

KADİR HAS UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

PROGRAM OF INDUSTRIAL ENGINEERING

DETECTION OF FRAUDULENT ACTIVITIES IN

MOBILE DISPLAY ADVERTISING

SAFİYE ŞEYMA KAYA

MASTER’S THESIS

İSTANBUL, JULY, 2018

S
afiy

e Ş
ey

m
a K

A
Y

A

M

.S
. T

h
esis

 2
0
1
8

S
tu

d
en

t’s F
u
ll N

am
e

P
h
.D

. (o
r M

.S
. o

r M
.A

.) T
h
esis

 2
0
1
1

DETECTION OF FRADUALENT ACTIVITIES IN

MOBILE DISPLAY ADVERTISING

SAFİYE ŞEYMA KAYA

MASTER’S THESIS

Submitted to the Graduate School of Science and Engineering of Kadir Has University

in partial fulfillment of the requirements for the degree of Master’s in the Program of

Industrial Engineering

İSTANBUL, JULY, 2018

ii

TABLE OF CONTENTS

ABSTRACT .. i

ÖZET .. ii

ACKNOWLEDGEMENTS ... iii

DEDICATION .. iv

LIST OF TABLES .. v

LIST OF FIGURES ... vi

1. INTRODUCTION ... 1

1.1 Working Mechanism of Mobile Advertising .. 2

1.2 Problem Definition .. 4

2. PREVIOUS WORK .. 6

3. MULTIPLE TESTING ... 10

3.1 Šidák Correction Method ... 14

3.2 Bonferroni Correction Method .. 14

3.3 Method of Successive Runs .. 15

3.4 Accuracy Test for Method of Successive Runs ... 18

4. DETECTION OF FRAUD USING MULTIPLE TESTING 24

4.1 Detection of Click Spamming ... 25

4.2 Detection of Click Injection .. 29

5. EXPERIMENTS AND RESULTS .. 33

6. CONCLUSION .. 40

REFERENCES .. 42

APPENDIX A .. 45

A.1 Matlab Code for Sign Test for Click Spamming ... 45

A.2 Matlab Code for Sign Test for Click Injection .. 49

A.3 Matlab Code for Counting Positive Values for Sign Test................................... 54

A.4 Matlab Code for Counting Negative Values for Sign Test 54

A.5 Matlab Code for Counting Rejected Test .. 54

A.6 Matlab Code for Collecting Data to Do Sign Test for a Publisher 54

iii

A.7 Matlab Code to Detect Click Spamming .. 59

A.8 Matlab Code to Detect Click Injection ... 60

APPENDIX B .. 62

B.1 Detected Click Spammers According to Experiment ... 62

i

DETECTION OF FRAUDULENT ACTIVITIES IN MOBILE DISPLAY

ADVERTISING

ABSTRACT

Most of the marketing expenditures in mobile advertising are conducted through real-

time bidding (RTB) marketplaces, in which ad spaces of the sellers (publishers) are

auctioned for the impression of the buyers’ (advertisers) mobile apps. One of the most

popular cost models in RTB marketplaces is cost per install (CPI). In a CPI campaign,

publishers place mobile ads of the highest bidders in their mobile apps and are paid by

advertisers only if the advertised app is installed by a user. CPI cost model causes some

publishers to conduct some infamous fraudulent activities, known as click spamming and

click injection. A click spamming publisher executes clicks for lots of users who haven’t

made them. If one of these users hears about the advertised app organically (say, via TV

commercial) and installs it, this installation will be attributed to the click spamming

publisher. In click injection, the fraudulent publisher’s spy app monitors the user’s

activities in the app market to detect when a mobile app is downloaded on her device,

and triggers a click attributed to the fraudster right before the installation completes. In

this study, we propose a novel multiple testing procedure which can identify click

spamming and click injection activities using the data of click-to-install time (CTIT), the

time difference between the click of a mobile app’s ad and the first launch of the app after

the installation. In a sample set of publishers, we show that our procedure has a false-

positive error rate of at most 5%. Finally, we run an experiment with 15263 publishers.

According to the results of the experiment, a total of 1474 fraudulent publishers are

successfully detected.

Keywords: Mobile Advertising, Fraud Detection, Click Spamming, Click Injection,

Multiple Testing

ii

MOBİL GÖRÜNTÜLEME REKLAMCILIĞINDA YAPILAN SAHTEKARLIK

AKTİVİTELERİNİN BELİRLENMESİ

ÖZET

Mobil reklamcılıkta pazarlama harcamalarının çoğu gerçek zamanlı ihaleler aracılığı ile

gerçekleştirilmektedir. Gerçek zamanlı ihalelerde, satıcıların (reklam yayınlayıcılarının)

reklam alanları, alıcıların (reklam verenlerin) mobil uygulamalarına ait reklamlarının

kullanıcı tarafından görüntülenebilmesi için ihaleye çıkartılır. Gerçek zamanlı ihalelerde

en çok kullanılan fiyatlandırma modeli indirme başına fiyatlandırmadır. Bu modelde en

yüksek fiyatı veren reklam verenin uygulaması yayınlayıcının uygulamasında gösterilir.

Yayınlayıcıya ödeme bir kullanıcının bu yayınlanan reklamı tıklayarak indirmesi şartıyla

yapılır. Bu model bazı yayınlayıcıların tıklama bombardımanı (click spamming) ve

tıklama enjeksiyonu (click injection) olarak bilinen sahtekâr aktivitelerde bulunmasına

neden olur. Tıklama bombardımanında yayınlayıcı gerçekte kullanıcı tarafından

yapılmamış birçok tıklama üretir. Bu durumdan habersiz olan kullanıcı, reklamı yapılan

uygulamayı farklı bir reklam kanalı (televizyon reklamı gibi) aracılığı ile öğrenip

indirirse tıklama bombardımanını yapan yayınlayıcı bu indirmeden haksız yollarla para

kazanmış olur. Tıklama enjeksiyonunda ise sahtekâr bir uygulamayı indirmek üzere olan

bir kullanıcıyı takip edip, indirmeyi tamamlamadan hemen önce o kullanıcı üzerinden

reklama tıklama gönderebilir. Dolayısıyla da bu indirme işlemi üzerinden haksız kazanç

elde etmiş olur. Bu çalışmada çoklu test etme yöntemini kullanarak bu sahtekârlıkların

belirlenebileceği bir yöntem önerdik. Bu yöntemde indirme ve ilk kez uygulamanın

açılması arasında geçen zaman üzerinden istatistiksel karar verme yöntemleri

kullanılarak sahtekârlar tespit edilmeye çalışıldı. Kullanılan yöntemde yanlış pozitif hata

oranının en kötü ihtimalle %5 olması sağlandı. Önerilen yöntem 15263 yayınlayıcının

üzerinde test edildi ve 1474 tanesinin sahtekârlık yaptığı tespit edildi.

Anahtar Sözcükler: Mobil Reklamcılık, Sahtekârlık Tespiti, Tıklama Bombardımanı,

Tıklama Enjeksiyonu, Çoklu Test Etme

iii

ACKNOWLEDGEMENTS

There are many people who helped to make my years at the graduate school most

valuable. First, I would like to thank Asst. Prof. Dr. Burak ÇAVDAROĞLU, my major

professor and thesis advisor. Having the opportunity to work with him over the years was

intellectually rewarding and fulfilling. He has always encouraged me and recommended

me to trust myself. He has always shown me the right path to reach success in my

research.

Many thanks to other professors in my department, who patiently answered my questions

and problems. I would also like to thank to my graduate student colleagues who helped

me all through the years that are full of class work and exams. My special thanks go to

Elif and Sirun whose friendship I deeply value.

The last words of thanks go to my family. I thank my parents for their patience and

encouragement.

iv

DEDICATION

To my family

v

LIST OF TABLES

Table 3.1 The descriptive statistics of CTIT values …...……………………….……..12

Table 3.2 Family-wise error rates for Šidák and Bonferroni methods…..………..……..15

Table 3.3 The family-wise error rates respectively the values of m………...…..……..17

Table 3.4 The rule of multiple testing procedure ..…….………………………..……..17

Table 3.5 Accuracy test results ...……………………………………………………..20

Table 3.6 Summary of the accuracy test results...……………………………………..22

Table 5.1 The list of fraudulent publishers who made click injection ..………………..35

Table 5.2 The sample of spammers table from Appendix B……..………..…………..39

Table B.1 Detected click spammers according to experiment ...………………...…….62

vi

LIST OF FIGURES

Figure 1.1 Working mechanism of mobile advertising …………………………………03

Figure 3.1 The distribution of CTIT values..……………...………….………………...10

Figure 3.2 The distribution of CTIT values ………………………….………………...11

Figure 5.1 The histogram of the “detecting tests”…………………….………………...36

Figure 5.2 The histograms of mean of CTIT values ...……….……….………………...37

Figure 5.3 The histograms of median of CTIT values ……………..…………………...38

1

1. INTRODUCTION

The time spent on mobile devices increased drastically in recent years and a significant

portion of this time is spent in mobile applications. The widespread usage of both

smartphones and mobile applications (apps) has led to the rapid growth of mobile

advertising. Mobile display advertisements are displayed as banner images that are shown

on mobile devices. They can appear in either web browsers or applications. If a mobile

ad is designed for only mobile applications, it is called in-app advertising. Most of the

marketing expenditures in mobile advertising are conducted through real-time bidding

(RTB) marketplaces, in which the main objective of the buyers (advertisers) is to acquire

the most app installation from the audience at the lowest cost and the main goal of the

sellers (publishers) is to sell their ad spaces at the highest price. An advertiser decides the

bid in the RTB marketplace and the attributes of the targeted users (such as the

geolocation and demographics of the target users). Besides, ad agencies can be utilized

for dissemination of these ads. An ad agency is a company that runs an ad campaign of a

specific product with a predefined budget and campaign duration on behalf of clients. A

publisher, which is usually the owner of a mobile app, on the other hand, sells the ad

space of the app to advertiser at the winning price of an RTB auction. RTB marketplaces

finalize an auction in milliseconds according to the bids of the advertisers. Thus, RTB

allows advertisers and publishers to buy and sell ad space through real-time auction.

There are two main platforms in which RTB marketplaces are operated: ad exchanges

and ad networks. An ad network, the RTB platform we focus on in this study, allows

advertisers to publish their mobile advertising campaigns with a predetermined budget,

campaign duration and a desired bid rate. Meanwhile, ad networks collect inventory of

ad space from a range of publishers and sell it to advertisers with the highest bid offers in

its RTB marketplace. Also, it allows advertisers to target desired customers. Ad networks

usually offer different pricing models to the advertisers, such as cost per action, cost per

install, cost per click, or cost per impression. In cost per impression model, advertiser is

2

charged when the advertisement appears on the screen. In cost per click model, bid price

is paid, if the user just clicks advertising that is shown in an application by user. In cost

per action model, a predetermined action by used will be required to charge the advertiser.

In the cost per install model (CPI), the bid price is paid after installing the application that

is shown as a display ad. The most popular pricing model among advertisers is CPI

(Nieborg, 2016).

Even though mobile advertising is a billion-dollar industry, millions of dollars are lost

because it is subjected to fraudulent activities. Mobile ad fraud is an attempt by fraudulent

publishers to defraud advertisers for gaining undeserved profit. It is a popular subject in

mobile marketing industry. In this study, we use statistical analysis to detect mobile

frauds to prevent financial losses in mobile display advertising campaigns that prefer CPI

pricing models.

1.1 Working Mechanism of Mobile Advertising

RTB landscape can be separated into two sides naturally; publisher side (supply side) and

advertiser side (demand side). Demand side platform (DSP) is a software that is utilized

to buy advertising in an automatic fashion by advertisers and ad agencies. In the advertiser

side, DSP is requested by advertiser to run and manage an ad campaign. In the publisher

side, process is started with a user interaction on publisher application. User preferences,

context, location, and the mobile device information are sent by the mobile app to supply

side platform (SSP) which is a software to sell mobile ads in an automatic fashion on

behalf of publishers. Firstly, previous contracts are checked to send a request to an

available contract of an advertiser. If there is not a contract or the advertisers who have

contract are not interested in the impression, ad request is sent to ad exchange or ad

network for RTB. Then, bid request is generated by RTB exchange or SSP for incoming

ad requests and is sent to all subscribed DSPs. A bid request includes a couple of

information such as a unique id of the request which is provided by RTB, the time of bid

initiated, the current geographic location of the device, etc. The bid price is decided by

DSP according to the ad campaign of the ad agency. The bid prices and bid responses are

sent by all DSPs. A bid response contains information about id, price, currency, etc. After

3

the auction ends, RTB decides the winner of the auction based on bid prices. The winning

note is sent to the winning DSP with the winning price which is the second highest offer

(second price auction). The ad is requested from ad agency and sent to RTB. Finally, ad

is forwarded to the publisher and user can see the ad on mobile application. The

interactions among the involved parties can also be seen in Figure 1.1.

