𝐼𝑛𝑠𝑡𝑎𝑙𝑙 𝑇𝑖𝑚𝑒𝑖𝑘𝑛 − 𝐶𝑙𝑖𝑐𝑘 𝑡𝑖𝑚𝑒𝑖𝑘𝑛 

𝑇: the set of tests for publisher 𝑘 from 1 to 
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 𝑜𝑓 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟 𝑘 𝑓𝑜𝑟 𝑐𝑎𝑚𝑝𝑎𝑖𝑔𝑛 𝑛

𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒
 

 

As mentioned earlier, every installation should be examined one by one for each publisher 

in each campaign and sub campaign. First of all, a click-to-install time is calculated for 

each new-coming installation and stored in CTIT(t). This calculation has to be done for 

every installation. Then it is waited until the number of installations reach the number of 

sample size to do the testing. Sample size is defined as 10 by the trial and error method. 

10 as a sample size is big enough to understand the intention of the publisher and small 

enough to decide quickly and safely. After the first 10 installations have arrived, first non-

parametric sign test is made. As seen in the pseudocode, the first requirement of the sign 

test is the determination of the sign of the test members. In our procedure, the equation 

𝐶𝑇𝐼𝑇𝑖𝑘𝑛
𝑡 − 𝑇𝑖𝑚𝑒 is used to define sign of test members. The important matter is defining 

Time to make the decision correctly. Therefore, we observe the distribution of CTIT 

values for several publishers and note that, if publisher, 70-75% of app installations 

typically occur during the first hour, 80-85% of installations during the first two hours 

and 90-95% of installations in the first 24 hours following a click event. Monasteriao 

(2017) presents the histogram of CTIT values for one-day worth of installations in a non-

fraudulent scenario and arrives at the same conclusion that most of the users’ installations 

occur in the first hour after the click. 

 

In the light of these facts, we designed the following sign test for the median of CTIT 

values of a publisher.  

H0: η(t) = 7200 seconds 

Ha: η(t) > 7200 seconds 

In this test, η0 = 7200 is adequately large that enables us to safely assume the publisher 

is fraudulent if the null hypothesis is rejected (i.e. probability of type-I error is small).  

Hence, Time = 7200 seconds. If CTIT is bigger than Time, the sign will be positive.  If 

CTIT is less than Time, the sign will be negative. If CTIT is equal to Time, the sign will 

(5) 
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be neutral. For detection of click spamming, only the number of negative ones which is 

represented with Minus in pseudocode is important because binomial distribution is 

utilized to calculate the p-value. Cumulative distribution function of binomial distribution 

is 𝑓(k, n, p) = P(x ≤ k)  = ∑ (𝑛
𝑖
)𝑝𝑖(1 − 𝑝)𝑛−𝑖

𝑘

𝑖=0
 where k represents the number of 

successes occurring among m trials with probability p. In our procedure, the number of 

successes is number of negative sign (Minus) and number of trials is equal to 10. In 

addition, the probability is 0.50000 for nonparametric sing test. Thus, p-value is 

calculated with the formulation ∑ (10 
𝑘

)𝑝𝑘(1 − 𝑝)10−𝑘
𝑀𝑖𝑛𝑢𝑠

𝑘=0
. For instance, let us assume 

5 out of 10 installations have arrived after 2 hours. The p-value is found as 0.62305. After 

the calculation of the p-value, the value is compared with the significance level  which 

is 0.05000 in our method. If p-value is less than , null hypothesis is rejected; otherwise 

the decision is fail to reject. For example, the p-value which was calculated for 6 

installations whose CTIT is greater than 2-hour out of 10 is greater than  = 0.05000. 

Therefore, null hypothesis is failed to reject. If the first test is rejected, the publisher is 

found as a fraud according to our method of successive runs. In contrast, if the first 

decision is not a rejection, the second test is applied. After 2nd test, 2 successive reject 

decisions are needed to accuse the publisher of fraudulence. If 2 reject decisions are not 

made one after another in the range between 2 and 22 tests, the publisher continues to be 

investigated. However, after 23rd test (230 installations), blaming publisher for spamming 

requires 3 successive reject decisions until 433rd test (4330 installations). After that point, 

4 reject decisions have to be waited to conclude that a publisher is a fraud or not.  table 

3.4 represents that number of consecutive installations’ range according to the number of 

tests.  If the publisher is figured out to be fraud, it is blocked immediately. For example, 

let us assume that a publisher is blamed for spamming with 98th test result. It means that 

96th, 97th, and 98th null hypothesizes are rejected. Hence, 99th test is unnecessary for that 

publisher after this point because it is in the list of the blocked spammers. A publisher is 

tested at most  
𝑇ℎ𝑒 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑠 𝑖𝑛 𝑎 𝐶𝑎𝑚𝑝𝑎𝑖𝑔𝑛 

10
 times. If the publisher passes all 

tests, the publisher acts legitimate behaviors. In another word, for each null hypothesis 

that is not rejected, publisher is legit in this campaign. It should not be forgotten that 

publishers who are found legit in other campaigns can start to commit fraudulent 
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behaviors after some point. Therefore, it is vital to continue to check legitimacy of 

publishers in the new campaigns.        

 

4.2 Detection of Click Injection 

 

In click injection, fraudulent publisher’s app can detect when other apps are downloaded 

on the device and trigger clicks right before the installation completes. In this way, they 

receive undeserved credit for their attributed installations. Click-to-install times of click 

injecting publishers are typically smaller. However, from the perspective of the 

advertisers, truncating all installations with small CTIT is not a good idea since not every 

click that happens shortly before the installation is fraudulent. In this sense, a similar 

multiple testing procedure can be developed for the detection of injected clicks to prevent 

advertisers from diverting their budget to fraudsters. 

 

 Start Campaign 𝑛 

 Set 𝐼𝑛𝑠𝑡𝑎𝑙𝑙 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 0 

 Set 𝑃𝑙𝑢𝑠 = 0 

 For each arriving installation for 𝑛th campaign  

o 𝐼𝑛𝑠𝑡𝑎𝑙𝑙 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 =  𝐼𝑛𝑠𝑡𝑎𝑙𝑙 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 +  1 

o 𝐶𝑇𝐼𝑇𝑖𝑘𝑛 =  𝐼𝑛𝑠𝑡𝑎𝑙𝑙 𝑇𝑖𝑚𝑒𝑖𝑘𝑛 − 𝐶𝑙𝑖𝑐𝑘 𝑡𝑖𝑚𝑒𝑖𝑘𝑛 

o For each test 𝑡 ∈ 𝑇 

 If   𝐼𝑛𝑠𝑡𝑎𝑙𝑙 𝐶𝑜𝑢𝑛𝑡𝑒𝑟   %   10 =  0 

o 𝑆𝑖𝑔𝑛 =  𝐶𝑇𝐼𝑇𝑖𝑘𝑛
𝑡 − 20 

o If 𝑆𝑖𝑔𝑛 > 0 

 𝑃𝑙𝑢𝑠 =  𝑃𝑙𝑢𝑠 +  1 

 Calculate 𝑃𝑣𝑎𝑙𝑢𝑒 of Test 𝑡 

 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡) = ∑ (𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 
𝑘

)𝑝𝑘(1 − 𝑝)𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒−𝑘
𝑃𝑙𝑢𝑠

𝑘=0
 

 If 𝑡 = 1 

o If 𝑃𝑣𝑎𝑙𝑢𝑒(1)  <   

 Publisher 𝑘 is a fraudster 

 Block Publisher 𝑘 
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o Else 

 Wait for the next ten installations and conduct 

Test 2 

 If 𝑡 ≥ 2 

o If 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡)  <     &   𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 1)  <   

 Publisher 𝑘 is a fraudster 

 Block Publisher 𝑘 

o Else 

 Wait for the next ten installations and conduct 

Test 𝑡 + 2 

 If 𝑡 > 22 

o If 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡)  <   & 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 1)  <      & 

𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 2)  <   

 Publisher 𝑘 is a fraudster 

 Block Publisher 𝑘 

o Else 

 Wait for the next ten installations and conduct 

Test 𝑡 + 3 

 If 𝑡 > 434 

o If 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡)  <   & 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 1)  <      & 

𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 2)  <     &   𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 3)  <   

 Publisher 𝑘 is a fraudster 

 Block Publisher 𝑘 

o Else 

 Wait for the next ten installations and conduct 

Test 𝑡 + 4 

 If 𝑡 > 8524 

o If 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡)  <     &   𝑃𝑎𝑙𝑢𝑒(𝑡 + 1)  <     & 

 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 2)  <   & 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 3)  <     & 

𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 4)  <   

 Publisher 𝑘 is a fraudster 

 Block Publisher 𝑘 
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o Else 

 Wait for the next ten installations and conduct 

Test 𝑡 + 5 

 If the publisher 𝑘 passes from all tests 

o Publisher 𝑘 is legit 

 

𝐶𝑇𝐼𝑇𝑖𝑘𝑛: Click-to install time of 𝑖𝑡ℎ installation from publisher 𝑘 for campaign 𝑛 

𝑃𝑙𝑢𝑠: Number of positive values which are calculated from 𝐶𝑇𝐼𝑇𝑖𝑘𝑛 =

 𝐼𝑛𝑠𝑡𝑎𝑙𝑙 𝑇𝑖𝑚𝑒𝑖𝑘𝑛 − 𝐶𝑙𝑖𝑐𝑘 𝑡𝑖𝑚𝑒𝑖𝑘𝑛 

𝑇: number of test for publisher k from 1 to 
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 𝑜𝑓 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟 𝑘 𝑓𝑜𝑟 𝑐𝑎𝑚𝑝𝑎𝑖𝑔𝑛 𝑛

𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒
 

 

Detecting click injection and click spamming is really similar with each other. They are 

exactly the same about deciding the publisher is legit or fraud. Method of successive runs 

is utilized to detect click injection exactly like explained in the previous section. Proper 

number of installations are waited to make tests. The significance level of each test is also 

 = 0.05. Furthermore, fraud is detected according to rules which are represented in table 

3.4. The major difference of detection of click injection is hypothesis test from detection 

of click spamming. The term of click-to-install time represents the time difference 

between click and the first launch. Download time of mobile application is also included 

in the click-to-install time. Hence, it is assumed that the total time of downloading, 

installing and first launching of a mobile app cannot be less than 20 seconds in most cases. 