Figure 1.1. Working mechanism of mobile advertising

After that point, if the user clicks the ad and installs the advertised application, the

advertiser has to pay the bid price according to the cost per install pricing model. In a CPI

campaign, publishers place mobile ads of the highest bidders in their mobile apps in an

effort to attract installation of the advertised application. The advertiser is charged the

winning bid rate only when the advertiser’s application is installed by the user.

After installation is verified by both the ad network and the advertiser, the ad network

receives a portion of the CPI price for finding the publisher that grants the installation,

and the publisher receives the rest. Verification of an installation takes place with the help

of a system known as mobile ad attribution. Attribution is used to track the details of each

mobile ad transaction such as the time stamp of the ad click and the ad installation.

Attribution is also used to keep track of the publisher whom a succeeding installation

should be attributed to. Each click by a user is associated with the publisher’s app in

which the click occurs. If there exist multiple clicks by a user before the installation of

the advertised app, the latest attributed publisher will be paid by the advertiser due to the

regulations of CPI pricing model.

4

1.2 Problem Definition

All these transaction and tracking activities are accomplished almost instantaneously in

RTB marketplaces and they generate billions of dollars of revenue annually for mobile

advertising industry. On the other hand, millions of dollars are lost because of the

fraudulent activities of publishers receiving undeserved gain (Shields, 2016). Three main

types of fraud in mobile advertising are (i) fake installations with bots and emulators, (ii)

click injection, and (iii) click spamming. In the first type, using bots, fraudster tries to

make fake installations more and more similar to genuine installations. In the second

fraud type, fraudster’s spy app detects when other apps are downloaded on a device and

trigger clicks right before the installation completes, which inequitably attributes the

installation to the fraudster’s app. In the last type of fraud, fraudster executes clicks for

lots of users who haven’t made them. If a user installs the advertised app organically after

hearing about the app in another advertising channel (for instance, a TV commercial),

this installation will still be attributed to the fraudulent publisher according to the working

mechanism of attribution system. Click spamming is the most common fraud type in app

marketing and its most apparent harm is lost campaign budget of advertisers, by paying

to the click spammer publishers for users who have never generated impressions in the

publisher’s app (Monasterio, 2017). Since click spamming captures organic traffic and

then claims the credit for these users, it is also known as organic pouching.

Conversion Rate (CR) is a standard metric in app marketing that is calculated by dividing

the total number of installations by the total number of clicks. A common characteristic

of click spamming publishers is that their conversion rate is much lower than usual since

spamming generates lots of false clicks which never end up with an installation. Although

low CR is a good indicator for click spamming, a meaningful conversion rate emerges

only after a significant campaign duration is completed and hundreds of thousands of

clicks are attributed to the publisher. The lack of an early warning mechanism for click

spamming causes the loss of considerable amount of campaign budgets for advertisers.

5

Another well-known way of identifying click spamming is to analyze the distribution of

click-to-install times (CTIT) (Monasterio, 2017). Click-to-install time refers to the time

difference between the click of a mobile app’s ad by a user and the first launch of the app

on the mobile device of the same user after the installation. It is easy to note that the

spamming publisher can trigger false clicks but cannot trigger an installation. This makes

click and installation events independent from each other and causes the click-to-install

times of installations coming from a click spamming publisher to be distributed uniformly

over time. Because click injection is more a sophisticated version of click spamming,

CTIT can also be a good indicator for injection. In click injection, the fraudster can

monitor a user by the help of a spy app and capture the moment when the user starts to

install application. Therefore, the fraudster can trigger a click just seconds before the

installation is completed. This action causes the distribution of CTIT values to take a

uniform shape like in the case of click spamming. Even though CTIT is known to be

utilized intuitively by many advertisers for filtering out spamming and/or injecting

publishers, to best of our knowledge, a prescribed set of rules for fraud detection with

CTIT has not been defined in the literature so far. In this study, we aim to derive a

statistical method for the detection of click spamming and/or injecting publishers in real

time by analyzing their CTIT data building up over time.

The rest of the paper is organized as follows: In Section 2, we provide a brief literature

review on the fraud detection methods in web and mobile advertising and the statistical

methods related to our analysis. In Section 3, the method of multiple testing is explained.

In Section 4, we discuss the details of how our customized multiple testing approach can

be used for the detection of click spamming and/or click injection activities. In Section 5,

we present the data set and the experimental results. In section 6, we conclude by

summarizing our findings and discussing future research opportunities.

6

2. PREVIOUS WORK

Fraudulent activities in digital advertisement is a research topic that has been widely

investigated in the marketing and computer science literature. Soubusta (2008) provides

information of analysis on click spamming in online advertising. He explained what click

fraud is and how it works. Also, several solutions are offered for click spamming in online

advertising. For example, according to Soubusta (2008), price models such as pay per

action or pay per percentages of impressions can decrease the loss based on click

spamming. Also, this study provides clear understanding on the effects of click spamming

on the web. Classification based approach was developed by Daswani et al. (2008) to

explain online advertising and online frauds similarly Soubusta. They classify not only

the revenue types but type of spam activities in online advertising. They explain

syndication and referral deals, besides the well-known revenue models (cost per mille,

cost per impression, and cost per action) for online advertising activities. According to

Daswani et al. (2008) there are three main type of spams which are impression spam,

click spam, and conversion spam. Furter, attack types, some countermeasures, and

economics of click fraud are discussed in the same study.

There are different types of fraud. For example, impression fraud is basically caused by

pay per view pricing model on the web. Springborn and Barford (2013) describe the

characteristic of pay per view ecosystem and developed a method to distinguish

fraudulent impressions from non-fraud ones. For developing this method, they made

analysis of purchased traffic on websites and collected data from these websites. One of

the most prevalent fraud type, which both web and mobile platforms suffer from, is click

spamming. A lot of studies are conduced to understand the clicking behaviors. Hill et al.

(2014) develops tools and techniques to detect invalid clicks in websites. They provide a

system to obtain historical click quality characterization based on web analytic data. In

this way, the system identifies click abnormities. Also, Perera et al. (2013) argues that

7

click patterns can be utilized to identify fraudulent activities. They provided an approach

to detect fraud by using a set of features which are derived from existing attributes and

used learning algorithms to understand differences of click patterns between fraud and

legit publishers. The mobile advertising data are complex and include heterogeneous

information, and complicated patterns with missing values. Therefore, Fraud Detection

in Mobile Advertising (FDMA) 2012 Competition was organized. 127 teams joined the

competition from more than 15 countries. Oentaryo et al. (2014) provided information

about competition that include data set, task objectives and evaluation of results of

competitors ranked in the first three places. According to competition results, data mining

based fraud detection can be usable in practice. Immorlica et al. (2005) used machine

learning techniques that are based on click through rates to detect click fraud in pay-per-

click pricing model. Fraudsters usually conduct click spamming on the web by

disseminating malicious software (malware) that are capable of generating fake click on

behalf of the infected users. Blizard and Livic (2012) outlined an example analysis of a

click-spamming malware and showed that the malware can cause a loss on the order of

hundreds of thousands of dollars for a 3-week period. Jain and Talwar (2007) argued that

dual pricing can reduce the effects of fraudulent activities in real time auctions. Iqbal et

al. (2018) presented a method for fighting click‐fraud by detecting botnets with automated

clickers from the user side. They also evaluated the performance of their proposed method

by integrating it into desktop operating systems. Zingirian and Benini (2018) showed a

vulnerability of the pay-per-click model in web advertising and proposed a statistical

tradeoff-based approach to manage this vulnerability. There are a lot of patents to find

and/or identify click fraud on the web. One of them is provided by Kitts et al. (2008).

They developed methods and systems to detect automated click fraud programs. When a

request is received for a web page, the probability of being a genuine bot user is

determined. A score is determined according to historic behavior of the related user. In

this way, user who is human can be separated from the user who is bot. Another patent to

prevent click fraud in online adverting is taken out by Linden and Teeter (2012). They

provided a method that includes server side and client side codes to achieve their goal

which is identification of valid and invalid clicks. Smith et al. (2011) developed systems

and methods for detecting click spam in web advertising and patented this methodology.

8

Their system identifies normal users visiting a web site and determines an occurrence of

spamming on the web site based on the identified normal users.

Pay-per-click pricing model of web advertising requires instant payment to the publisher

upon click. Click spamming has a direct negative effect on the profitability of the

advertisers on web advertising whereas in the CPI pricing model of mobile advertising,

click spamming can affect an advertiser only if click ends up with an installation.

Therefore, fraud in mobile advertising is a relatively new research area when compared

with fraud in web advertising.

Mobile application markets have many freely distributed applications that are supported

by in-app advertisements. Most of the fraudulent activities are performed by the

publishers of these applications. Both placement fraud and bot fraud in these apps cause

impression and unintentional clicks from users (Liu et al. 2014). Liu et al. (2014)

investigated display fraud by analyzing UI of apps to detect unintentional clicks for

increasing ad revenue. However, this technique cannot determine clicks that are triggered

in the background. Unintended click can be performed both in foreground and

background (Crussell et al. 2014).

Cho et al. (2015) made an automated click generation attack on eight popular ad networks

and showed six of them vulnerable to this type of attacks. Cho et al. (2016) expanded

their previous study. They suggested defense mechanisms and discussed economic aspect

of security failure. Dave et al. (2012) conducted large-scale measurement study on major

ad networks about click spamming and proposed a methodology to measure click

spamming rate for advertisers. Badhe (2016) suggested a new system which consists of a

server side solution for click fraud. Badhe (2016) offered an exchange mechanism that

scans the ads before passing them over to the end mobile device. This mechanism

provides checking for any auto redirection to different domain from initial domain where

all ad assets requested. However, ad exchanges have to deal with billions of ads daily.

Checking these ads one by one could be infeasible. This problem can be solved with

taking random sampling according to Badhe (2016). Gupta et al. (2014) discloses

different types of mobile frauds. They argued the source of requests may be used for

9

distinguishing valid and invalid requests in order to detect frauds. Monasterio (2017)

proposed a histogram for the click-to-install time distribution of non-fraudulent

publishers and utilizes a fitting test to tag click spamming activities. However, this fitting

test method can only be utilized at the end of ad campaign duration and cannot be used

in real time.

10

3. MULTIPLE TESTING

In this chapter, the statistical methods to detect frauds is examined and suitability of

multiple testing in our case is discussed. Let us first introduce the histogram of click-to-

install time (CTIT) values for two publishers as an example of how the distribution of

CTIT values may differ in legit and fraudulent publishers. In Figure 3.1, the histogram

on the left shows the distribution of click-to-install times for a legit publisher. It can be

noted that most of the installations are accomplished within the first hour after the click

event occurs since they decide to install and launch the app shortly after they deliberately

click the publisher’s ad. The histogram on the right, on the other hand, demonstrates the

distribution of click-to-install times for a fraudulent publisher. This publisher spams lots

of users with lots of clicks, and a few users unaware of this click event (and, thus, the

advertised app) will occasionally install the app after hearing about it from other

marketing channels or via word of mouth. Hence, the time between click and installation

events can be weeks, or even months, which results in a hump on the right of the graph

of fraudulent publisher.

Figure 3.1. The distribution of CTIT values for a legit publisher (left) and a fraudulent

publisher (right)

Publishers dealing with click injection can also be distinguished from legit publishers via

distribution of CTIT values like in the case of click spamming. In Figure 3.2, the

histogram belongs to a publisher who engages in click injection. There is an abnormal

hump at the left of the graph (second bar in the histogram) due to the nature of the click

11

injection. A click injection fraudster can trigger a click after the installation. Therefore,

the time between click and first launch is usually inclined to be less than 20 seconds. This

is the reason of CTIT values accumulated on the left side of the histogram.

Figure 3.2. The distribution of CTIT values for a fraudulent publisher (click injection)

Another interesting fact about the distribution of click-to-install times lies behind the

descriptive statistics of these values. Table 3.1 provides the sample size, mean, standard

deviation, median, and range for the CTIT values of the same two publishers discussed

earlier. The table also shows the statistics for the all-time installations of a DSP company

for benchmark purposes. The mean of CTIT vales for a legit publisher can still be very

high (approximately 4.75 hours) due to a few installations with very high CTIT values.

This situation is not an indicator of click spamming since some users forget to launch a

mobile application after the installation and thus even non-fraudulent publishers may

rarely run across very high CTIT values. Therefore, “mean” is not a reliable statistic to

make any deduction about spamming. The median value of fraudulent publisher, on the

other hand, is quite large compared to the medians of DSP and legit publisher according

to the table. Indeed, a very large median (approximately 27 hours in this instance) means

that at least half of the sample has an unacceptable level of CTIT. A large median value

also explains why the histogram of the fraudulent publisher is skewed to the right in

Figure 3.1. Further, the median value of the fraudulent publisher who makes click

injection is quite small. These results suggest that a statistical test measuring the positive

0

1000

2000

3000

4000

5000

6000

A
m

o
u

n
t

o
f

In
st

al
l

12

deviations from a sufficiently large or small “median” can be confidently used to detect

fraud publishers.

The non-parametric sign test for a median (Sprent, 1989) with 𝐻0: 𝜂 = 𝜂0 and 𝐻𝑎: 𝜂 >

𝜂0 (or 𝐻𝑎: 𝜂 < 𝜂0) is an effective way of deciding whether the median of CTIT values

for a publisher (𝜂) takes on a particular value (𝜂0) or a value greater (or less) than 𝜂0. The

main question here is how to decide 𝜂0. We have to select a sufficiently large value for

𝜂0 such that we can safely accuse the publisher of spamming if the null hypothesis is

rejected. Similarly, sufficiently small value has to be selected to accuse publisher of

making click injection.

Table 3.1. The descriptive statistics of CTIT values for legit and fraudulent publishers

All-time Installs of a

DSP Legit Publisher

Fraudulent

Publisher

(Spamming)

Fraudulent

Publisher

(Injection)

Sample Size 1602268 106 148 622

Mean (sec) 68991 17016 187398 14

Median (sec) 250 236 96941 2

Standard Deviation

(sec) 553750 78452 338678

18

Minimum (sec) 1 35 51 1

Maximum (sec) 15851602 523212 3730800 86

Range (sec) 15851601 523177 3730749 85

The following sign tests are designed to detect two main types of mobile fraud. While the

test (1) is for click spamming, the second test is for click injection.

𝐻0: 𝜂 = 𝜂0 seconds

𝐻𝑎: 𝜂 > 𝜂0 seconds

𝐻0: 𝜂 = 𝜂0 seconds

𝐻𝑎: 𝜂 < 𝜂0 seconds

However, our analysis shows that, when the test is applied for the all-time installs of a

publisher (all the installations attributed to a publisher during the lifetime of an ad

campaign), there is a significant chance of the publisher passing the test even though it is

fraudulent (i.e. probability of type-II error is large). This situation occurs mainly because

some publishers mix both click spamming and legit activities together in order to disguise

(1) (2)

13

their fraud. Therefore, it is possible for a fraudulent publisher to have remarkable number

of very large CTIT values even though the median CTIT value is still less than 𝜂0 seconds

(or greater than 𝜂0 seconds in click injection case). Besides, conducting the test for the

all-time installations of a publisher would mean to evaluate the publisher after an ad

campaign has ended. Filtering out a spamming publisher from future campaigns is still

beneficial in the long run, but it cannot prevent the advertiser from paying for the

installations that are already attributed to the fraudster at the recent campaign.

One way to overcome these challenges is multiple testing, the testing of more than one

independent hypothesis. In multiple testing, instead of running a single sign test for a

publisher at the end of campaign duration, we periodically run sign tests as new

installations arrive from the publisher. This enables us to detect even occasional click

spamming activities of fraudulent publishers in earlier stages of the campaign.

However, if one plans to make a decision by applying multiple testing, s/he should be

extra cautious about false-positive decision making. Assuming that the type-I error of a

single sign test is 𝛼, the probability of not making type-I error is (1 − 𝛼) because they

are complementary events. For instance, if significance level 𝛼 = 0.10, then not making

type-I error is (1 − 𝛼) = (1 − 0.10000) = 0.90000. Let say we have two independent

tests with 𝛼 = 0.10000. Probability of not making type-I error for both of them is

0.90000 ∗ 0.90000 = 0.81000. For three independent tests, the probability will be

0.90000 ∗ 0.90000 ∗ 0.90000 = 0.72900. The probability of not making type-I error

for m independent tests is calculated with (1 − 𝛼)𝑚. Therefore, the probability of at least

one false positive error among 𝑚 independent sign tests (family-wise error rate) is 𝛼̅ =

1 − (1 − 𝛼)𝑚. This means that the probability of having at least one rejected null

hypothesis converges to 1 as the number of tests increases. In other words, if we assume

one rejected null hypothesis in multiple testing is adequate to accuse a publisher of click

spamming, we will falsely blame the publisher for fraud even though it is most probably

legit.

In the literature, there are classical multiple testing methods such as Šidák correction

(Šidák, 1967), Holm method (Holm, 1979), and Bonferroni correction (Bland and

Altman, 1995), which prevent large probability of rejecting some of the true null

14

hypotheses. Also, we developed a new procedure to make sure limited family-wise error

rate at acceptable level.

3.1 Šidák Correction Method

The method is utilized to avoid problem of multiple comparisons. It is one of the simple

methods to keep family-wise error rate for independent tests under control. The 𝑚𝑡ℎ null

hypothesis is rejected, when p-value is less than 𝛼̅ = 1 − (1 − 𝛼)1/𝑚 for each test. If all

null hypotheses are true, type-I error will be exactly 𝛼. For example, let’s say we have 3

independent null hypotheses and 𝛼 = 0.05000. Family-wise error is calculated as

0.05000, 0.02532 and 0.01695 respectively. If the p-values of matching tests are greater

than the corresponding 𝛼̅, type-I error is equal to 0.05000. In addition, confidence interval

is calculated as 100(1 − 𝛼)1/𝑚 for matching test decision.

3.2 Bonferroni Correction Method

This method is used for exactly the same reason as in Šidák method. Holm developed the

method originally in 1979. In Holm method, significance level is divided by both total

number of the independent tests and the index 𝑘, which is used if the first p-value is not

low enough to validate rejection at 𝛼̅ =
𝛼

𝑚+1−𝑘
. This index is accepted as 1 in Bonferroni

Correction. Therefore, the family-wise error controls with 𝛼̅ =
𝛼
𝑚

. This means that if the

p-value of 𝑚𝑡ℎ test is less than
𝛼

𝑚
, 𝐻0

(𝑚)
 that represents the null hypothesis of mth test is

rejected, otherwise 𝐻0
(𝑚)

 fails to be rejected. Table 3.2 presents the calculated family-

wise error rates by Šidák and Bonferroni methods when 𝛼 is assumed to be 5%. The first

column shows the number of tests. The family-wise error rates of Šidák method according

to varying total number of tests is shown in the second column, while the rates of

Bonferroni method are demonstrated in the third column. As seen in the table, the family-

wise error for a single test is the same for both correction methods. However, family-wise

error rate that is calculated with Bonferroni method is always less than the family-wise

15

error rate of Šidák method after the first test. Šidák method is slightly less stringent than

Bonferroni correction.

Table 3.2. Family-wise error rates for Šidák and Bonferroni methods

Number
Šidák Bonferroni

of Test

1 0,05000 0,05000

2 0,02532 0,02500

3 0,01695 0,01667

4 0,01274 0,01250

5 0,01021 0,01000

6 0,00851 0,00833

3.3 Method of Successive Runs

In this study, we propose a new multiple testing procedure that has an improved ability

to detect click spamming fraud compared to these classical methods, while still keeping

the confidence of the procedure (i.e. probability of not making false-positive decisions)

sufficiently high.

In our multiple testing procedure, we run successive sign tests in real time while the

campaign is still running. In other words, we run a sign test given in (1) for every 𝑛

installations of a publisher to monitor the legitimacy of its installations. If we had decided

the publisher is fraudulent by only one rejected null hypothesis in multiple testing, as

mentioned earlier, we would have made a considerable number of false-positive

decisions. Instead, in our procedure, we aim a family-wise error rate of α̅ = 0.05000 in

the worst-case.

In our study, the multiple testing procedure for detecting click spamming activity has

been implemented in two steps as follows.

 STEP 1. We assume the significance level of α = 0.05000 for each sign test for

median, whose sample size is selected to be n = 10. Namely, we run the

16

hypothesis test of (1) for every 10 incoming installations and conduct m < ⌈N/10⌉

tests in total, where N is the total number of installations attributed to the publisher

during the campaign duration.

 STEP 2. We define a rule which identifies the spamming publishers due to the

result of m sign tests with a family-wise error rate of α̅ = 0.05000. According to

the rule, a publisher is determined to be fraudulent if it fails r successive sign tests,

each with a significance level of α, among m tests. We do not have to run these

tests till the end of the campaign duration (i.e. m does not have to be equal to

⌈N/10⌉) since we may run across r successive rejected hypotheses in earlier stages

of the campaign. Note that the value of r has to be updated as the number of tests

(m) increases with the incoming installations. If we set a constant value for r, the

family-wise error rate would continuously increase and eventually be much higher

than our target value, α̅ = 0.05000, as the number of tests, m, increases.

In order to compute the value of r for varying levels of m, we need to utilize the theory

of success runs introduced by Feller (1968). Let r be a positive integer and let ε denote

the occurrence of a success run of length r in m Bernoulli trials, each with a success

probability of α. According to Feller (1968), the probability of no success run of length 𝑟

in 𝑚 trials (denoted by 𝑞) can be approximated by Eq. (3)

𝑞 ≈
1 − 𝛼𝑥

(𝑟 + 1 − 𝑟𝑥)(1 − 𝛼)
∙

1

𝑥𝑚+1

where x is the positive root of Eq. (4), which is not equal to 1 − α.

1 − 𝑥 + (1 − 𝛼)𝛼𝑟𝑥𝑟+1 = 0

Hence, the probability of at least one success run of length 𝑟 in 𝑚 trials is given by 𝑝 =

1 − 𝑞.

For example, assume we conclude a publisher's median CTIT is greater than 2 hours (i.e.

the publisher is fraudulent) if the null hypotheses of 𝑟 = 3 successive sign tests are

rejected among 𝑚 = 300 tests. When we let 𝛼 = 0.05 and 𝑟 = 3 in Eq. (4), 𝑥 can be

found as 1.000119. Replacing this value of 𝑥 in Eq (3), the probability of falsely

concluding the publisher to be fraudulent (family-wise error rate) can be calculated as

𝛼̅ = 𝑝 = 0.0348.

(4)

(3)

17

In the second step of our procedure, we determine the rule of how many successive

rejected hypotheses are enough for concluding a publisher is a spammer for different

numbers of tests. The main objective of this rule is to guarantee that the probability of

falsely accusing the publisher does not exceed a family-wise error rate of α̅ = 0.05000.

For example, for 𝑟 = 3, we look for the value of “𝑚” which makes 𝑝 close to 𝛼̅ =

0.05000 as much as possible. For varying values of 𝑚 in Eq (3), the value of 𝑝 = 𝑞 − 1

is given in Table 3.3. As it can be noted in the table, 𝑝 can get the value which is closest

to 𝛼̅ = 0.05000, when 𝑚 = 434.

Table 3.3 The family-wise error rates respectively the values of m

𝑚 𝑝 𝑚 𝑝

425 0,04902 431 0,04970

426 0,04913 432 0,04981

427 0,04925 433 0,04992

428 0,04936 434 0,05004

429 0,04947 435 0,05015

430 0,04959 436 0,05026

Table 3.4 tabulates how the rule is being applied. 𝑚̅ represents the number of tests

required to have a successive rejected hypothesis of length 𝑟 with a probability of α̅ =

0.05. [𝑚𝑙, 𝑚𝑢] denotes the interval for the total number of tests where successively

rejected hypotheses of length r are sought for click spamming. According to Table 3.4,

our multiple testing procedure works as follows. When the first 10th installation attributed

to a publisher is registered, we run the sign test given in (1) for the CTIT values of this

sample. If the null hypothesis is rejected, we conclude that the publisher is a click

spammer (since 𝑚 = 1 when 𝑟 = 1). Otherwise, we wait until another 10 installations

are registered. When the next 10 installations are accumulated, we run the sign test again

for the second set of 10 installations. Starting from the 2nd sign test to the 22nd test, we

search for 2 successively rejected hypotheses. If we observe any “two rejected hypotheses

in a row” until the 22nd test, we conclude that the publisher is a click spammer. Otherwise,

we continue to monitor the installations attributed to the publisher. Likewise, we search

for 3 successively rejected hypotheses from the 23rd test to the 434rd test, and 4

successively rejected hypotheses from the 435th test to the 8524th test. We have never

needed to go beyond the 8524th test, since none of the publishers in our experiment has

18

more than 8524 ∗ 10 attributed installations. If we conclude that a publisher is fraudulent

at any point according to this procedure, the decision is guaranteed to have a false-positive

error that is at most equal to the family-wise error rate of α̅ = 0.05000. If we do not

observe any “𝑟 rejected hypotheses in a row” during the course of our procedure, we can

conclude that there has not been enough evidence that the publisher is a click spammer.

Table 3.4. The rule of multiple testing procedure

𝑟 𝑚̅ [𝑚𝑙 , 𝑚𝑢]

1 1 [1,1]

2 22 [2,22]

3 434 [23,434]

4 8524 [435,8524]

3.4 Accuracy Test for Method of Successive Runs

We will now discuss the results of our accuracy tests conducted with a data set of app

installations attributed to several publishers. This data set was supplied by a DSP

company which provides a self-service mobile advertisement platform to its customers

for managing their own ad campaigns. In our experiment, we run the tests with 30

publishers from 30 different ad campaigns. Half of the publishers have been blacklisted

as click spamming publishers by the DSP company due to prior experience. The

remaining 15 publishers are known to be non-fraudulent that always bring in legitimate

installations.