Therefore, we designed the following sign test for the median of CTIT values of a 

publisher.  

 

H0: η(t) = 20 seconds 

Ha: η(t) < 20 seconds 

 

 In this test, η0 = 20 is adequately small that enables us to safely assume the publisher is 

fraudulent if the null hypothesis is rejected. For this type of fraud, positive values that are 

calculated from 𝑆𝑖𝑔𝑛 =  𝐶𝑇𝐼𝑇𝑖𝑘𝑛
𝑡 − 20 is important in terms of calculation of the p-

value. The plus term represents total number of positive values from sign equation. If the 

p-values of all hypothesis tests are greater than 0.05, the publisher is a legitimate 

(6) 
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publisher. Even though a publisher is found legit after a campaign, the publisher should 

continue to be investigated in new campaigns because of possibility of being fraud in the 

future.     
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5. EXPERIMENTS AND RESULTS 

 

We will now discuss the results of our experiments conducted with a data set of app 

installations of a DSP1 company. The DSP company provides a self-service mobile 

advertisement platform to its customers (advertisers and/or their agencies) for managing 

their own ad campaigns. In our experiment, we run tests for approximately 2 million of 

installations for click spamming and click injection, separately. The method of successive 

runs was used to detect these frauds. The data is grouped by campaign, sub campaign and 

publisher. In other words, the installations of each publisher in a sub campaign of a 

campaign are clustered together in our analysis. For instance, the installations arriving 

from the publisher P1 of the ad network AN1 which advertises the mobile app of the ad 

campaign AC1 are grouped together and labeled as the 3-tuple “AC1-AN1-P1”.  

According to this classification, 15263 tuples were identified using the numerical 

computing software Matlab. 

 

The Matlab codes we have used in our study are shown in Appendix A. The code which 

is in A.1 is utilized to conduct all possible sign tests of a publisher for click spamming 

and decide if the publisher is a spammer or not. In this sign test, every installation is 

examined to make sure whether the click-to-install time of the installation is less than 2-

hours. The code conducts the sign test for a sample size of 10 installations of the 

publisher. Then, the decision is made according to the rule of the code given in A.1. The 

code which is shown in A.2 is similar to the code shown in A.1. It is used for the sign test 

of click injection. The only difference is that how the sign test is made. For click injection, 

every installation is examined to make sure that the installation comes within 20 seconds 

after the click. If the click-to-install time is less than 20 seconds, the publisher tends to be 

fraud. Therefore, the sign test of click injection checks the CTIT of each installation to 

see if it is less than 20 seconds or not. The code given in A.3 counts the positive values 

                                                 
1 App Samurai Inc., San Francisco, CA, USA 
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(i.e. the number of installations whose CTIT values are more than 20 seconds) in the sign 

test of click injection, whereas the code given in A.4 counts the negative values (i.e. the 

number of installations whose CTIT values are less than 2 hours) in the sign test of click 

spamming. The code given in A.5 counts the number of rejected tests in both sign tests 

of click spamming (A.1) and sign test of click injection (A.2) to calculate the total number 

of rejected tests during the campaign duration. The code given in A.6 clusters the CTITs 

of all installations belonging to each specific “campaign – sub campaign – publisher” 

tuple.  

 

The code that is shown is A.7 basically calls all the codes related to click spamming (A1, 

A4, A5, and A6) for each publisher one by one. Firstly, the code in A.6 is called as a 

preparation of the sign test. After that the code in A.1 is called to process the collected 

data. These steps are repeated for every publisher via the code in A.7. Lastly, the code 

given in A.8 is similar with the code in A.7. The only difference is that the code in A.8 

calls all the codes related to click injection (A2, A3, A5, A6).            

 

According to the results that are obtained running these Matlab codes, 1469 publishers 

out of 15263 publishers are found as click spammers. Click spammers constitute 9.6% of 

the publishers of the DSP company. The list of the spamming publishers is shown in 

Appendix B. Table 5.1 provides a small sample of the table given in Appendix B. The 

“publisher” column in the figure gives the IDs2 of the publishers who were detected while 

they were spamming during the campaign duration. The column of “detecting test” 

illustrates the order of the test in which the publisher is detected as spammer. The column 

of “total installs” shows the total installations attributed to the publisher during the 

campaign duration. For example, Publisher 5 (the first publisher in the table) has brought 

159 installations during a campaign duration. This publisher has been detected as a 

spammer at the 9th test. In other words, the publisher is found as spammer after 9 ∗ 10 =

90 installations have arrived. This means that the click spamming activities of Publisher 

5 can only be detected after (9 ∗ 10)/159 = 56.6% of the total installations have arrived.  

 

 

                                                 
2 These IDs are assigned to the publishes arbitrarily in order to conceal the identity of the publishers due 

to the company’s data privacy protocol. 
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Table 5.1. The sample of spammers table from Appendix B 

 
   

 

Figure 5.1 provides a histogram for the “detecting tests”. For example, the bar labeled as 

“1” in the figure represents the frequency of the publishers who are detected in the first 

test, while the bar labeled as “10” shows the number of the publishers who are detected 

in at least 6th test and at most 10th test. Figure 5.1 also shows that it is impossible to detect 

a spammer in the 2nd test because it is mathematically impossible. According to the rules, 

after the second test, two successive reject decisions are sought. If the publisher was 

detected in the 2nd test, the results of the first and second tests would be rejection. 

However, if the result of the first test was rejection, the publisher would be accused for 

spamming. For that reason, no one can be detected in the second test. As seen in Figure 

5.1, 1385 publishers are detected by the 40th test. In other word, 95% of the click 

spammers are detected before no more than 400 installations from these publishers have 

arrived.    
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Figure 5.1. The histogram of the “detecting tests” 

 

 

The distribution of the means of the click-to-install time of the fraudulent publishers is 

shown at the top graph of Figure 5.2. The spammers whose mean CTIT value is less than 

2 hours composes only 2% of the spamming publishers. This small group of spammers 

has a mean CTIT value less than 2 hours because they most probably mix up their legit 

advertising with occasional spamming in a random fashion. Most of the click spammers 

have a mean value that is more than one day. The bottom graph in Figure 5.2 illustrates 

distribution of mean of CTIT of legit publishers. As mentioned in Chapter 3, the mean of 

CTITs can be high because of some legitimate reasons. For example, some users may 

have forgotten to launch the application. This graph supports the claim that the mean is 

not a reliable descriptive statistic to understand the click spamming. 
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Figure 5.2. The histograms of mean of CTIT values for the fraudulent publishers (top) 

and the legit publishers (bottom) 

 

The median value of click-to-install times, on the other hand, provides a clear 

understanding for legit and spamming publishers. As seen in the bottom graph of Figure 

5.3, 90% of the legit publishers have median values that are less than 2 hours. In the top 

graph of Figure 5.3, even though most of the spammers have large median values, 20% 

of the fraudulent publishers have median values that are less than 2 hours. These 

publishers support the result of our analysis which is mentioned in Chapter 3. If the tests 

had been applied for the all-time installations of publishers, 303 spammers would have 

passed the tests. Financial loss is prevented with our multiple testing procedure. 
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Figure 5.3. The histograms of median of CTIT values for the fraudulent publishers 

(top) and the legit publishers (bottom) 

 

Click injection is a fraudulent activity which is used much less than click spamming. The 

main reason for underutilization of click injection is that click injection requires an 

untraceable spy app which can detect an installation just before it is executed and it is 

technically more difficulty than click spamming. In order to detect click injection, we 

applied the procedure discussed in Chapter 4. According to the results of our experiment, 

five publishers (out of 15263 publishers) is detected as fraudsters who conduct click 

injection. Table 5.2 shows the list of these publishers. Each publisher is represented with 

a row in the table. The first column provides publisher ID. The column of “detecting test” 

specifies the order of the first test indicating a click injection activity. The column of 

“total installs” shows the total number of installations of the detected publisher during the 

campaign duration. The last column shows the total number of rejected tests during the 
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campaign. In the best case (Publisher 6551), the click injection is detected in the 1st test. 

The fraudster is detected before (1 ∗ 10)/158 = 6% of the total installations have 

arrived. In the worst case, click injection is not detected until the last installation arrives. 