Table 3.5 summarizes the data used and shows the results of our test. Each publisher is

represented with a row in the table. The grayed-out rows denote the publishers that are

in fact fraudulent. The first five columns provide the publisher ID, the number of total

installations during the campaign, the campaign duration, the mean value of all CTITs

during the campaign, and the median value of all CTITs, respectively. The sixth column

shows the total number of rejected tests during the campaign when we were applying

method of successive runs. The number of rejected tests does not have to be zero for a

non-fraudulent publisher. For example, first publisher is not identified as fraudulent,

19

although it has a total of 2 rejected tests. The reason it is not marked as a click spammer

is that the rejected tests are not successive. The last column which has three parts specifies

the order of the first test indicating a click spamming activity. The first part shows our

method, the second one represents Bonferroni, and the last one is for Šidák. For instance,

the second publisher is accused of click spamming for the first time in its 657 ∗ 10 =

6570th attributed installation with method of successive runs, since r= 4 consecutively

rejected tests are observed at the 657th test in our multiple testing procedure. A dash sign

(“−”) in the sixth column indicates that any evidence of click spamming has not been

found during the campaign.

According to the results of the experiment, our multiple testing procedure does not make

any false-positive error. In other words, none of 15 legit publishers is accused of click

spamming. Since we design the procedure in such a way that it does not have a false-

positive error greater than the family-wise error rate of α̅ = 0.05000, this is an expected

outcome. On the other hand, in three tests, we observed false-positive errors which were

made by Šidák and Bonferroni Corrections. As seen in the Table 3.5, even though

Publisher 1, 9, 19 and 28 are legit publishers in reality, they are marked as fraud by Šidák

and Bonferroni Correction methods. For example, the first publisher is found as a

spammer in the 29th test by both of them because all ten installations for the test came

after the first two-hour period and the p-value of the 29th test is calculated as 0.00098.

The family-wise error which belongs to this test is α̅ =
0.05

29
 = 0.00172 for Bonferroni

method, α̅ = 1 − (1 − 0.05)
1

29 = 0.00177. Therefore, 𝐻0
(29)

, which is the null hypothesis

of 29th test is rejected and the publisher looks like a spammer. Even though, 𝐻0
(29)

 was

rejected, the publisher was found legit in our method because of our rejection rule. As

seen in Table 3.5, there are 2 reject decisions in method of successive runs, 3 successive

rejects are needed to accuse someone of being a fraud after the 22nd test. Hence, since at

least one of the 28th and 30th, or 30th and 31st tests were not rejected, our procedure decided

the publisher is legit correctly.

20

Table 3.5. Accuracy Test Results

 The Order of the Test Indicating Click
Spamming

Publisher

Number of

Total

Installs

Campaign

Duration

(days)

Mean Median

Total

Number of

Rejected

Tests

In Method

of

Successive

Runs

Method of

Successive

Runs

Bonferroni

Correction

Method

Šidák

Correction

Method CTIT CTIT

(seconds) (seconds)

1 308 36 138454 64 2 - 29 29

2 8424 79 4433 201 172 657 - -

3 749 3 6983 727 0 - - -

4 1038 11 25180 1103 0 - - -

5 94 2 1441 1462 0 - - -

6 2420 23 2808 1869 0 - - -

7 1351 175 14223 2376 4 135 - -

8 288 163 15881 2607 2 - - -

9 875 44 4068 3011 0 - 21 21

10 1876 174 11426 3590 3 - - -

11 265 6 3332 3666 2 14 14 14

12 1091 128 10995 4293 6 67 - -

13 249 7 9993 4487 0 - - -

14 373 4 5204 5018 0 - - -

15 133 39 6665 5383 0 - - -

16 827 34 15788 5919 24 6 5 5

17 416 29 8139 6240 1 - - -

18 1075 3 13493 6406 42 17 16 16

19 361 58 11967 6999 5 - 6 6

20 295 17 95731 7173 8 13 12 12

21 400 24 64212 7330 5 40 7 7

22 1045 79 29884 7879 31 24 9 9

23 335 118 19482 8235 0 - - -

24 150 9 17020 8999 1 - - -

25 62 5 22196 9441 1 - 3 3

26 2487 94 23964 9945 54 15 48 48

27 90 8 16608 10315 1 - 9 9

28 610 32 25412 10732 10 - 9 9

29 877 6 19497 11383 19 19 18 18

30 2621 44 31341 19686 97 15 3 3

21

Although there are 4 type-I errors that are found by Šidák and Bonferroni Correction

methods, publisher 25 is detected by these methods unlike the method of successive runs.

Since Šidák and Bonferroni Correction methods slightly stringent than method of

successive runs, they detect most of the fraudulent publishers earlier than our method.

However, they have much higher type-I error rates. For example, while publisher 21 is

detected with the last installation by our method, Šidák and Bonferroni Correction

methods detected it earlier with the 7th test. As seen in the table, the orders of all of the

test indication click spammers are the same for Šidák and Bonferroni, because values of

the family-wise error are close to each other. For instance, the family-wise error of the

third test is 0.01695 for Šidák Correction, while it is 0.01667 for Bonferroni method.

As seen Table 3.6, the results also indicate that while 12 out of 15 fraudulent publishers

have been successfully detected with method of successive runs, Šidák and Bonferroni

correction methods have detected 11 out of 15 fraudulent publishers. On average, while

we detect the click spamming activities before 32% of the entire set of installations have

arrived with the method of successive runs, click spamming activities are detected before

6.70% of the total installations have arrived with the other methods. In the best case

(Publisher 30), the click spamming is detected before (15 ∗ 10)/2621 = 6% of the total

installations have arrived. The best case of the other methods is observed in the case of

the same publisher. The spammer is detected before (3 ∗ 10)/2621 = 1.14% of the total

installations have arrived. In the worst case for our method (Publisher 21), the click

spamming can be detected only after (40 ∗ 10)/400 = 100% of the total installations

have arrived. Publisher 27 is detected after the last installation is arrived, being the worst

case of Šidák and Bonferroni methods. This result suggests that we have recognized that

Publisher 21 and 27 are fraudsters at the very end of the ad campaign. Even though the

detection of these spamming publishers does not help us in this experimented campaign,

filtering out the publisher from the future campaigns will protect us against its prospective

fraud. Apart from these results, Publisher 2 is also worth mentioning because it is

blacklisted as click spammer in spite of its relatively low median CTIT value. If we had

conducted the sign test for once with the all-time installations of this publisher, we would

have concluded it is not fraudulent due to the median CTIT of 201 seconds. This example

shows why the multiple testing procedure is superior to single testing.

22

Table 3.6. Summary of accuracy test results

Method
Detected

Fraud
False Positive

Decision Rate

Average

Detecting

Installation

Šidák 11/15* 27% 6.70%

Bonferroni 11/15* 27% 6.70%

Our

Method 12/15* 0% 32%

On the other hand, we fail to detect the click spamming activities of the remaining four

fraudulent publishers (Publisher 5, 24, 25, and 27) by our method. Publisher 2, 5, 7, 12

could not be detected by the other methods during their campaign period, which makes

the false-negative error rate of the experiment to be β̅ = 11/15 = 73%. The common

characteristic of all four publishers 5, 24, 25, and 27, whose click spamming activities

have not been detected, is the low number of installations due to the short campaign

duration. We observe that most of the clicks attributed to these publishers had not ended

up with installations at the time point we collected their data for our experiment. Note

that the bid price is still paid to publishers, if the click event takes place during the

campaign interval regardless of the time of the installation event. Most probably, these

clicks will never yield a legit installation, but can still bring in undeserved money for

these publishers if any user installs the advertised app organically via another advertising

channel. On the other hand, common characteristic of the other publishers whose

fraudulent activities are not detected is that their spam attacks started near the end of the

campaign durations except Publisher 5. This situation is based on the nature of Šidák and

Bonferroni Correction methods. In these methods family-wise errors decrease

continuously. However, p-value of tests has a limit to decrease because of the sample

size. Hence, if the sample size is 10 for tests, p-value can be 0.00098 in the worst case

when all ten installations have arrived after at least 2-hours from the related click. After

a certain amount of testing, family-wise error will be always smaller than the p-value.

Therefore, null hypothesis will not be rejected after that point because of the reject rule

which says that the null hypothesis is rejected, if the p-value is bigger than family-wise

error for that test. While family-wise error for Bonferroni method is always smaller than

the p-values of tests after the 52nd test whose p-value is 0.00096, limit for Šidák method

is 53rd test with 𝛼̅ =0.00097. After 53rd test, p-value of test will consistently be greater

23

than family-wise error independently from CTITs. For example, family-wise error is

calculated as 𝛼̅ = 0.00050 with Bonferroni method for the 100th test. The publisher

cannot be accused of being fraud even if the CTITs of 10 installations are greater than 2-

hours because p-value of 0.00098 is greater than α̅ = 0.00050. Even though Šidák and

Bonferroni methods are useful for short-term campaigns, they are useless for long term

campaigns and for publishers who have approximately more than 530 installations in a

campaign because of their stringency.

Unfortunately, for the short-term campaigns, our multiple testing procedure is not likely

to detect the click spamming publishers since high-valued CTITs indicating spamming

have not yet been generated at the time we collect the data. Nevertheless, these campaigns

are short-dated and usually bring relatively small number of falsely-attributed

installations from their publishers. Hence, we can safely assume the total loss due to these

installations is still in an acceptable level.

24

4. DETECTION OF FRAUD USING MULTIPLE TESTING

In this section, steps of detecting click spamming and click injection are explained.

Insufficiency of using single testing is showed in the previous section. Mean of CTITs is

not a useful source to detect frauds. Even median of CTITs which gives a better

understanding of the publishers’ actions can mislead the advertisers when they decide

fraudulent activities. For example, while having a median that is bigger than 2-hour can

be proof of click spamming, having a small median does not guarantee that the publisher

is not a spammer. Therefore, using non-parametric single sign test for median of CTITs

can cause type-II errors often in the case of small median of CTITs. On the other hand,

multiple testing is better than in terms of both type-I and type-II errors. Moreover,

multiple testing methods provide an opportunity to test the publisher in real time unlike

using fitting test for detection of fraud. The end of campaign duration has to be waited to

make fitting test. This causes loss during the campaign durations. On the other hand,

fraudsters can be detected during the campaign duration and they can be blocked to

prevent financial losses with multiple testing methods through applicability in real time.

The method of successive runs is better than other correction methods of multiple

comparison because of the limitations of Šidák and Bonferroni methods. These methods

do not have ability to detect frauds in long term campaign durations and for the publishers

who have more than 530 installations in a campaign. Furthermore, these methods are

vulnerable in terms of type-I errors unlike our method. Type-I error is a more dangerous

error than type-II. That is because, while type-I error represents accusing a publisher who

is legit of being fraud, type-II error means that a publisher who is a fraudster in reality is

found legit. Even though a publisher is found legit falsely in a campaign (type-II error),

it can be detected in the other campaigns. However, if a publisher is detected as a fraud,

it is blocked permanently. Therefore, there is no compensation for making type-I error.

This is the reason for selecting method of successive runs to detect fraud types in this

chapter instead of other methods. Also, publishers should be evaluated campaign by

campaign because legit publishers can decide to start fraudulent activities after a while.

25

Therefore, every installation should be examined for both click spamming and click

injection.

4.1 Detection of Click Spamming

In this chapter, detection of click spamming is explained step by step. The method of

successive runs is utilized to detect spammers. Pseudocode is shown in below:

 Start Campaign 𝑛

 Set 𝐼𝑛𝑠𝑡𝑎𝑙𝑙 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 0

 Set 𝑀𝑖𝑛𝑢𝑠 = 0

 For each arriving installation for 𝑛th campaign

o 𝐼𝑛𝑠𝑡𝑎𝑙𝑙 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 𝐼𝑛𝑠𝑡𝑎𝑙𝑙 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + 1

o 𝐶𝑇𝐼𝑇𝑖𝑘𝑛 = 𝐼𝑛𝑠𝑡𝑎𝑙𝑙 𝑇𝑖𝑚𝑒𝑖𝑘𝑛 − 𝐶𝑙𝑖𝑐𝑘 𝑡𝑖𝑚𝑒𝑖𝑘𝑛

o For each test 𝑡 ∈ 𝑇

 If 𝐼𝑛𝑠𝑡𝑎𝑙𝑙 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 % 10 = 0

o 𝑆𝑖𝑔𝑛 = 𝐶𝑇𝐼𝑇𝑖𝑘𝑛
𝑡 − 7200

o If 𝑆𝑖𝑔𝑛 < 0

 𝑀𝑖𝑛𝑢𝑠 = 𝑀𝑖𝑛𝑢𝑠 + 1

 Calculate 𝑃𝑣𝑎𝑙𝑢𝑒 of Test 𝑡

 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡) = ∑ (𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒
𝑘

)𝑝𝑘(1 − 𝑝)𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒−𝑘
𝑀𝑖𝑛𝑢𝑠

𝑘=0

 If 𝑡 = 1

o If 𝑃𝑣𝑎𝑙𝑢𝑒 (1) < 

 Publisher 𝑘 is a fraudster

 Block Publisher 𝑘

o Else

 Wait for the next ten installs and conduct

Test 2

 If 𝑡 ≥ 2

o 𝐼𝑓 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡) <  & 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 1) < 

26

 Publisher 𝑘 is a fraudster

 Block Publisher 𝑘

o Else

 Wait for the next ten installs and conduct

Test 𝑡 + 2

 If 𝑡 > 22

o If 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡) <  & 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 1) <  &

𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 2) < 

 Publisher 𝑘 is a fraudster

 Block Publisher 𝑘

o Else

 Wait for the next ten installations and conduct

Test 𝑡 + 3

 If 𝑡 > 434

o If 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡) <  & 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 1) <  &

𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 2) <  & 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 3) < 

 Publisher 𝑘 is a fraudster

 Block Publisher 𝑘

o Else

 Wait for the next ten installations and conduct

Test 𝑡 + 4

 If 𝑡 > 8524

o If 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡) <  & 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 1) <  &

𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 2) <  & 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 3) <  &

𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 4) < 

 Publisher 𝑘 is a fraudster

 Block Publisher 𝑘

o Else

 Wait for the next ten installations and conduct

Test 𝑡 + 5

 If the publisher 𝑘 passes from all tests

o Publisher 𝑘 is legit

27

𝐶𝑇𝐼𝑇𝑖𝑘𝑛: Click-to install time of 𝑖𝑡ℎ installation from publisher 𝑘 for campaign 𝑛

𝑀𝑖𝑛𝑢𝑠: Number of negative values which are calculated from 𝐶𝑇𝐼𝑇𝑖𝑘𝑛 =

 𝐼𝑛𝑠𝑡𝑎𝑙𝑙 𝑇𝑖𝑚𝑒𝑖𝑘𝑛 − 𝐶𝑙𝑖𝑐𝑘 𝑡𝑖𝑚𝑒𝑖𝑘𝑛

𝑇: the set of tests for publisher 𝑘 from 1 to
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 𝑜𝑓 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟 𝑘 𝑓𝑜𝑟 𝑐𝑎𝑚𝑝𝑎𝑖𝑔𝑛 𝑛

𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒

As mentioned earlier, every installation should be examined one by one for each publisher

in each campaign and sub campaign. First of all, a click-to-install time is calculated for

each new-coming installation and stored in CTIT(t). This calculation has to be done for

every installation. Then it is waited until the number of installations reach the number of

sample size to do the testing. Sample size is defined as 10 by the trial and error method.

10 as a sample size is big enough to understand the intention of the publisher and small

enough to decide quickly and safely. After the first 10 installations have arrived, first non-

parametric sign test is made. As seen in the pseudocode, the first requirement of the sign

test is the determination of the sign of the test members. In our procedure, the equation

𝐶𝑇𝐼𝑇𝑖𝑘𝑛
𝑡 − 𝑇𝑖𝑚𝑒 is used to define sign of test members. The important matter is defining

Time to make the decision correctly. Therefore, we observe the distribution of CTIT

values for several publishers and note that, if publisher, 70-75% of app installations

typically occur during the first hour, 80-85% of installations during the first two hours

and 90-95% of installations in the first 24 hours following a click event. Monasteriao

(2017) presents the histogram of CTIT values for one-day worth of installations in a non-

fraudulent scenario and arrives at the same conclusion that most of the users’ installations

occur in the first hour after the click.

In the light of these facts, we designed the following sign test for the median of CTIT

values of a publisher.

H0: η(t) = 7200 seconds

Ha: η(t) > 7200 seconds

In this test, η0 = 7200 is adequately large that enables us to safely assume the publisher

is fraudulent if the null hypothesis is rejected (i.e. probability of type-I error is small).

Hence, Time = 7200 seconds. If CTIT is bigger than Time, the sign will be positive. If

CTIT is less than Time, the sign will be negative. If CTIT is equal to Time, the sign will

(5)

28

be neutral. For detection of click spamming, only the number of negative ones which is

represented with Minus in pseudocode is important because binomial distribution is

utilized to calculate the p-value. Cumulative distribution function of binomial distribution

is 𝑓(k, n, p) = P(x ≤ k) = ∑ (𝑛
𝑖
)𝑝𝑖(1 − 𝑝)𝑛−𝑖

𝑘

𝑖=0
 where k represents the number of

successes occurring among m trials with probability p. In our procedure, the number of

successes is number of negative sign (Minus) and number of trials is equal to 10. In

addition, the probability is 0.50000 for nonparametric sing test. Thus, p-value is

calculated with the formulation ∑ (10
𝑘

)𝑝𝑘(1 − 𝑝)10−𝑘
𝑀𝑖𝑛𝑢𝑠

𝑘=0
. For instance, let us assume

5 out of 10 installations have arrived after 2 hours. The p-value is found as 0.62305. After

the calculation of the p-value, the value is compared with the significance level  which

is 0.05000 in our method. If p-value is less than , null hypothesis is rejected; otherwise

the decision is fail to reject. For example, the p-value which was calculated for 6

installations whose CTIT is greater than 2-hour out of 10 is greater than  = 0.05000.

Therefore, null hypothesis is failed to reject. If the first test is rejected, the publisher is

found as a fraud according to our method of successive runs. In contrast, if the first

decision is not a rejection, the second test is applied. After 2nd test, 2 successive reject

decisions are needed to accuse the publisher of fraudulence. If 2 reject decisions are not

made one after another in the range between 2 and 22 tests, the publisher continues to be

investigated. However, after 23rd test (230 installations), blaming publisher for spamming

requires 3 successive reject decisions until 433rd test (4330 installations). After that point,

4 reject decisions have to be waited to conclude that a publisher is a fraud or not. table

3.4 represents that number of consecutive installations’ range according to the number of

tests. If the publisher is figured out to be fraud, it is blocked immediately. For example,

let us assume that a publisher is blamed for spamming with 98th test result. It means that

96th, 97th, and 98th null hypothesizes are rejected. Hence, 99th test is unnecessary for that

publisher after this point because it is in the list of the blocked spammers. A publisher is

tested at most
𝑇ℎ𝑒 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑠 𝑖𝑛 𝑎 𝐶𝑎𝑚𝑝𝑎𝑖𝑔𝑛

10
 times. If the publisher passes all

tests, the publisher acts legitimate behaviors. In another word, for each null hypothesis

that is not rejected, publisher is legit in this campaign. It should not be forgotten that

publishers who are found legit in other campaigns can start to commit fraudulent

29

behaviors after some point. Therefore, it is vital to continue to check legitimacy of

publishers in the new campaigns.

4.2 Detection of Click Injection

In click injection, fraudulent publisher’s app can detect when other apps are downloaded

on the device and trigger clicks right before the installation completes. In this way, they

receive undeserved credit for their attributed installations. Click-to-install times of click

injecting publishers are typically smaller. However, from the perspective of the

advertisers, truncating all installations with small CTIT is not a good idea since not every

click that happens shortly before the installation is fraudulent. In this sense, a similar

multiple testing procedure can be developed for the detection of injected clicks to prevent

advertisers from diverting their budget to fraudsters.

 Start Campaign 𝑛

 Set 𝐼𝑛𝑠𝑡𝑎𝑙𝑙 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 0

 Set 𝑃𝑙𝑢𝑠 = 0

 For each arriving installation for 𝑛th campaign

o 𝐼𝑛𝑠𝑡𝑎𝑙𝑙 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 𝐼𝑛𝑠𝑡𝑎𝑙𝑙 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + 1

o 𝐶𝑇𝐼𝑇𝑖𝑘𝑛 = 𝐼𝑛𝑠𝑡𝑎𝑙𝑙 𝑇𝑖𝑚𝑒𝑖𝑘𝑛 − 𝐶𝑙𝑖𝑐𝑘 𝑡𝑖𝑚𝑒𝑖𝑘𝑛

o For each test 𝑡 ∈ 𝑇

 If 𝐼𝑛𝑠𝑡𝑎𝑙𝑙 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 % 10 = 0

o 𝑆𝑖𝑔𝑛 = 𝐶𝑇𝐼𝑇𝑖𝑘𝑛
𝑡 − 20

o If 𝑆𝑖𝑔𝑛 > 0

 𝑃𝑙𝑢𝑠 = 𝑃𝑙𝑢𝑠 + 1

 Calculate 𝑃𝑣𝑎𝑙𝑢𝑒 of Test 𝑡

 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡) = ∑ (𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒
𝑘

)𝑝𝑘(1 − 𝑝)𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒−𝑘
𝑃𝑙𝑢𝑠

𝑘=0

 If 𝑡 = 1

o If 𝑃𝑣𝑎𝑙𝑢𝑒(1) < 

 Publisher 𝑘 is a fraudster

 Block Publisher 𝑘

30

o Else

 Wait for the next ten installations and conduct

Test 2

 If 𝑡 ≥ 2

o If 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡) <  & 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 1) < 

 Publisher 𝑘 is a fraudster

 Block Publisher 𝑘

o Else

 Wait for the next ten installations and conduct

Test 𝑡 + 2

 If 𝑡 > 22

o If 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡) <  & 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 1) <  &

𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 2) < 

 Publisher 𝑘 is a fraudster

 Block Publisher 𝑘

o Else

 Wait for the next ten installations and conduct

Test 𝑡 + 3

 If 𝑡 > 434

o If 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡) <  & 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 1) <  &

𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 2) <  & 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 3) < 

 Publisher 𝑘 is a fraudster

 Block Publisher 𝑘

o Else

 Wait for the next ten installations and conduct

Test 𝑡 + 4

 If 𝑡 > 8524

o If 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡) <  & 𝑃𝑎𝑙𝑢𝑒(𝑡 + 1) <  &

 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 2) <  & 𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 3) <  &

𝑃𝑣𝑎𝑙𝑢𝑒(𝑡 + 4) < 

 Publisher 𝑘 is a fraudster

 Block Publisher 𝑘

31

o Else

 Wait for the next ten installations and conduct

Test 𝑡 + 5

 If the publisher 𝑘 passes from all tests

o Publisher 𝑘 is legit

𝐶𝑇𝐼𝑇𝑖𝑘𝑛: Click-to install time of 𝑖𝑡ℎ installation from publisher 𝑘 for campaign 𝑛

𝑃𝑙𝑢𝑠: Number of positive values which are calculated from 𝐶𝑇𝐼𝑇𝑖𝑘𝑛 =

 𝐼𝑛𝑠𝑡𝑎𝑙𝑙 𝑇𝑖𝑚𝑒𝑖𝑘𝑛 − 𝐶𝑙𝑖𝑐𝑘 𝑡𝑖𝑚𝑒𝑖𝑘𝑛

𝑇: number of test for publisher k from 1 to
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 𝑜𝑓 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑟 𝑘 𝑓𝑜𝑟 𝑐𝑎𝑚𝑝𝑎𝑖𝑔𝑛 𝑛

𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒

Detecting click injection and click spamming is really similar with each other. They are

exactly the same about deciding the publisher is legit or fraud. Method of successive runs

is utilized to detect click injection exactly like explained in the previous section. Proper

number of installations are waited to make tests. The significance level of each test is also

 = 0.05. Furthermore, fraud is detected according to rules which are represented in table

3.4. The major difference of detection of click injection is hypothesis test from detection

of click spamming. The term of click-to-install time represents the time difference

between click and the first launch. Download time of mobile application is also included

in the click-to-install time. Hence, it is assumed that the total time of downloading,

installing and first launching of a mobile app cannot be less than 20 seconds in most cases.

Therefore, we designed the following sign test for the median of CTIT values of a

publisher.

H0: η(t) = 20 seconds

Ha: η(t) < 20 seconds

 In this test, η0 = 20 is adequately small that enables us to safely assume the publisher is

fraudulent if the null hypothesis is rejected. For this type of fraud, positive values that are

calculated from 𝑆𝑖𝑔𝑛 = 𝐶𝑇𝐼𝑇𝑖𝑘𝑛
𝑡 − 20 is important in terms of calculation of the p-

value. The plus term represents total number of positive values from sign equation. If the

p-values of all hypothesis tests are greater than 0.05, the publisher is a legitimate

(6)

32

publisher. Even though a publisher is found legit after a campaign, the publisher should

continue to be investigated in new campaigns because of possibility of being fraud in the

future.