The number of rejects of the publisher 6550 is also worth mentioning. Although some 

reject decisions had been made before the publisher was blamed for click injection, 

publisher was accused of injection in 15th test because of the rule of our multiple testing 

procedure. The method of successive runs prevents the publishers from being wrongly 

accused. 

 

Although only 5 publishers are detected as fraudster who make click injection, we believe 

that in reality there are more publishers who are engaged in click injection. Unfortunately, 

the DSP company does not have a record on click injection. Therefore, we cannot 

calculate our type-II error for the click injection experiment. The reason for having a 

possibly high type-II error rate with the method of successive runs to detect click injection 

is that the CTIT values less than 20 seconds are much more stronger indicator for 

(injection) fraud than CTIT values more than 2 hours for (spamming) fraud.    

 

Table 5.2 The list of fraudulent publishers who made click injection  

Publisher 
Detecting  Total  Number of 

test Installs Rejects 

591 1 10 1 

592 1 10 1 

6550 15 622 23 

6551 1 158 5 

13606 1 28 1 

 

 

While we detected 0.34% of the publishers as click injecting fraudsters, we found that the 

click spamming ones constitute 10% of all the publishers. This finding supports the fact 

that click spamming is a more popular fraud type than click injection. Our findings also 

suggest that there is no publisher who conducts click spamming and click injection 

together. 
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6. CONCLUSION 

 

Click spamming and click injection are common types of frauds in mobile display 

advertising. However, the fraudulent activities of fraudsters can still be detected by 

applying some statistical techniques on click-to-install time (CTIT) values. In this study, 

we have defined a novel multiple testing procedure which conducts sign tests on CTIT 

values of a publisher periodically. If we observe 𝑟 successive rejections in these tests, 

where 𝑟 is a function of the number of tests conducted so far, we tag the publisher as 

fraudulent. Otherwise, publisher passes the testing procedure and is concluded to be legit. 

This technique can be utilized to detected both click spamming and click injection 

activities with a small adjustment which is merely changing the null hypothesis. We have 

also showed that our procedure has a false-positive error rate of at most 𝛼̅ = 0.05. Lastly, 

we run an experiment with 15263 publishers. According to the results of the experiment, 

we tag 1469 publishers for click spamming and 5 publishers for click injection.  

 

As a future research direction, our multiple testing procedures can be tested with a set of 

mobile advertisements campaigns in real time and the rate of success for our methods can 

be calculated. The method of successive runs applied in real time to detect click 

spamming and click injection can protect advertisers from further financial losses. 

According to the results of the click injection experiment, the number of click injecting 

publishers is less than the expected level. Therefore, deciding rule for click injection in 

the method of successive runs can be tuned up to reduce type-II error rate and achieve 

more accurate results. 

 

Another future research opportunity related to click injection is about 𝜂0 value in 

Equation (2). The value of 𝜂0 is assumed to be a lower bound for CTIT values of 

publishers which do not conduct any click injection activity. Since the size (in megabytes) 

of the mobile application is directly proportion with the download time of the app, it 

immediately affects the click-to-install time. Therefore, 𝜂0 can  be expressed as a function 
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of app size. Expressing 𝜂0 as an appropriate function of app size in the future can provide 

a more accurate detection of click-injecting publishers.    
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APPENDIX A 

 

A.1 Matlab Code for Sign Test for Click Spamming 

 

%sign test for spamming 

function [decision, numReject, ordReject]= sign_test(array) 

%decision="a"; 

ordReject=0; 

sz = size(array); 

szArray=zeros(sz(1),1); 

%Sign Array s 

for i=1:1:sz(1) 

if array(i,1)-7200 >0 

    szArray(i,1)=1; 

elseif array(i,1)-7200 <0 

    szArray(i,1) =-1; 

else 

    szArray(i,1) =0; 

end 

  

end 

%P_Value 

row=floor(sz(1)/10); 

pValues= zeros(row,1); 

k=1; 

son=sz(1)-mod(sz(1),10); 

for i=1:10:son-9 

    b=szArray(i:i+9); 

     

        ones=countOnes(b); 

        mones=countMOnes(b); 

        count=ones+mones; 

        %small=min(b); 

        pValues(k,1)=binocdf(mones,count,0.5); 

        k=k+1; 

     

     

  

end 

%Comparison of Values with 0.05  0=reject, 1=fail to reject 

sonuc=zeros(row,1); 

for i=1:1:sz(1)/10 

if pValues(i,1)<0.05 
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    sonuc(i,1)=0; 

else 

    sonuc(i,1)=1; 

end 

  

end 

counter=1; 

sonucSz=size(sonuc); 

numReject= countReject(sonuc); 

if sonucSz(1)<=1 

   

        if sonuc(1,1)==0 

          decision="fraud"; 

          ordReject=counter; 

        else  

          decision="legit"; 

           

        end 

     

elseif sonucSz(1)>1 && sonucSz(1)<=22 

    if sonuc(1,1)==0 

          decision="fraud"; 

          ordReject=counter; 

          return 

    end      

          counter=counter+1; 

         

     

        if sonucSz(1)==22     

            for i=2:1:21 

                if sonuc(i,1)==0 && sonuc(i+1,1)==0 

                decision="fraud"; 

                ordReject=counter+1; 

                return 

                else  

                decision="legit"; 

                end 

                counter=counter+1; 

            end 

         

         

        else  

            if sonucSz(1)==2 

            decision="legit"; 

             return 

            else 

        for i=2:1:sonucSz(1)-1 

            if sonuc(i,1)==0 && sonuc(i+1,1)==0 

             decision="fraud"; 
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             ordReject=counter+1; 

            return 

            else 

            decision="legit";  

            end 

            counter=counter+1; 

        end 

            end 

        end 

         

         

     

         

      

elseif sonucSz(1)>22 && sonucSz(1)<=434 

    if sonuc(1,1)==0 

          decision="fraud"; 

          ordReject=counter; 

          return 

    end     

          counter=counter+1; 

         

    for i=2:1:21 

        if sonuc(i,1)==0 && sonuc(i+1,1)==0 

          decision="fraud"; 

          ordReject=counter+1; 

          return 

        end 

        counter=counter+1; 

    end 

     

    if sonucSz(1)==434   

        for i=22:1:432 

            if sonuc(i,1)==0 && sonuc(i+1,1)==0 && 

sonuc(i+2,1)==0 

            decision="fraud"; 

            ordReject=counter+2; 

            return 

            else  

                decision="legit"; 

            end 

            counter=counter+1; 

        end 

     

    else 

        if sonucSz(1)== 23 

            decision="legit"; 

            return 

        else 
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        for i=22:1:sonucSz(1)-2 

        if sonuc(i,1)==0 && sonuc(i+1,1)==0 && 

sonuc(i+2,1)==0 

          decision="fraud"; 

          ordReject=counter+2; 

          return 

        else  

            decision="legit"; 

        end 

        counter=counter+1; 

        end 

        end 

    end 

     

else 

    if sonuc(1,1)==0 

          decision="fraud"; 

          ordReject=counter; 

          return 

     end     

          counter=counter+1; 

     

    for i=2:1:21 

        if sonuc(i,1)==0 && sonuc(i+1,1)==0 

          decision="fraud"; 

          ordReject=counter+1; 

          return 

        end 

        counter=counter+1; 

    end 

    for i=22:1:432 

        if sonuc(i,1)==0 && sonuc(i+1)==0 && sonuc(i+2)==0 

          decision="fraud"; 

          ordReject=counter+2; 

          return 

        end 

        counter=counter+1; 

    end 

     

        if sonucSz(1)==8524 

    for i=431:1:8521 

        if sonuc(i,1)==0 && sonuc(i+1,1)==0 && 

sonuc(i+2,1)==0 && sonuc(i+3,1)==0 

          decision="fraud"; 

          ordReject=counter+2; 

          return 

        else  

            decision="legit"; 

        end 
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        counter=counter+1; 

    end 

         

    else 

        if sonucSz(1)==435 

            decision="legit"; 

            return 

        else 

        for i=432:1:sonucSz(1)-3 

        if sonuc(i,1)==0 && sonuc(i+1,1)==0 && 

sonuc(i+2,1)==0 && sonuc(i+3,1)==0 

          decision="fraud"; 

          ordReject=counter+2; 

          return 

        else  

            decision="legit"; 

        end 

        counter=counter+1; 

        end 

        end 

        end 

     

  

end  

  

end 

 

A.2 Matlab Code for Sign Test for Click Injection 

 

%sign test for injection 

function [decision, numReject, ordReject]= 

Psign_test(array) 

%decision="a"; 

ordReject=0; 

sz = size(array); 

szArray=zeros(sz(1),1); 

%Sign Array  

for i=1:1:sz(1) 

if array(i,1)-20 >0 

    szArray(i,1)=1; 

elseif array(i,1)-20 <0 

    szArray(i,1) =-1; 

else 

    szArray(i,1) =0; 

end 

  

end 

%P_Value 
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row=floor(sz(1)/10); 

pValues= zeros(row,1); 

k=1; 

son=sz(1)-mod(sz(1),10); 

for i=1:10:son-9 

    b=szArray(i:i+9); 

     

        ones=countOnes(b); 

        mones=countMOnes(b); 

        count=ones+mones; 