33

5. EXPERIMENTS AND RESULTS

We will now discuss the results of our experiments conducted with a data set of app

installations of a DSP1 company. The DSP company provides a self-service mobile

advertisement platform to its customers (advertisers and/or their agencies) for managing

their own ad campaigns. In our experiment, we run tests for approximately 2 million of

installations for click spamming and click injection, separately. The method of successive

runs was used to detect these frauds. The data is grouped by campaign, sub campaign and

publisher. In other words, the installations of each publisher in a sub campaign of a

campaign are clustered together in our analysis. For instance, the installations arriving

from the publisher P1 of the ad network AN1 which advertises the mobile app of the ad

campaign AC1 are grouped together and labeled as the 3-tuple “AC1-AN1-P1”.

According to this classification, 15263 tuples were identified using the numerical

computing software Matlab.

The Matlab codes we have used in our study are shown in Appendix A. The code which

is in A.1 is utilized to conduct all possible sign tests of a publisher for click spamming

and decide if the publisher is a spammer or not. In this sign test, every installation is

examined to make sure whether the click-to-install time of the installation is less than 2-

hours. The code conducts the sign test for a sample size of 10 installations of the

publisher. Then, the decision is made according to the rule of the code given in A.1. The

code which is shown in A.2 is similar to the code shown in A.1. It is used for the sign test

of click injection. The only difference is that how the sign test is made. For click injection,

every installation is examined to make sure that the installation comes within 20 seconds

after the click. If the click-to-install time is less than 20 seconds, the publisher tends to be

fraud. Therefore, the sign test of click injection checks the CTIT of each installation to

see if it is less than 20 seconds or not. The code given in A.3 counts the positive values

1 App Samurai Inc., San Francisco, CA, USA

34

(i.e. the number of installations whose CTIT values are more than 20 seconds) in the sign

test of click injection, whereas the code given in A.4 counts the negative values (i.e. the

number of installations whose CTIT values are less than 2 hours) in the sign test of click

spamming. The code given in A.5 counts the number of rejected tests in both sign tests

of click spamming (A.1) and sign test of click injection (A.2) to calculate the total number

of rejected tests during the campaign duration. The code given in A.6 clusters the CTITs

of all installations belonging to each specific “campaign – sub campaign – publisher”

tuple.

The code that is shown is A.7 basically calls all the codes related to click spamming (A1,

A4, A5, and A6) for each publisher one by one. Firstly, the code in A.6 is called as a

preparation of the sign test. After that the code in A.1 is called to process the collected

data. These steps are repeated for every publisher via the code in A.7. Lastly, the code

given in A.8 is similar with the code in A.7. The only difference is that the code in A.8

calls all the codes related to click injection (A2, A3, A5, A6).

According to the results that are obtained running these Matlab codes, 1469 publishers

out of 15263 publishers are found as click spammers. Click spammers constitute 9.6% of

the publishers of the DSP company. The list of the spamming publishers is shown in

Appendix B. Table 5.1 provides a small sample of the table given in Appendix B. The

“publisher” column in the figure gives the IDs2 of the publishers who were detected while

they were spamming during the campaign duration. The column of “detecting test”

illustrates the order of the test in which the publisher is detected as spammer. The column

of “total installs” shows the total installations attributed to the publisher during the

campaign duration. For example, Publisher 5 (the first publisher in the table) has brought

159 installations during a campaign duration. This publisher has been detected as a

spammer at the 9th test. In other words, the publisher is found as spammer after 9 ∗ 10 =

90 installations have arrived. This means that the click spamming activities of Publisher

5 can only be detected after (9 ∗ 10)/159 = 56.6% of the total installations have arrived.

2 These IDs are assigned to the publishes arbitrarily in order to conceal the identity of the publishers due

to the company’s data privacy protocol.

35

Table 5.1. The sample of spammers table from Appendix B

Figure 5.1 provides a histogram for the “detecting tests”. For example, the bar labeled as

“1” in the figure represents the frequency of the publishers who are detected in the first

test, while the bar labeled as “10” shows the number of the publishers who are detected

in at least 6th test and at most 10th test. Figure 5.1 also shows that it is impossible to detect

a spammer in the 2nd test because it is mathematically impossible. According to the rules,

after the second test, two successive reject decisions are sought. If the publisher was

detected in the 2nd test, the results of the first and second tests would be rejection.

However, if the result of the first test was rejection, the publisher would be accused for

spamming. For that reason, no one can be detected in the second test. As seen in Figure

5.1, 1385 publishers are detected by the 40th test. In other word, 95% of the click

spammers are detected before no more than 400 installations from these publishers have

arrived.

36

Figure 5.1. The histogram of the “detecting tests”

The distribution of the means of the click-to-install time of the fraudulent publishers is

shown at the top graph of Figure 5.2. The spammers whose mean CTIT value is less than

2 hours composes only 2% of the spamming publishers. This small group of spammers

has a mean CTIT value less than 2 hours because they most probably mix up their legit

advertising with occasional spamming in a random fashion. Most of the click spammers

have a mean value that is more than one day. The bottom graph in Figure 5.2 illustrates

distribution of mean of CTIT of legit publishers. As mentioned in Chapter 3, the mean of

CTITs can be high because of some legitimate reasons. For example, some users may

have forgotten to launch the application. This graph supports the claim that the mean is

not a reliable descriptive statistic to understand the click spamming.

708

0

137

76 66

157

83 73
40

23 10 12 13 8 8 6 6 2 7 7 2 4 1 2 3 2 2 4 3 1 1 1 0 1
0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

0 1 2 3 4 5
1

0
1

5
2

0
2

5
3

0
3

5
4

0
4

5
5

0
6

0
7

0
8

0
9

0
1

0
0

1
1

0
1

2
0

1
3

0
1

4
0

1
5

0
2

0
0

2
5

0
3

0
0

3
5

0
4

0
0

5
0

0
7

0
0

1
0

0
0

1
5

0
0

M
o

re

Fr
eq

u
en

cy

Number of Test

Frequency

37

Figure 5.2. The histograms of mean of CTIT values for the fraudulent publishers (top)

and the legit publishers (bottom)

The median value of click-to-install times, on the other hand, provides a clear

understanding for legit and spamming publishers. As seen in the bottom graph of Figure

5.3, 90% of the legit publishers have median values that are less than 2 hours. In the top

graph of Figure 5.3, even though most of the spammers have large median values, 20%

of the fraudulent publishers have median values that are less than 2 hours. These

publishers support the result of our analysis which is mentioned in Chapter 3. If the tests

had been applied for the all-time installations of publishers, 303 spammers would have

passed the tests. Financial loss is prevented with our multiple testing procedure.

0

50

100

150

200

250

300

350

400

450

1 min 10 mins 1 hour 2 hours 6 hours 12 hours 1 day 1 week 1 month More

Fr
eq

u
en

cy

Frequency

0

1000

2000

3000

4000

5000

6000

1 min 10 mins 1 hour 2 hours 6 hours 12 hours 1 day 1 week 1 month More

Fr
eq

u
en

cy

Frequency

38

Figure 5.3. The histograms of median of CTIT values for the fraudulent publishers

(top) and the legit publishers (bottom)

Click injection is a fraudulent activity which is used much less than click spamming. The

main reason for underutilization of click injection is that click injection requires an

untraceable spy app which can detect an installation just before it is executed and it is

technically more difficulty than click spamming. In order to detect click injection, we

applied the procedure discussed in Chapter 4. According to the results of our experiment,

five publishers (out of 15263 publishers) is detected as fraudsters who conduct click

injection. Table 5.2 shows the list of these publishers. Each publisher is represented with

a row in the table. The first column provides publisher ID. The column of “detecting test”

specifies the order of the first test indicating a click injection activity. The column of

“total installs” shows the total number of installations of the detected publisher during the

campaign duration. The last column shows the total number of rejected tests during the

0

50

100

150

200

250

300

350

400

1 min 10 mins 1 hour 2 hours 6 hours 12 hours 1 day 1 week 1 month More

Fr
eq

u
en

cy

Frequency

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 min 10 mins 1 hour 2 hours 6 hours 12 hours 1 day 1 week 1 month More

Fr
eq

u
en

cy

Frequency

39

campaign. In the best case (Publisher 6551), the click injection is detected in the 1st test.

The fraudster is detected before (1 ∗ 10)/158 = 6% of the total installations have

arrived. In the worst case, click injection is not detected until the last installation arrives.

The number of rejects of the publisher 6550 is also worth mentioning. Although some

reject decisions had been made before the publisher was blamed for click injection,

publisher was accused of injection in 15th test because of the rule of our multiple testing

procedure. The method of successive runs prevents the publishers from being wrongly

accused.

Although only 5 publishers are detected as fraudster who make click injection, we believe

that in reality there are more publishers who are engaged in click injection. Unfortunately,

the DSP company does not have a record on click injection. Therefore, we cannot

calculate our type-II error for the click injection experiment. The reason for having a

possibly high type-II error rate with the method of successive runs to detect click injection

is that the CTIT values less than 20 seconds are much more stronger indicator for

(injection) fraud than CTIT values more than 2 hours for (spamming) fraud.

Table 5.2 The list of fraudulent publishers who made click injection

Publisher
Detecting Total Number of

test Installs Rejects

591 1 10 1

592 1 10 1

6550 15 622 23

6551 1 158 5

13606 1 28 1

While we detected 0.34% of the publishers as click injecting fraudsters, we found that the

click spamming ones constitute 10% of all the publishers. This finding supports the fact

that click spamming is a more popular fraud type than click injection. Our findings also

suggest that there is no publisher who conducts click spamming and click injection

together.

40

6. CONCLUSION

Click spamming and click injection are common types of frauds in mobile display

advertising. However, the fraudulent activities of fraudsters can still be detected by

applying some statistical techniques on click-to-install time (CTIT) values. In this study,

we have defined a novel multiple testing procedure which conducts sign tests on CTIT

values of a publisher periodically. If we observe 𝑟 successive rejections in these tests,

where 𝑟 is a function of the number of tests conducted so far, we tag the publisher as

fraudulent. Otherwise, publisher passes the testing procedure and is concluded to be legit.

This technique can be utilized to detected both click spamming and click injection

activities with a small adjustment which is merely changing the null hypothesis. We have

also showed that our procedure has a false-positive error rate of at most 𝛼̅ = 0.05. Lastly,

we run an experiment with 15263 publishers. According to the results of the experiment,

we tag 1469 publishers for click spamming and 5 publishers for click injection.

As a future research direction, our multiple testing procedures can be tested with a set of

mobile advertisements campaigns in real time and the rate of success for our methods can

be calculated. The method of successive runs applied in real time to detect click

spamming and click injection can protect advertisers from further financial losses.

According to the results of the click injection experiment, the number of click injecting

publishers is less than the expected level. Therefore, deciding rule for click injection in

the method of successive runs can be tuned up to reduce type-II error rate and achieve

more accurate results.

Another future research opportunity related to click injection is about 𝜂0 value in

Equation (2). The value of 𝜂0 is assumed to be a lower bound for CTIT values of

publishers which do not conduct any click injection activity. Since the size (in megabytes)

of the mobile application is directly proportion with the download time of the app, it

immediately affects the click-to-install time. Therefore, 𝜂0 can be expressed as a function

41

of app size. Expressing 𝜂0 as an appropriate function of app size in the future can provide

a more accurate detection of click-injecting publishers.

42

REFERENCES

Badhe, A. (2016). Click Fraud Detection In Mobile Ads Served In Programmatic

Exchanges. International Journal of Scientific Technology & Research, 5(4), 1.

Bland, J. M., & Altman, D. G. (1995). Multiple significance tests: the Bonferroni method.

BMJ, 310(6973), 170.

Blizard, T., & Livic, N. (2012). Click-fraud monetizing malware: A survey and case

study. Proceedings of 7th International Conference on Malicious and Unwanted

Software (MALWARE 2012) (pp. 67-72).

Cho, G., Cho, J., Song, Y., & Kim, H. (2015). An empirical study of click fraud in mobile

advertising networks. In Proceedings of 10th International Conference

on Availability, Reliability and Security (ARES) (pp. 382-388).

Cho, G., Cho, J., Song, Y., Choi, D., & Kim, H. (2016). Combating online fraud attacks

in mobile-based advertising. EURASIP Journal on Information Security, (1)2.

Crussell, J., Stevens, R., & Chen, H. (2014). Madfraud: Investigating ad fraud in android

applications. Proceedings of the 12th annual international conference on Mobile

systems, applications, and services (pp. 123-134).

Daswani, N., Mysen, C., Rao, V., Weis, S., Gharachorloo, K., & Ghosemajumder, S.

(2008). Online advertising fraud. Crimeware: understanding new attacks and

defenses, 40(2), 1-28.

Dave, V., Guha, S., & Zhang, Y. (2012). Measuring and fingerprinting click-spam in ad

networks. Proceedings of the ACM SIGCOMM 2012 conference on Applications,

technologies, architectures, and protocols for computer communication (pp. 175-

186).

Feller, W. (1968). An Introduction to Probability Theory and Its Applications, Vol. 1.

(3rd ed.). New York: J. Wiley & Sons.

43

Gupta, A., Tiwari, A., Venkatraman, G., Cheung, D., Bennett, S. R., & Koen, D. B.

(2014). U.S. Patent No. 8,799,069. Washington, DC: U.S. Patent and Trademark

Office.

Hill, A. T., Vandermay, J., & Error, B. M. (2014). U.S. Patent No. 8,880,541.

Washington, DC: U.S. Patent and Trademark Office

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian

journal of statistics, 65-70.

Immorlica, N., Jain, K., Mahdian, M., & Talwar, K. (2005). Click fraud resistant methods

for learning click-through rates. International Workshop on Internet and Network

Economics (pp. 34-45). Springer, Berlin, Heidelberg.

Iqbal, M. S., Zulkernine, M., Jaafar, F., & Gu, Y. (2018). Protecting Internet users from

becoming victimized attackers of click‐fraud. Journal of Software: Evolution and

Process, 30(3), e1871.

Jain, K., & Talwar, K. (2007). U.S. Patent Application No. 11/178,528.

Kitts, B. J., Najm, T., & Burdick, B. (2008). U.S. Patent Application No. 11/745,264.

Linden, J., & Teeter, T. (2012). U.S. Patent No. 8,321,269. Washington, DC: U.S. Patent

and Trademark Office.

Liu, B., Nath, S., Govindan, R., & Liu, J. (2014). DECAF: Detecting and Characterizing

Ad Fraud in Mobile Apps. Proceedings of the 11th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’14) (pp. 57-70).

Monasterio, J. D. (2017). Tagging Click-Spamming Suspicious Installs in Mobile

Advertising Through Time Delta Distributions. Proceedings of Simposio Argentino de

GRANdes DAtos (AGRANDA)-JAIIO 46 (Córdoba, 2017).

Nieborg, D. B. (2016). App advertising: The rise of the player commodity. In J. F.

Hamilton, R. Bodle, & E. Korin (Eds.), Explorations in critical studies of advertising

(pp. 28–41). New York: Routledge.

44

Oentaryo, R., Lim, E. P., Finegold, M., Lo, D., Zhu, F., Phua, C., & Perera, K. (2014).

Detecting click fraud in online advertising: a data mining approach. The Journal of

Machine Learning Research, 15(1), 99-140.

Perera, K. S., Neupane, B., Faisal, M. A., Aung, Z., & Woon, W. L. (2013). A novel

ensemble learning-based approach for click fraud detection in mobile advertising.

In Mining Intelligence and Knowledge Exploration (pp. 370-382). Springer, Cham.

Shields, R. (2016). REPORT: Ad fraud is 'second only to the drugs trade' as a source of

income for organized crime. Business Insider. Retrieved from

http://www.businessinsider.com/wfa-report-ad-fraud-will-cost-advertisers-50-billion-

by-2025-2016-6.

Šidák, Z. (1967). Rectangular confidence regions for the means of multivariate normal

distributions. Journal of the American Statistical Association, 62(318), 626-633.

Smith, B., Lester, C., & Karrels, E. L. (2011). U.S. Patent No. US7933984B1.

Washington, DC: U.S. Patent and Trademark Office.

Soubusta, S. (2008). On Click Fraud. Information Wissenschaft und Praxis, 59(2), 136

Sprent P. (1989). Applied Nonparametric Statistical Methods. (4th ed.). London:

Chapman and Hall.

Springborn, K., & Barford, P. (2013, August). Impression Fraud in On-line Advertising

via Pay-Per-View Networks. In USENIX Security Symposium (pp. 211-226).

Zingirian, N., & Benini, M. (2018). Click Spam Prevention Model for On-Line

Advertisement. Manuscript submitted for publication. Retrieved from

http://arxiv.org/abs/1802.02480

http://www.businessinsider.com/wfa-report-ad-fraud-will-cost-advertisers-50-billion-by-2025-2016-6
http://www.businessinsider.com/wfa-report-ad-fraud-will-cost-advertisers-50-billion-by-2025-2016-6
http://arxiv.org/abs/1802.02480

45

APPENDIX A

A.1 Matlab Code for Sign Test for Click Spamming

%sign test for spamming

function [decision, numReject, ordReject]= sign_test(array)

%decision="a";

ordReject=0;

sz = size(array);

szArray=zeros(sz(1),1);

%Sign Array s

for i=1:1:sz(1)

if array(i,1)-7200 >0

 szArray(i,1)=1;

elseif array(i,1)-7200 <0

 szArray(i,1) =-1;

else

 szArray(i,1) =0;

end

end

%P_Value

row=floor(sz(1)/10);

pValues= zeros(row,1);

k=1;

son=sz(1)-mod(sz(1),10);

for i=1:10:son-9

 b=szArray(i:i+9);

 ones=countOnes(b);

 mones=countMOnes(b);

 count=ones+mones;

 %small=min(b);

 pValues(k,1)=binocdf(mones,count,0.5);

 k=k+1;

end

%Comparison of Values with 0.05 0=reject, 1=fail to reject

sonuc=zeros(row,1);

for i=1:1:sz(1)/10

if pValues(i,1)<0.05

46

 sonuc(i,1)=0;

else

 sonuc(i,1)=1;

end

end

counter=1;

sonucSz=size(sonuc);

numReject= countReject(sonuc);

if sonucSz(1)<=1

 if sonuc(1,1)==0

 decision="fraud";

 ordReject=counter;

 else

 decision="legit";

 end

elseif sonucSz(1)>1 && sonucSz(1)<=22

 if sonuc(1,1)==0

 decision="fraud";

 ordReject=counter;

 return

 end

 counter=counter+1;

 if sonucSz(1)==22

 for i=2:1:21

 if sonuc(i,1)==0 && sonuc(i+1,1)==0

 decision="fraud";

 ordReject=counter+1;

 return

 else

 decision="legit";

 end

 counter=counter+1;

 end

 else

 if sonucSz(1)==2

 decision="legit";

 return

 else

 for i=2:1:sonucSz(1)-1

 if sonuc(i,1)==0 && sonuc(i+1,1)==0

 decision="fraud";

47

 ordReject=counter+1;

 return

 else

 decision="legit";

 end

 counter=counter+1;

 end

 end

 end

elseif sonucSz(1)>22 && sonucSz(1)<=434

 if sonuc(1,1)==0

 decision="fraud";

 ordReject=counter;

 return

 end

 counter=counter+1;

 for i=2:1:21

 if sonuc(i,1)==0 && sonuc(i+1,1)==0

 decision="fraud";

 ordReject=counter+1;

 return

 end

 counter=counter+1;

 end

 if sonucSz(1)==434

 for i=22:1:432

 if sonuc(i,1)==0 && sonuc(i+1,1)==0 &&

sonuc(i+2,1)==0

 decision="fraud";

 ordReject=counter+2;

 return

 else

 decision="legit";

 end

 counter=counter+1;

 end

 else

 if sonucSz(1)== 23

 decision="legit";

 return

 else

48

 for i=22:1:sonucSz(1)-2

 if sonuc(i,1)==0 && sonuc(i+1,1)==0 &&

sonuc(i+2,1)==0

 decision="fraud";

 ordReject=counter+2;

 return

 else

 decision="legit";

 end

 counter=counter+1;

 end

 end

 end

else

 if sonuc(1,1)==0

 decision="fraud";

 ordReject=counter;

 return

 end

 counter=counter+1;

 for i=2:1:21

 if sonuc(i,1)==0 && sonuc(i+1,1)==0

 decision="fraud";

 ordReject=counter+1;

 return

 end

 counter=counter+1;

 end

 for i=22:1:432

 if sonuc(i,1)==0 && sonuc(i+1)==0 && sonuc(i+2)==0

 decision="fraud";

 ordReject=counter+2;

 return

 end

 counter=counter+1;

 end

 if sonucSz(1)==8524

 for i=431:1:8521

 if sonuc(i,1)==0 && sonuc(i+1,1)==0 &&

sonuc(i+2,1)==0 && sonuc(i+3,1)==0

 decision="fraud";

 ordReject=counter+2;

 return

 else

 decision="legit";

 end

49

 counter=counter+1;

 end

 else

 if sonucSz(1)==435

 decision="legit";

 return

 else

 for i=432:1:sonucSz(1)-3

 if sonuc(i,1)==0 && sonuc(i+1,1)==0 &&

sonuc(i+2,1)==0 && sonuc(i+3,1)==0

 decision="fraud";

 ordReject=counter+2;

 return

 else

 decision="legit";

 end

 counter=counter+1;

 end

 end

 end

end

end

A.2 Matlab Code for Sign Test for Click Injection

%sign test for injection

function [decision, numReject, ordReject]=

Psign_test(array)

%decision="a";

ordReject=0;

sz = size(array);

szArray=zeros(sz(1),1);

%Sign Array

for i=1:1:sz(1)

if array(i,1)-20 >0

 szArray(i,1)=1;

elseif array(i,1)-20 <0

 szArray(i,1) =-1;

else

 szArray(i,1) =0;

end

end

%P_Value

50

row=floor(sz(1)/10);

pValues= zeros(row,1);

k=1;

son=sz(1)-mod(sz(1),10);

for i=1:10:son-9

 b=szArray(i:i+9);

 ones=countOnes(b);

 mones=countMOnes(b);

 count=ones+mones;

 %small=min(b);

 pValues(k,1)=binocdf(ones,count,0.5);

 k=k+1;

end

% Comparison of Values with 0.05 0=reject, 1=fail to

reject

sonuc=zeros(row,1);

for i=1:1:sz(1)/10

if pValues(i,1)<0.05

 sonuc(i,1)=0;

else

 sonuc(i,1)=1;

end

end

counter=1;

sonucSz=size(sonuc);

numReject= countReject(sonuc);

if sonucSz(1)<=1

 if sonuc(1,1)==0

 decision="fraud";

 ordReject=counter;

 else

 decision="legit";

 end

elseif sonucSz(1)>1 && sonucSz(1)<=22

 if sonuc(1,1)==0

 decision="fraud";

 ordReject=counter;

 return

 end

 counter=counter+1;

51

 if sonucSz(1)==22

 for i=2:1:21

 if sonuc(i,1)==0 && sonuc(i+1,1)==0

 decision="fraud";

 ordReject=counter+1;

 return

 else

 decision="legit";

 end

 counter=counter+1;

 end

 else

 if sonucSz(1)==2

 decision="legit";

 return

 else

 for i=2:1:sonucSz(1)-1

 if sonuc(i,1)==0 && sonuc(i+1,1)==0

 decision="fraud";

 ordReject=counter+1;

 return

 else

 decision="legit";

 end

 counter=counter+1;

 end

 end

 end

elseif sonucSz(1)>22 && sonucSz(1)<=434

 if sonuc(1,1)==0

 decision="fraud";

 ordReject=counter;

 return

 end

 counter=counter+1;

 for i=2:1:21

 if sonuc(i,1)==0 && sonuc(i+1,1)==0

 decision="fraud";

 ordReject=counter+1;

 return

52

 end

 counter=counter+1;

 end

 if sonucSz(1)==434

 for i=22:1:432

 if sonuc(i,1)==0 && sonuc(i+1,1)==0 &&

sonuc(i+2,1)==0

 decision="fraud";

 ordReject=counter+2;

 return

 else

 decision="legit";

 end

 counter=counter+1;

 end

 else

 if sonucSz(1)== 23

 decision="legit";

 return

 else

 for i=22:1:sonucSz(1)-2

 if sonuc(i,1)==0 && sonuc(i+1,1)==0 &&

sonuc(i+2,1)==0

 decision="fraud";

 ordReject=counter+2;

 return

 else

 decision="legit";

 end

 counter=counter+1;

 end

 end

 end

else

 if sonuc(1,1)==0

 decision="fraud";

 ordReject=counter;

 return

 end

 counter=counter+1;

 for i=2:1:21

 if sonuc(i,1)==0 && sonuc(i+1,1)==0

 decision="fraud";

 ordReject=counter+1;

 return

53

 end

 counter=counter+1;

 end

 for i=22:1:432

 if sonuc(i,1)==0 && sonuc(i+1)==0 && sonuc(i+2)==0

 decision="fraud";

 ordReject=counter+2;

 return

 end

 counter=counter+1;

 end

 if sonucSz(1)==8524

 for i=431:1:8521

 if sonuc(i,1)==0 && sonuc(i+1,1)==0 &&

sonuc(i+2,1)==0 && sonuc(i+3,1)==0

 decision="fraud";

 ordReject=counter+2;

 return

 else

 decision="legit";

 end

 counter=counter+1;

 end

 else

 if sonucSz(1)==435

 decision="legit";

 return

 else

 for i=432:1:sonucSz(1)-3

 if sonuc(i,1)==0 && sonuc(i+1,1)==0 &&

sonuc(i+2,1)==0 && sonuc(i+3,1)==0

 decision="fraud";

 ordReject=counter+2;

 return

 else

 decision="legit";

 end

 counter=counter+1;

 end

 end

 end

end

end

54

A.3 Matlab Code for Counting Positive Values for Sign Test

function [x]= countOnes(array)