        %small=min(b); 

        pValues(k,1)=binocdf(ones,count,0.5); 

        k=k+1; 

     

     

  

end 

% Comparison of Values with 0.05  0=reject, 1=fail to 

reject 

sonuc=zeros(row,1); 

for i=1:1:sz(1)/10 

if pValues(i,1)<0.05 

    sonuc(i,1)=0; 

else 

    sonuc(i,1)=1; 

end 

  

end 

counter=1; 

sonucSz=size(sonuc); 

numReject= countReject(sonuc); 

if sonucSz(1)<=1 

   

        if sonuc(1,1)==0 

          decision="fraud"; 

          ordReject=counter; 

        else  

          decision="legit"; 

           

        end 

     

elseif sonucSz(1)>1 && sonucSz(1)<=22 

    if sonuc(1,1)==0 

          decision="fraud"; 

          ordReject=counter; 

          return 

    end      

          counter=counter+1; 
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        if sonucSz(1)==22     

            for i=2:1:21 

                if sonuc(i,1)==0 && sonuc(i+1,1)==0 

                decision="fraud"; 

                ordReject=counter+1; 

                return 

                else  

                decision="legit"; 

                end 

                counter=counter+1; 

            end 

         

         

        else  

            if sonucSz(1)==2 

            decision="legit"; 

             return 

            else 

        for i=2:1:sonucSz(1)-1 

            if sonuc(i,1)==0 && sonuc(i+1,1)==0 

             decision="fraud"; 

             ordReject=counter+1; 

            return 

            else 

            decision="legit";  

            end 

            counter=counter+1; 

        end 

            end 

        end 

         

         

     

         

      

elseif sonucSz(1)>22 && sonucSz(1)<=434 

    if sonuc(1,1)==0 

          decision="fraud"; 

          ordReject=counter; 

          return 

    end     

          counter=counter+1; 

         

    for i=2:1:21 

        if sonuc(i,1)==0 && sonuc(i+1,1)==0 

          decision="fraud"; 

          ordReject=counter+1; 

          return 
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        end 

        counter=counter+1; 

    end 

     

    if sonucSz(1)==434   

        for i=22:1:432 

            if sonuc(i,1)==0 && sonuc(i+1,1)==0 && 

sonuc(i+2,1)==0 

            decision="fraud"; 

            ordReject=counter+2; 

            return 

            else  

                decision="legit"; 

            end 

            counter=counter+1; 

        end 

     

    else 

        if sonucSz(1)== 23 

            decision="legit"; 

            return 

        else 

        for i=22:1:sonucSz(1)-2 

        if sonuc(i,1)==0 && sonuc(i+1,1)==0 && 

sonuc(i+2,1)==0 

          decision="fraud"; 

          ordReject=counter+2; 

          return 

        else  

            decision="legit"; 

        end 

        counter=counter+1; 

        end 

        end 

    end 

     

else 

    if sonuc(1,1)==0 

          decision="fraud"; 

          ordReject=counter; 

          return 

     end     

          counter=counter+1; 

     

    for i=2:1:21 

        if sonuc(i,1)==0 && sonuc(i+1,1)==0 

          decision="fraud"; 

          ordReject=counter+1; 

          return 
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        end 

        counter=counter+1; 

    end 

    for i=22:1:432 

        if sonuc(i,1)==0 && sonuc(i+1)==0 && sonuc(i+2)==0 

          decision="fraud"; 

          ordReject=counter+2; 

          return 

        end 

        counter=counter+1; 

    end 

     

        if sonucSz(1)==8524 

    for i=431:1:8521 

        if sonuc(i,1)==0 && sonuc(i+1,1)==0 && 

sonuc(i+2,1)==0 && sonuc(i+3,1)==0 

          decision="fraud"; 

          ordReject=counter+2; 

          return 

        else  

            decision="legit"; 

        end 

        counter=counter+1; 

    end 

         

    else 

        if sonucSz(1)==435 

            decision="legit"; 

            return 

        else 

        for i=432:1:sonucSz(1)-3 

        if sonuc(i,1)==0 && sonuc(i+1,1)==0 && 

sonuc(i+2,1)==0 && sonuc(i+3,1)==0 

          decision="fraud"; 

          ordReject=counter+2; 

          return 

        else  

            decision="legit"; 

        end 

        counter=counter+1; 

        end 

        end 

        end 

     

  

end 

 

end 
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A.3 Matlab Code for Counting Positive Values for Sign Test 

 

function [x]= countOnes(array) 

%number of ones in array 

sz = size(array); 

n=0; 

for i=1:1:sz(1) 

    if array(i) == 1 

        n=n+1; 

    end 

x = n; 

  

end 

 

A.4 Matlab Code for Counting Negative Values for Sign Test 

 

function [x]= countMOnes(array) 

%umber of minus ones in array 

sz = size(array); 

n=0; 

for i=1:1:sz(1) 

    if array(i) == -1 

        n=n+1; 

    end 

x = n; 

  

end 

 

A.5 Matlab Code for Counting Rejected Test  

 

function [x]= countReject(array) 

%arraydeki bir sayýsý 

sz = size(array); 

n=0; 

for i=1:1:sz(1) 

    if array(i) == 0 

        n=n+1; 

    end 

x = n; 

  

end 

 

A.6 Matlab Code for Collecting Data to Do Sign Test for a Publisher 

 

%Function for collecting data from excel files 
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function [array, duration]= collectdata(camp, subcamp, pub, 

numInst, data1, data2) 

array = zeros(numInst,1); 

  

%[~,~,data1]=xlsread('data1','duz'); 

%[~,~,data2]=xlsread('data2','duz'); 

k=1; 

%disp('data okundu'); 

  

endpoint1 = size(data1); 

endpoint2 = size(data2); 

strcamp = ischar(camp); 

if strcamp==1 

    camp = convertCharsToStrings(camp); 

end 

  

strsubcamp = ischar(subcamp); 

if strsubcamp==1 

    subcamp= convertCharsToStrings(subcamp); 

end 

strpub = ischar(pub); 

if strpub==1 

    pub=convertCharsToStrings(pub); 

end 

%disp(strcamp); 

%disp(strsubcamp); 

%disp(strpub); 

  

  

  

if strcamp==1 && strsubcamp==1 && strpub==1 

    for i=1:1:endpoint1(1)-1 

% x for camp, y for subcamp, z for pub 

        x=strcmp(convertCharsToStrings(data1{i+1,3}),camp); 

        y=strcmp(convertCharsToStrings(data1{i+1,4}),subcam

p); 

        z=strcmp(convertCharsToStrings(data1{i+1,5}),pub); 

        if x== 1 && y==1 && z==1 

        array(k,1)= data1{i+1,1}; 

        array(k,2)= data1{i+1,6}; 

        k=k+1; 

        end 

    end 

elseif strcamp==0 && strsubcamp==1 && strpub==1 

    for i=1:1:endpoint1(1)-1 

% x for camp, y for subcamp, z for pub 

%        x=strcmp(data1{i+1,3},camp); 

        y=strcmp(convertCharsToStrings(data1{i+1,4}),subcam

p); 
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        z=strcmp(convertCharsToStrings(data1{i+1,5}),pub); 

        if data1{i+1,3}== camp && y==1 && z==1 

        array(k,1)= data1{i+1,1}; 

        array(k,2)= data1{i+1,6}; 

        k=k+1; 

        end 

    end 

elseif strcamp==1 && strsubcamp==0 && strpub==1 

    for i=1:1:endpoint1(1)-1 

% x for camp, y for subcamp, z for pub 

        x=strcmp(convertCharsToStrings(data1{i+1,3}),camp); 

%        y=strcmp(data1{i+1,4},subcamp); 

        z=strcmp(convertCharsToStrings(data1{i+1,5}),pub); 

        if x==1 && data1{i+1,4}==subcamp && z==1 

        array(k,1)= data1{i+1,1}; 

        array(k,2)= data1{i+1,6}; 

        k=k+1; 

        end 

    end 

elseif strcamp==1 && strsubcamp==1 && strpub==0 

    for i=1:1:endpoint1(1)-1 

% x for camp, y for subcamp, z for pub 

        x=strcmp(convertCharsToStrings(data1{i+1,3}),camp); 

        y=strcmp(convertCharsToStrings(data1{i+1,4}),subcam

p); 

%        z=strcmp(data1{i+1,5},pub); 

        if x==1 && y==1 && data1{i+1,5}==pub 

        array(k,1)= data1{i+1,1}; 

        array(k,2)= data1{i+1,6}; 

        k=k+1; 

        end 

    end 

elseif strcamp==1 && strsubcamp==0 && strpub==0 

    for i=1:1:endpoint1(1)-1 

% x for camp, y for subcamp, z for pub 

        x=strcmp(convertCharsToStrings(data1{i+1,3}),camp); 

%        y=strcmp(data1{i+1,4},subcamp); 

%        z=strcmp(data1{i+1,5},pub); 

        if x==1 && data1{i+1,4}==subcamp && 

data1{i+1,5}==pub 

        array(k,1)= data1{i+1,1}; 

        array(k,2)= data1{i+1,6}; 

        k=k+1; 

        end 

    end 

elseif strcamp==0 && strsubcamp==1 && strpub==0 

    for i=1:1:endpoint1(1)-1 

% x for camp, y for subcamp, z for pub 

%        x=strcmp(data1{i+1,3},camp); 
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        y=strcmp(convertCharsToStrings(data1{i+1,4}),subcam

p); 

%        z=strcmp(data1{i+1,5},pub); 

        if data1{i+1,3}== camp && y==1 && data1{i+1,5}==pub 

        array(k,1)= data1{i+1,1}; 

        array(k,2)= data1{i+1,6}; 

        k=k+1; 

        end 

    end 

elseif strcamp==0 && strsubcamp==0 && strpub==1 

    for i=1:1:endpoint1(1)-1 

% x for camp, y for subcamp, z for pub 

%        x=strcmp(data1{i+1,3},camp); 

%        y=strcmp(data1{i+1,4},subcamp); 

        z=strcmp(convertCharsToStrings(data1{i+1,5}),pub); 

        if data1{i+1,3}== camp && data1{i+1,4}==subcamp && 

z==1 

        array(k,1)= data1{i+1,1}; 

        array(k,2)= data1{i+1,6}; 

        k=k+1; 

        end 

    end 

else 

    for i=1:1:endpoint1(1)-1 

        if data1{i+1,3}==camp & data1{i+1,4}==subcamp & 

data1{i+1,5}==pub 

            array(k,1)= data1{i+1,1}; 

            array(k,2)= data1{i+1,6}; 

            k=k+1; 

        end 

    end     

end 

  

  

if strcamp==1 && strsubcamp==1 && strpub==1 

    for i=1:1:endpoint2(1)-1 

% x for camp, y for subcamp, z for pub 

        x=strcmp(convertCharsToStrings(data2{i+1,3}),camp); 

        y=strcmp(convertCharsToStrings(data2{i+1,4}),subcam

p); 

        z=strcmp(convertCharsToStrings(data2{i+1,5}),pub); 

        if x== 1 && y==1 && z==1 

        array(k,1)= data2{i+1,1}; 

        array(k,2)= data2{i+1,6}; 

        k=k+1; 

        end 

    end 

elseif strcamp==0 && strsubcamp==1 && strpub==1 

    for i=1:1:endpoint2(1)-1 
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% x for camp, y for subcamp, z for pub 

%        x=strcmp(data2{i+1,3},camp); 

        y=strcmp(convertCharsToStrings(data2{i+1,4}),subcam

p); 

        z=strcmp(convertCharsToStrings(data2{i+1,5}),pub); 

        if data2{i+1,3}== camp && y==1 && z==1 

        array(k,1)= data2{i+1,1}; 

        array(k,2)= data2{i+1,6}; 

        k=k+1; 

        end 

    end 

elseif strcamp==1 && strsubcamp==0 && strpub==1 

    for i=1:1: endpoint2(1)-1 

% x for camp, y for subcamp, z for pub 

        x=strcmp(convertCharsToStrings(data2{i+1,3}), 

camp); 

%        y=strcmp(data2{i+1,4}, subcamp); 

        z=strcmp(convertCharsToStrings(data2{i+1,5}), pub); 

        if x==1 && data2{i+1,4} ==subcamp && z==1 

        array(k,1)= data2{i+1,1}; 

        array(k,2)= data2{i+1,6}; 

        k=k+1; 

        end 

    end 

elseif strcamp==1 && strsubcamp==1 && strpub==0 

    for i=1:1: endpoint2(1)-1 

% x for camp, y for subcamp, z for pub 

        x=strcmp(convertCharsToStrings(data2{i+1,3}), 

camp); 

        y=strcmp(convertCharsToStrings(data2{i+1,4}), 

subcamp); 

%        z=strcmp(data2{i+1,5}, pub); 

        if x==1 && y==1 && data2{i+1,5} ==pub 

        array(k,1)= data2{i+1,1}; 

        array(k,2)= data2{i+1,6}; 

        k=k+1; 

        end 

    end 

elseif strcamp==1 && strsubcamp==0 && strpub==0 

    for i=1:1: endpoint2(1)-1 

% x for camp, y for subcamp, z for pub 

        x=strcmp(convertCharsToStrings(data2{i+1,3}),camp); 

%        y=strcmp(data2{i+1,4},subcamp); 

%        z=strcmp(data2{i+1,5},pub); 

        if x==1 && data2{i+1,4}==subcamp && 

data2{i+1,5}==pub 

        array(k,1)= data2{i+1,1}; 

        array(k,2)= data2{i+1,6}; 

        k=k+1; 
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        end 

    end 

elseif strcamp==0 && strsubcamp==1 && strpub==0 

    for i=1:1: endpoint2(1)-1 

% x for camp, y for subcamp, z for pub 

%        x=strcmp(data2{i+1,3}, camp); 

        y=strcmp(convertCharsToStrings(data2{i+1,4}),subcam

p); 

%        z=strcmp(data2{i+1,5}, pub); 

        if data2{i+1,3} == camp && y==1 && data2{i+1,5} == 

pub 

        array(k,1) = data2{i+1,1}; 

        array(k,2) = data2{i+1,6}; 

        k=k+1; 

        end 

    end 

elseif strcamp==0 && strsubcamp==0 && strpub==1 

    for i=1:1:endpoint2(1)-1 

% x for camp, y for subcamp, z for pub 

%        x=strcmp(data2{i+1,3}, camp); 

%        y=strcmp(data2{i+1,4}, subcamp); 

        z=strcmp(convertCharsToStrings(data2{i+1,5}), pub); 

        if data2{i+1,3}== camp && data2{i+1,4}==subcamp && 

z==1 

        array(k,1)= data2{i+1,1}; 

        array(k,2)= data2{i+1,6}; 

        k=k+1; 

        end 

    end 

else 

    for i=1:1: endpoint2(1)-1 

        if data2{i+1,3} == camp & data2{i+1,4}==subcamp & 

data2{i+1,5}==pub 

            array(k,1) = data2{i+1,1}; 

            array(k,2) = data2{i+1,6}; 

            k=k+1; 

        end 

    end     

end 

  

array=sortrows(array); 

duration = (array(numInst,1)-array(1,1))/(60*60*24); 

end 

 

A.7 Matlab Code to Detect Click Spamming 

 

[~,~,data1]=xlsread('data1','duz'); 

[~,~,data2]=xlsread('data2','duz'); 



 

 
60 

spamming={0}; 

for a=1:1:15244 

    for b=1:1:10 

    spamming{a,b}=0; 

    end 

end 

[~,~,veri]=xlsread('Tez Descriptive 

Statistics1','Publishers'); 

spamming{1,10}='Decision'; 

spamming{1,1}='Campaign ID'; 

spamming{1,2}='Subcampaign ID'; 

spamming{1,3}='Publisher Number'; 

spamming{1,4}='Number of Total Installs'; 

spamming{1,5}='Mean'; 

spamming{1,6}='Median'; 

spamming{1,7}='Campaign Duration'; 

spamming{1,8}='Spamming Order'; 

spamming{1,9}='Number of Reject'; 

  

for i=2:1:15244 

    display(i); 

    [array, duration]= collectdata(veri{i,1}, veri{i,2}, 

veri{i,3}, veri{i,4}, data1, data2); 

    for j=1:1:6 

        spamming{i,j}=veri{i,j}; 

    end 

    spamming{i,7}=duration; 

    endpoint=size(array); 

    array1=zeros(endpoint(1),1); 

    for k=1:1:endpoint 

        array1(k,1)=array(k,2); 

    end 

         

  

    [decision, numReject, ordReject]= sign_test(array1); 

    spamming{i,8}=ordReject; 

    spamming{i,9}=numReject; 

    spamming{i,10}=decision; 

end 

 

A.8 Matlab Code to Detect Click Injection  

 

[~,~,data1]=xlsread('data1','duz'); 

[~,~,data2]=xlsread('data2','duz'); 

injection={0}; 

for a=1:1:15244 

    for b=1:1:10 

    injection{a,b}=0; 
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    end 

end 

[~,~,veri]=xlsread('Tez Descriptive 

Statistics1','Publishers'); 

injection{1,10}='Decision'; 

injection{1,1}='Campaign ID'; 

injection{1,2}='Subcampaign ID'; 

injection{1,3}='Publisher Number'; 

injection{1,4}='Number of Total Installs'; 

injection{1,5}='Mean'; 

injection{1,6}='Median'; 

injection{1,7}='Campaign Duration'; 

injection{1,8}='Spamming Order'; 

injection{1,9}='Number of Reject'; 

  

for i=2:1:15244 

    display(i); 

    [array, duration]= collectdata(veri{i,1}, veri{i,2}, 

veri{i,3}, veri{i,4}, data1, data2); 

    for j=1:1:6 

        injection{i,j}=veri{i,j}; 

    end 

    injection{i,7}=duration; 

    endpoint=size(array); 

    array1=zeros(endpoint(1),1); 

    for k=1:1:endpoint 

        array1(k,1)=array(k,2); 

    end 

         

  

    [decision, numReject, ordReject]= Psign_test(array1); 

    injection{i,8}=ordReject; 

    injection{i,9}=numReject; 

    injection{i,10}=decision; 

end 
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APPENDIX B 

 

B.1 Detected Click Spammers According to Experiment 

 

Publisher 
Detecting 

Test  

Total 

Installs  
Publisher 

Detecting 

Test  

Total 

Installs  
Publisher 

Detecting 

Test  

Total 

Installs  
Publisher 

Detecting 

Test  Total 

Installs 

5 9 159 2592 68 697 7542 1 23 11783 1 10 

6 4 258 2822 101 1219 7543 1 39 11785 16 396 

10 41 421 2832 7 74 7593 1 19 11786 3 227 

60 5 72 2836 100 1010 7594 1 14 11790 3 62 

65 3 359 2837 1 34 7608 1 10 11824 1 31 

81 1 30 2842 7 1102 7615 40 757 11825 1 44 

152 1 20 2910 12 121 7619 327 5692 11826 1 27 

158 1 16 2923 7 70 7627 34 406 11830 1 20 

159 1 115 3111 17 728 7661 28 343 11831 3 211 

160 1 25 3157 1 25 7664 33 423 11868 3 72 

161 3 362 3175 17 303 7668 68 820 11897 1 13 

162 1 78 3193 5 54 7683 116 1160 11908 15 151 

163 3 701 3195 3 31 7691 47 1244 12163 20 294 

165 1 11 3196 5 86 7694 29 369 12165 8 184 

167 1 13 3358 1 17 7702 20 223 12166 56 4343 

169 1 65 3360 1 24 7711 383 9670 12168 8 95 

170 1 18 3467 1 184 7733 3 68 12170 9 121 

171 1 12 3469 1 29 7736 1 13 12244 1 14 

172 3 151 3473 1 406 7739 10 109 12346 51 609 

173 1 21 3475 1 12 7745 1 51 12347 35 389 

174 1 10 3476 47 978 7749 1 12 12354 20 1738 

175 1 10 3485 4 130 7750 6 79 12355 1 150 

177 1 25 3488 9 136 7752 1 17 12367 11 1824 

178 1 13 3489 4 101 7753 4 100 12377 5 57 

207 3 34 3492 4 56 7755 1 10 12384 17 1075 

241 1 10 3497 14 224 7756 3 33 12385 17 302 

249 1 53 3527 1 10 7757 9 90 12389 14 1124 

256 1 10 3536 1 23 7758 7 94 12390 1 21 

268 1 11 3539 1 30 7761 1 20 12391 15 2487 
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Publisher 
Detecting 

Test  

Total 

Installs  
Publisher 

Detecting 

Test  

Total 

Installs  
Publisher 

Detecting 

Test  

Total 

Installs  
Publisher 

Detecting 

Test  

Total 

Installs  

272 1 14 3540 1 11 7763 5 76 12398 4 41 

282 1 10 3543 1 53 7764 1 18 12400 7 126 

322 13 207 3553 21 228 7773 3 33 12404 1 16 

324 3 51 3560 1 23 7776 5 79 12408 1 13 

330 1 13 3562 3 148 7778 1 12 12409 6 69 

331 1 10 3565 1 33 7779 3 38 12412 12 137 

336 1 15 3567 1 516 7780 76 992 12420 1 10 

343 1 15 3568 1 2103 7803 1 22 12421 1 10 

345 1 19 3569 4 1402 7809 1 12 12422 3 35 

352 1 17 3570 5 164 7811 1 12 12430 1 20 

360 1 22 3571 1 23 7812 38 385 12437 1 18 

362 1 13 3572 1 337 7813 32 332 12442 1 10 

365 1 10 3573 4 70 7818 17 179 12443 1 12 

369 1 14 3574 5 67 7829 41 489 12444 1 24 

371 1 12 3575 4 177 7830 16 247 12447 5 71 

382 27 270 3577 1 45 7842 19 589 12450 15 174 

383 1 19 3578 1 54 7851 17 297 12453 4 49 

385 98 1003 3579 1 33 7855 25 325 12454 21 353 

387 1 11 3580 1 105 7871 5 65 12456 3 183 

405 1 59 3581 1 232 7872 1 26 12457 1 41 

406 1 14 3582 1 96 7873 1 10 12463 4 49 

407 1 12 3583 3 140 7948 9 123 12467 1 12 

408 1 20 3584 3 32 7952 1 14 12468 12 135 

409 1 15 3587 1 84 7957 4 70 12471 1 19 

427 1 34 3588 3 686 7958 1 25 12502 1 17 

441 1 10 3590 4 56 7961 3 42 12507 3 792 

447 53 708 3591 1 309 7962 3 30 12513 1 44 

498 34 678 3593 1 26 7963 1 14 12515 1 25 

509 39 509 3594 1 215 7965 1 13 12522 1 19707 

593 1 40 3595 1 43 7970 1 19 12525 8 365 

603 1 12 3598 1 13 7973 4 248 12543 17 265 

614 1 12 3599 1 12 7976 1 16 12570 15 162 

623 1 17 3602 30 310 7981 9 101 12609 5 57 

650 1 20 3614 32 335 7982 7 1950 12610 3 31 

658 1 13 3615 26 269 7984 13 1843 12613 1 30 

663 1 32 3633 5 74 7985 1 11 12620 4 57 

665 1 21 3637 10 139 7986 10 286 12623 13 236 

676 1 18 3638 5 339 7987 14 157 12624 1 121 

678 1 13 3639 1 468 7988 7 76 12626 1 10 
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Publisher 
Detecting 

Test  

Total 

Installs  
Publisher 

Detecting 

Test  

Total 

Installs  
Publisher 

Detecting 

Test  

Total 

Installs  
Publisher 

Detecting 

Test  

Total 

Installs  

687 1 22 3641 1 129 7989 4 309 12627 1 72 

691 4 41 3642 1 32 7993 3 44 12628 1 60 

692 3 68 3651 79 833 7994 7 143 12629 1 10 

693 1 10 3652 1 10 8010 1 37 12638 1 32 

710 46 469 3654 1 99 8011 1 10 12679 6 597 

718 4 68 3655 1 10 8015 1 11 12680 5 51 

720 5 53 3657 85 865 8016 1 11 12693 1 10 

721 8 237 3659 1 67 8017 3 47 12695 1 121 

724 4 91 3667 4 41 8018 1 11 12697 3 50 

725 9 182 3668 1 68 8037 18 185 12720 1 31 

746 14 10740 3671 7 371 8117 1 10 12721 1 20 

747 1 64 3703 1 21 8118 1 16 12722 1 12 

748 1 31 3704 3 255 8119 1 10 12730 1 12 

772 1 21 3705 1 283 8120 1 11 12742 9 115 

822 1 32 3706 1 36 8121 1 17 12745 1 22 

847 3 100 3707 4 51 8122 1 12 12746 3 50 

848 1 19 3713 1 17 8124 1 12 12747 19 877 

849 1 12 3717 4 167 8125 1 23 12748 1 11 

850 1 10 3723 3 62 8187 18 248 12751 5 201 

851 3 170 3724 1 13 8205 6 80 12758 1 10 

852 1 33 3729 16 160 8220 17 217 12767 3 42 

853 1 16 3731 24 252 8232 1 18 12771 1 17 

854 1 16 3743 4 176 8233 1 11 12774 5 55 

891 16 902 3744 3 41 8234 1 82 12776 6 70 

895 1 23 3748 1 12 8235 1 15 12785 135 1353 

902 1 34 3760 1 17 8237 1 284 12786 3 850 

913 1 11 3761 3 50 8241 1 13 12787 1 396 

947 1 45 3766 1 11 8314 1 11 12821 18 264 

948 1 13 3830 7 79 8315 16 1170 12830 1 42 

956 12 122 4093 1 20 8351 96 973 12834 4 52 

957 8 84 4094 1 34 8355 30 373 12848 19 208 

958 4 104 4142 1 24 8361 43 437 12849 3 40 

960 1 24 4235 13 138 8362 27 626 12917 144 1785 

965 1 49 4258 123 2723 8379 17 181 12968 1 15 

966 1 16 4287 6 91 8380 24 417 12970 1 20 

968 10 336 4333 1 49 8384 162 3191 12984 1 569 

971 1 20 4334 1 85 8397 7 95 12986 1 24 

991 6 462 4335 3 37 8411 43 474 12996 1 44 

992 11 851 4338 1 10 8417 80 815 13001 3 45 

993 3 167 4339 1 10 8437 22 1795 13002 20 493 
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Publisher 
Detecting 

Test  

Total 

Installs  
Publisher 

Detecting 

Test  

Total 

Installs  
Publisher 

Detecting 

Test  

Total 

Installs  
Publisher 

Detecting 

Test  

Total 

Installs  

994 3 44 4340 1 10 8482 42 433 13003 10 119 

995 7 420 4341 21 304 8487 21 258 13020 20 213 

996 1 131 4345 1 19 8493 9 3172 13062 1 85 

998 4 127 4346 1 20 8495 110 1177 13063 6 93 

1003 13 142 4351 1 25 8497 1 15 13064 9 118 

1004 39 508 4385 40 400 8517 25 257 13065 4 58 

1013 1 12 4410 1 43 8527 22 232 13067 1 148 

1015 1 15 4411 1 30 8542 35 356 13069 1 30 

1016 1 12 4413 1 73 8548 1 18 13071 4 73 

1026 1 35 4415 1 32 8560 1 12 13072 1 232 

1031 4 340 4420 1 24 8564 5 1364 13074 1 42 

1035 10 376 4430 1 106 8576 12 1060 13075 3 1937 

1037 7 129 4436 1 13 8615 1 35 13077 1 69 

1038 1 53 4439 1 15 8632 13 184 13078 3 255 

1042 1 17 4441 1 11 8635 68 684 13079 1 174 

1043 1 17 4457 1 74 8638 1 41 13082 4 72 

1048 1 16 4458 1 15 8649 1 14 13083 1 11 

1051 3 74 4460 1 349 8650 1 36 13087 1 140 

1053 1 18 4462 1 42 8651 1 41 13088 8 240 

1054 3 43 4491 6 83 8653 1 510 13089 3 39 

1061 1 13 4495 1 29 8654 3 834 13092 7 300 

1062 1 12 4497 6 65 8655 3 741 13093 4 51 

1063 1 12 4523 21 227 8656 1 49 13097 1 103 

1065 1 20 4611 31 390 8658 1 92 13099 1 11 

1066 1 13 4612 12 148 8659 3 122 13101 37 434 

1067 1 21 4630 1 67 8660 1 153 13103 1 11 

1075 1 21 4631 1 59 8661 1 75 13104 4 43 

1076 1 10 4633 3 30 8662 1 15 13114 15 163 

1080 1 12 4634 3 44 8663 4 56 13116 1 50 

1090 1 27 4635 29 668 8664 1 29 13119 9 240 

1093 16 327 4638 3 32 8665 3 148 13130 1 14 

1094 3 38 4664 29 346 8668 3 148 13131 1 33 

1095 1 28 4672 10 301 8669 4 41 13132 1 13 

1096 1 14 4704 95 1096 8670 1 354 13134 1 17 

1116 1 11 4804 1 24 8671 1 46 13136 1 19 

1160 3 111 4812 3 411 8682 63 737 13138 3 252 

1163 6 63 4898 44 559 8685 11 665 13140 21 325 

1179 6 859 4900 3 194 8713 1 32 13141 3 94 

1182 5 444 4919 6 67 8728 1 53 13142 13 634 

1184 8 539 5003 5 57 8729 1 21 13143 4 109 
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Publisher 
Detecting 

Test  

Total 

Installs  
Publisher 

Detecting 

Test  

Total 

Installs  
Publisher 

Detecting 

Test  

Total 

Installs  
Publisher 

Detecting 

Test  

Total 

Installs  

1185 13 135 5019 6 104 8732 1 348 13144 6 151 

1187 4 147 5025 20 428 8742 13 504 13145 10 450 

1189 3 254 5027 1 25 8746 1 27 13146 1 10 

1203 3 434 5029 1 11 8748 4 114 13150 1 45 

1213 1 10 5030 3 101 8749 1 134 13151 7 76 

1217 1 55 5037 1 51 8750 18 825 13152 1 50 

1218 1 11 5042 19 198 8751 19 1312 13153 1 24 

1221 1 19 5057 12 120 8761 16 224 13157 1 15 

1231 1 16 5070 16 168 8767 12 593 13166 6 79 

1232 1 11 5073 14 149 8769 19 274 13167 3 50 

1242 1 10 5083 7 72 8782 9 149 13173 1 139 

1288 14 152 5092 3 42 8809 4 55 13176 1 23 

1289 6 69 5093 18 1525 8811 13 233 13180 1 130 

1292 1 17 5094 1 40 8812 4 51 13188 1 14 

1321 1 32 5095 1 20 8816 8 215 13190 13 1002 

1340 5 287 5114 16 226 8817 4 49 13191 1 40 

1341 10 557 5254 39 422 8825 7 72 13192 3 99 

1342 1 15 5282 12 174 8863 3 36 13193 1 65 

1343 1 22 5343 27 431 8864 1 28 13194 1 46 

1345 4 428 5350 18 188 8865 6 131 13195 7 356 

1346 3 71 5373 11 110 8870 4 58 13197 8 398 

1348 1 11 5427 25 288 8875 22 257 13198 1 717 

1361 5 199 5469 20 217 8895 1 43 13199 1 16 

1363 3 51 5494 13 187 8896 1 12 13201 1 19 

1366 1 13 5495 1 148 8897 1 38 13203 1 16 

1368 1 32 5534 19 232 8901 1 15 13204 5 166 

1370 1 18 5547 10 267 8906 1 20 13205 1 234 

1373 3 43 5557 5 58 8936 55 566 13206 1 44 

1374 9 1722 5610 19 260 8988 3 50 13208 1 86 

1382 1 53 5621 1 38 8995 7 146 13214 4 98 

1396 1 70 5623 10 116 9001 13 191 13220 3 284 

1397 1 16 5625 47 993 9002 11 243 13224 3 49 

1400 1 10 5648 43 760 9016 11 2073 13231 130 2851 

1403 6 89 5650 10 187 9024 5 69 13234 1 178 

1404 3 44 5651 1 12 9029 24 538 13241 1 214 

1407 1 10 5654 1 10 9038 80 826 13242 1 319 

1409 5 579 5655 1 29 9050 24 285 13245 1 57 

1410 4 66 5661 1 17 9068 69 697 13246 3 157 

1414 8 204 5662 1 78 9072 16 180 13247 1 18 

1415 5 502 5724 20 247 9087 21 211 13248 1 486 



 

 
67 

Publisher 
Detecting 

Test  

Total 

Installs  
Publisher 

Detecting 

Test  

Total 

Installs  
Publisher 

Detecting 

Test  

Total 

Installs  
Publisher 

Detecting 

Test  

Total 

Installs  

1416 15 659 5729 3 86 9089 24 252 13249 1 20 

1417 1 85 5775 28 1966 9099 9 92 13250 1 23 

1419 25 553 5776 18 187 9102 6 65 13251 1 12 

1421 12 129 5829 1 30 9103 18 187 13253 1 14 

1422 20 609 5831 18 184 9109 1 14 13254 1 1489 

1423 7 152 5877 4 46 9118 7 79 13255 1 411 

1424 4 46 5901 3 36 9126 14 242 13256 1 53 

1425 6 134 5904 1 43 9130 5 306 13258 377 3784 

1426 14 1423 5931 26 321 9131 5 111 13260 1 12 

1429 15 238 5934 1 72 9135 1 15 13262 47 1860 

1431 9 1445 5954 3 64 9136 1 38 13264 1 17 

1432 1 69 5960 3 65 9137 3 127 13267 1 18 

1447 1 11 6036 18 273 9138 1 35 13268 5 1157 

1458 10 214 6038 1 10 9139 1 14 13272 19 519 

1510 8 111 6039 1 10 9142 7 109 13275 22 860 

1513 19 449 6041 1 10 9144 3 53 13291 1 48 

1518 6 88 6044 1 23 9148 1 23 13292 1 11 

1527 5 86 6069 1 29 9172 21 255 13293 1 30 

1531 6 232 6080 1 32 9280 10 472 13295 3 34 

1540 1 28 6082 3 39 9286 1 11 13296 1 72 

1549 13 295 6094 1 13 9288 1 22 13298 1 14 

1550 7 277 6095 1 10 9294 3 117 13299 1 18 

1555 1 15 6096 1 12 9314 1 16 13300 1 16 

1557 3 60 6097 1 13 9315 1 88 13312 1 30 

1560 3 415 6098 3 107 9316 1 26 13330 1 30 

1562 5 53 6100 5 59 9319 3 78 13332 1 259 

1601 1 12 6102 4 41 9322 5 73 13344 1 32 

1605 1 16 6104 1 10 9324 1 19 13355 6 85 

1606 1 12 6111 44 1581 9326 1 18 13375 18 2685 

1617 1 12 6114 1 23 9328 4 142 13376 1 77 

1647 18 263 6116 1 23 9336 14 199 13377 3 98 

1654 27 567 6123 6 414 9343 18 1127 13379 3 56 

1655 1 10 6124 1 11 9345 5 99 13404 1 38 

1656 4 50 6125 5 51 9347 7 277 13405 1 23 

1657 4 43 6128 1 10 9351 6 143 13411 1 10 

1661 6 92 6137 1 14 9360 20 598 13412 3 367 

1663 1 13 6141 7 88 9361 7 82 13415 5 98 

1668 18 187 6173 15 2621 9362 11 145 13416 13 218 

1671 103 1143 6174 1 24 9369 6 150 13417 1 10 

1678 105 1157 6175 1 40 9370 15 164 13418 3 39 
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1693 1 15 6181 1 15 9371 7 82 13420 1 44 

1697 1 25 6183 1 526 9372 8 85 13421 4 150 

1698 1 38 6184 1 22 9373 11 125 13422 1 55 

1699 5 60 6187 1 11 9403 1 44 13434 1 351 

1704 3 35 6189 1 35 9408 1 15 13438 1 12 

1719 1 22 6190 10 398 9415 1 10 13487 3 70 

1720 1 22 6197 5 117 9417 1 19 13499 19 524 

1721 1 18 6198 3 84 9418 1 21 13500 19 671 

1722 1 15 6201 24 470 9420 1 16 13501 1 10 

1723 1 11 6203 6 107 9439 1 10 13502 1 105 

1747 12 132 6206 1 11 9440 1 13 13509 1 70 

1760 130 1364 6208 4 51 9443 1 14 13510 1 23 

1773 20 286 6214 1 10 9445 1 11 13513 1 29 

1778 22 220 6216 4 115 9449 8 286 13514 1 48 

1788 9 90 6218 5 303 9482 1 12 13516 1 22 

1789 21 210 6222 1 20 9483 3 46 13518 1 42 

1791 29 307 6225 4 53 9496 1 14 13520 1 112 

1808 97 1465 6234 1 13 9535 1 12 13521 1 16 

1813 37 1589 6239 1 10 9536 1 17 13522 1 53 

1815 20 400 6240 1 19 9539 1 21 13527 1 10 

1818 26 446 6241 1 10 9540 1 12 13545 1 16 

1823 21 352 6351 3 238 9542 1 23 13548 7 90 

1872 1 11 6352 1 194 9543 1 16 13549 1 84 

1873 1 15 6354 1 77 9544 1 12 13582 27 317 

1875 1 73 6358 8 104 9547 1 13 13620 1 46 

1876 7 83 6359 1 313 9562 1 12 13621 1 23 

1878 1 25 6366 1 11 9563 1 15 13622 1 12 

1885 1 25 6370 1 32 9564 1 25 13637 1 118 

1886 1 14 6371 5 92 9588 1 14 13641 4 41 

1887 5 50 6376 1 13 9609 9 111 13642 1 128 

1890 4 57 6377 1 20 9611 13 148 13644 1 10 

1894 1 22 6379 1 13 9632 6 460 13649 1 19 

1899 1 15 6382 5 54 9654 7 80 13652 4 204 

1900 1 10 6383 15 774 9662 1 86 13654 1 88 

1904 1 10 6384 9 376 9663 3 89 13657 3 40 

1911 1 11 6387 1 11 9678 1 14 13663 1 10 

1919 20 293 6388 3 44 9759 1 18 13667 1 14 

1928 1 39 6389 1 21 9770 1 11 13682 1 14 

1934 1 27 6390 1 29 9792 1 52 13684 1 11 

1935 1 11 6391 1 30 9807 1 13 13692 1 15 
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1938 8 111 6392 1 26 9863 16 278 13693 1 24 

1942 1 69 6393 1 31 9869 10 176 13696 1 72 

1944 1 95 6394 24 323 9937 9 116 13697 1 53 

1945 5 196 6396 15 191 9955 4 177 13701 5 88 

1947 1 25 6397 1 213 9957 1 39 13737 337 5266 

1951 1 20 6401 1 12 9959 4 105 13765 168 2218 

1952 13 189 6406 16 382 9960 1 20 13823 401 9743 

1956 1 17 6407 3 1237 9963 14 166 13867 6 60 

1958 1 84 6409 16 187 9964 1 12 13871 120 1233 

1961 1 65 6475 1 10 9966 1 60 13876 366 4162 

1963 1 31 6476 1 10 9999 18 200 13879 15 196 

1965 1 29 6482 1 17 10006 1 18 13910 1 20 

1966 4 1810 6548 1 37 10009 9 91 13912 6 60 

1971 5 216 6562 1 26 10010 7 199 13921 1 13 

1972 1 32 6602 1 45 10011 1 27 13922 1 14 

1973 7 362 6646 13 136 10082 1 15 13923 1 34 

1975 4 74 6657 12 190 10084 6 135 13924 1 11 

1976 7 160 6658 10 180 10086 1 35 13925 1 10 

1977 1 69 6662 6 82 10087 1 10 13926 1 23 

1978 1 13 6669 9 181 10088 1 34 13927 1 21 

1979 1 29 6676 326 24253 10118 8 88 13928 3 581 

1980 1 25 6677 5 64 10125 1 11 13931 1 47 

1981 3 120 6683 1 17 10140 1 35 13934 1 13 

1982 3 65 6684 1 52 10180 3 46 13935 1 10 

1983 1 83 6687 5 445 10188 1 62 13936 4 52 

1985 1 15 6780 9 686 10209 3 175 13938 1 31 

1988 10 409 6783 8 1816 10211 1 11 13942 3 58 

1990 4 53 6788 21 445 10212 1 24 13944 1 11 

1991 1 11 6803 25 330 10222 9 110 13947 3 61 

1992 5 176 6807 16 280 10227 1 12 13948 1 244 

1993 5 91 6809 20 218 10228 7 97 13949 1 107 

1994 1 15 6811 3 441 10245 24 331 13998 1965 19658 

1997 1 45 6817 36 411 10281 1 34 14079 5 1116 

2085 3 119 6818 4 524 10430 19 190 14096 4 2045 

2086 1 25 6866 3 249 10442 1 13 14125 3 86 

2095 1 12 6871 5 52 10461 1 14 14137 20 381 

2155 1 41 6872 1 11 10493 5 54 14150 12 198 

2165 22 233 6876 7 319 10498 1 21 14155 108 5763 

2168 1 13 6877 1 22 10531 1 164 14163 8 82 

2173 26 277 6878 1 14 10553 3 97 14168 6 79 
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2176 15 159 6940 11 112 10566 3 77 14174 8 145 

2180 15 161 6943 7 81 10573 1 16 14175 4 51 

2198 8 393 6960 1 11 10606 44 470 14184 6 60 

2202 3 31 6963 1 59 10616 22 225 14195 9 402 

2203 3 121 6969 7 128 10617 147 1477 14198 1 85 

2210 110 1108 7004 1 29 10636 5 53 14209 1 77 

2212 1 181 7018 1 16 10651 1 10 14263 80 1327 

2220 26 1402 7022 1 15 10680 1 94 14267 1 55 

2221 5 309 7023 1 22 10681 1 26 14272 1 55 

2222 1 48 7024 1 19 10682 1 86 14278 5 230 

2228 3 41 7025 1 30 10683 1 12 14279 31 1980 

2230 3 106 7026 1 19 10684 1 14 14280 11 271 

2236 4 64 7031 1 14 10685 1 79 14338 6 72 

2240 1 43 7032 1 14 10686 1 10 14389 3 313 

2241 4 166 7071 14 433 10722 97 2287 14398 3 292 

2260 1 11 7085 1 35 10758 1 80 14448 8 106 

2262 1 10 7092 1 65 10774 20 1038 14453 52 542 

2266 1 10 7102 1 20 10788 3 98 14463 29 438 

2268 3 52 7104 1 16 10789 1 27 14475 9 103 

2269 1 57 7112 1 40 10891 279 2832 14489 8 85 

2275 13 328 7122 241 2891 10947 11 198 14491 1 220 

2276 4 56 7129 17 218 11075 9 95 14526 3 36 

2280 4 827 7131 1 11 11170 104 1179 14634 48 1013 

2285 5 155 7165 1 47 11175 22 231 14637 54 1549 

2286 5 279 7170 320 5158 11181 12 140 14650 51 801 

2287 5 59 7211 45 1025 11201 1 59 14655 10 138 

2288 3 66 7217 17 442 11202 1 29 14660 1 22 

2295 11 276 7237 8 87 11230 1 63 14697 44 536 

2296 1 29 7238 12 143 11233 1 18 14698 15 266 

2298 1 18 7248 21 222 11319 7 157 14699 4 336 

2299 3 118 7257 3 40 11324 8 163 14700 26 968 

2301 9 247 7260 6 69 11365 3 60 14702 14 170 

2307 1 27 7267 91 1653 11366 17 367 14706 3 1138 

2308 1 18 7271 12 185 11368 4 63 14707 1 100 

2316 5 1222 7272 66 5238 11370 5 73 14711 16 167 

2317 4 414 7286 121 1480 11373 5 81 14713 1 132 

2321 1 514 7290 1 157 11374 12 176 14715 1 448 

2328 3 47 7293 4 113 11377 4 42 14716 15 226 

2329 3 210 7308 22 367 11378 22 322 14718 1 11 

2341 1 79 7309 1 38 11380 6 218 14737 5 217 
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2346 1 97 7329 1 4584 11382 3 414 14759 18 247 

2347 1 19 7331 1 31 11386 1 39 14772 1 12 

2350 1 16 7333 9 99 11387 10 300 14780 24 1045 

2354 5 87 7334 762 8796 11424 14 265 14862 266 8217 

2357 1 32 7337 78 994 11461 1 82 14908 1 42 

2360 1 16 7338 208 25625 11472 13 207 14918 3 251 

2384 59 629 7356 87 1019 11484 21 246 14919 1 42 

2417 6 74 7357 37 1637 11504 15 183 14921 1 29 

2434 1 18 7379 3 37 11508 36 497 14960 3 58 

2435 1 33 7394 657 8424 11544 5 60 15044 47 571 

2436 3 38 7396 42 676 11548 29 312 15200 13 176 

2442 1 25 7411 14 628 11552 12 408 15202 1 15 

2463 1 22 7439 32 401 11641 7 105 15230 26 271 

2470 6 64 7455 22 272 11660 21 220 15231 21 266 

2475 1 11 7460 29 334 11676 15 176 15233 7 72 

2481 7 617 7467 195 1964 11680 44 529 15253 1 26 

2482 9 820 7472 6 61 11689 4 49 15263 17 3863 

2483 9 524 7530 1 54 11755 1 15    

2562 38 7323 7532 1 47 11761 1 10    

2588 47 509 7541 5 66 11781 1 12    

 

 

 