%number of ones in array

sz = size(array);

n=0;

for i=1:1:sz(1)

 if array(i) == 1

 n=n+1;

 end

x = n;

end

A.4 Matlab Code for Counting Negative Values for Sign Test

function [x]= countMOnes(array)

%umber of minus ones in array

sz = size(array);

n=0;

for i=1:1:sz(1)

 if array(i) == -1

 n=n+1;

 end

x = n;

end

A.5 Matlab Code for Counting Rejected Test

function [x]= countReject(array)

%arraydeki bir sayýsý

sz = size(array);

n=0;

for i=1:1:sz(1)

 if array(i) == 0

 n=n+1;

 end

x = n;

end

A.6 Matlab Code for Collecting Data to Do Sign Test for a Publisher

%Function for collecting data from excel files

55

function [array, duration]= collectdata(camp, subcamp, pub,

numInst, data1, data2)

array = zeros(numInst,1);

%[~,~,data1]=xlsread('data1','duz');

%[~,~,data2]=xlsread('data2','duz');

k=1;

%disp('data okundu');

endpoint1 = size(data1);

endpoint2 = size(data2);

strcamp = ischar(camp);

if strcamp==1

 camp = convertCharsToStrings(camp);

end

strsubcamp = ischar(subcamp);

if strsubcamp==1

 subcamp= convertCharsToStrings(subcamp);

end

strpub = ischar(pub);

if strpub==1

 pub=convertCharsToStrings(pub);

end

%disp(strcamp);

%disp(strsubcamp);

%disp(strpub);

if strcamp==1 && strsubcamp==1 && strpub==1

 for i=1:1:endpoint1(1)-1

% x for camp, y for subcamp, z for pub

 x=strcmp(convertCharsToStrings(data1{i+1,3}),camp);

 y=strcmp(convertCharsToStrings(data1{i+1,4}),subcam

p);

 z=strcmp(convertCharsToStrings(data1{i+1,5}),pub);

 if x== 1 && y==1 && z==1

 array(k,1)= data1{i+1,1};

 array(k,2)= data1{i+1,6};

 k=k+1;

 end

 end

elseif strcamp==0 && strsubcamp==1 && strpub==1

 for i=1:1:endpoint1(1)-1

% x for camp, y for subcamp, z for pub

% x=strcmp(data1{i+1,3},camp);

 y=strcmp(convertCharsToStrings(data1{i+1,4}),subcam

p);

56

 z=strcmp(convertCharsToStrings(data1{i+1,5}),pub);

 if data1{i+1,3}== camp && y==1 && z==1

 array(k,1)= data1{i+1,1};

 array(k,2)= data1{i+1,6};

 k=k+1;

 end

 end

elseif strcamp==1 && strsubcamp==0 && strpub==1

 for i=1:1:endpoint1(1)-1

% x for camp, y for subcamp, z for pub

 x=strcmp(convertCharsToStrings(data1{i+1,3}),camp);

% y=strcmp(data1{i+1,4},subcamp);

 z=strcmp(convertCharsToStrings(data1{i+1,5}),pub);

 if x==1 && data1{i+1,4}==subcamp && z==1

 array(k,1)= data1{i+1,1};

 array(k,2)= data1{i+1,6};

 k=k+1;

 end

 end

elseif strcamp==1 && strsubcamp==1 && strpub==0

 for i=1:1:endpoint1(1)-1

% x for camp, y for subcamp, z for pub

 x=strcmp(convertCharsToStrings(data1{i+1,3}),camp);

 y=strcmp(convertCharsToStrings(data1{i+1,4}),subcam

p);

% z=strcmp(data1{i+1,5},pub);

 if x==1 && y==1 && data1{i+1,5}==pub

 array(k,1)= data1{i+1,1};

 array(k,2)= data1{i+1,6};

 k=k+1;

 end

 end

elseif strcamp==1 && strsubcamp==0 && strpub==0

 for i=1:1:endpoint1(1)-1

% x for camp, y for subcamp, z for pub

 x=strcmp(convertCharsToStrings(data1{i+1,3}),camp);

% y=strcmp(data1{i+1,4},subcamp);

% z=strcmp(data1{i+1,5},pub);

 if x==1 && data1{i+1,4}==subcamp &&

data1{i+1,5}==pub

 array(k,1)= data1{i+1,1};

 array(k,2)= data1{i+1,6};

 k=k+1;

 end

 end

elseif strcamp==0 && strsubcamp==1 && strpub==0

 for i=1:1:endpoint1(1)-1

% x for camp, y for subcamp, z for pub

% x=strcmp(data1{i+1,3},camp);

57

 y=strcmp(convertCharsToStrings(data1{i+1,4}),subcam

p);

% z=strcmp(data1{i+1,5},pub);

 if data1{i+1,3}== camp && y==1 && data1{i+1,5}==pub

 array(k,1)= data1{i+1,1};

 array(k,2)= data1{i+1,6};

 k=k+1;

 end

 end

elseif strcamp==0 && strsubcamp==0 && strpub==1

 for i=1:1:endpoint1(1)-1

% x for camp, y for subcamp, z for pub

% x=strcmp(data1{i+1,3},camp);

% y=strcmp(data1{i+1,4},subcamp);

 z=strcmp(convertCharsToStrings(data1{i+1,5}),pub);

 if data1{i+1,3}== camp && data1{i+1,4}==subcamp &&

z==1

 array(k,1)= data1{i+1,1};

 array(k,2)= data1{i+1,6};

 k=k+1;

 end

 end

else

 for i=1:1:endpoint1(1)-1

 if data1{i+1,3}==camp & data1{i+1,4}==subcamp &

data1{i+1,5}==pub

 array(k,1)= data1{i+1,1};

 array(k,2)= data1{i+1,6};

 k=k+1;

 end

 end

end

if strcamp==1 && strsubcamp==1 && strpub==1

 for i=1:1:endpoint2(1)-1

% x for camp, y for subcamp, z for pub

 x=strcmp(convertCharsToStrings(data2{i+1,3}),camp);

 y=strcmp(convertCharsToStrings(data2{i+1,4}),subcam

p);

 z=strcmp(convertCharsToStrings(data2{i+1,5}),pub);

 if x== 1 && y==1 && z==1

 array(k,1)= data2{i+1,1};

 array(k,2)= data2{i+1,6};

 k=k+1;

 end

 end

elseif strcamp==0 && strsubcamp==1 && strpub==1

 for i=1:1:endpoint2(1)-1

58

% x for camp, y for subcamp, z for pub

% x=strcmp(data2{i+1,3},camp);

 y=strcmp(convertCharsToStrings(data2{i+1,4}),subcam

p);

 z=strcmp(convertCharsToStrings(data2{i+1,5}),pub);

 if data2{i+1,3}== camp && y==1 && z==1

 array(k,1)= data2{i+1,1};

 array(k,2)= data2{i+1,6};

 k=k+1;

 end

 end

elseif strcamp==1 && strsubcamp==0 && strpub==1

 for i=1:1: endpoint2(1)-1

% x for camp, y for subcamp, z for pub

 x=strcmp(convertCharsToStrings(data2{i+1,3}),

camp);

% y=strcmp(data2{i+1,4}, subcamp);

 z=strcmp(convertCharsToStrings(data2{i+1,5}), pub);

 if x==1 && data2{i+1,4} ==subcamp && z==1

 array(k,1)= data2{i+1,1};

 array(k,2)= data2{i+1,6};

 k=k+1;

 end

 end

elseif strcamp==1 && strsubcamp==1 && strpub==0

 for i=1:1: endpoint2(1)-1

% x for camp, y for subcamp, z for pub

 x=strcmp(convertCharsToStrings(data2{i+1,3}),

camp);

 y=strcmp(convertCharsToStrings(data2{i+1,4}),

subcamp);

% z=strcmp(data2{i+1,5}, pub);

 if x==1 && y==1 && data2{i+1,5} ==pub

 array(k,1)= data2{i+1,1};

 array(k,2)= data2{i+1,6};

 k=k+1;

 end

 end

elseif strcamp==1 && strsubcamp==0 && strpub==0

 for i=1:1: endpoint2(1)-1

% x for camp, y for subcamp, z for pub

 x=strcmp(convertCharsToStrings(data2{i+1,3}),camp);

% y=strcmp(data2{i+1,4},subcamp);

% z=strcmp(data2{i+1,5},pub);

 if x==1 && data2{i+1,4}==subcamp &&

data2{i+1,5}==pub

 array(k,1)= data2{i+1,1};

 array(k,2)= data2{i+1,6};

 k=k+1;

59

 end

 end

elseif strcamp==0 && strsubcamp==1 && strpub==0

 for i=1:1: endpoint2(1)-1

% x for camp, y for subcamp, z for pub

% x=strcmp(data2{i+1,3}, camp);

 y=strcmp(convertCharsToStrings(data2{i+1,4}),subcam

p);

% z=strcmp(data2{i+1,5}, pub);

 if data2{i+1,3} == camp && y==1 && data2{i+1,5} ==

pub

 array(k,1) = data2{i+1,1};

 array(k,2) = data2{i+1,6};

 k=k+1;

 end

 end

elseif strcamp==0 && strsubcamp==0 && strpub==1

 for i=1:1:endpoint2(1)-1

% x for camp, y for subcamp, z for pub

% x=strcmp(data2{i+1,3}, camp);

% y=strcmp(data2{i+1,4}, subcamp);

 z=strcmp(convertCharsToStrings(data2{i+1,5}), pub);

 if data2{i+1,3}== camp && data2{i+1,4}==subcamp &&

z==1

 array(k,1)= data2{i+1,1};

 array(k,2)= data2{i+1,6};

 k=k+1;

 end

 end

else

 for i=1:1: endpoint2(1)-1

 if data2{i+1,3} == camp & data2{i+1,4}==subcamp &

data2{i+1,5}==pub

 array(k,1) = data2{i+1,1};

 array(k,2) = data2{i+1,6};

 k=k+1;

 end

 end

end

array=sortrows(array);

duration = (array(numInst,1)-array(1,1))/(60*60*24);

end

A.7 Matlab Code to Detect Click Spamming

[~,~,data1]=xlsread('data1','duz');

[~,~,data2]=xlsread('data2','duz');

60

spamming={0};

for a=1:1:15244

 for b=1:1:10

 spamming{a,b}=0;

 end

end

[~,~,veri]=xlsread('Tez Descriptive

Statistics1','Publishers');

spamming{1,10}='Decision';

spamming{1,1}='Campaign ID';

spamming{1,2}='Subcampaign ID';

spamming{1,3}='Publisher Number';

spamming{1,4}='Number of Total Installs';

spamming{1,5}='Mean';

spamming{1,6}='Median';

spamming{1,7}='Campaign Duration';

spamming{1,8}='Spamming Order';

spamming{1,9}='Number of Reject';

for i=2:1:15244

 display(i);

 [array, duration]= collectdata(veri{i,1}, veri{i,2},

veri{i,3}, veri{i,4}, data1, data2);

 for j=1:1:6

 spamming{i,j}=veri{i,j};

 end

 spamming{i,7}=duration;

 endpoint=size(array);

 array1=zeros(endpoint(1),1);

 for k=1:1:endpoint

 array1(k,1)=array(k,2);

 end

 [decision, numReject, ordReject]= sign_test(array1);

 spamming{i,8}=ordReject;

 spamming{i,9}=numReject;

 spamming{i,10}=decision;

end

A.8 Matlab Code to Detect Click Injection

[~,~,data1]=xlsread('data1','duz');

[~,~,data2]=xlsread('data2','duz');

injection={0};

for a=1:1:15244

 for b=1:1:10

 injection{a,b}=0;

61

 end

end

[~,~,veri]=xlsread('Tez Descriptive

Statistics1','Publishers');

injection{1,10}='Decision';

injection{1,1}='Campaign ID';

injection{1,2}='Subcampaign ID';

injection{1,3}='Publisher Number';

injection{1,4}='Number of Total Installs';

injection{1,5}='Mean';

injection{1,6}='Median';

injection{1,7}='Campaign Duration';

injection{1,8}='Spamming Order';

injection{1,9}='Number of Reject';

for i=2:1:15244

 display(i);

 [array, duration]= collectdata(veri{i,1}, veri{i,2},

veri{i,3}, veri{i,4}, data1, data2);

 for j=1:1:6

 injection{i,j}=veri{i,j};

 end

 injection{i,7}=duration;

 endpoint=size(array);

 array1=zeros(endpoint(1),1);

 for k=1:1:endpoint

 array1(k,1)=array(k,2);

 end

 [decision, numReject, ordReject]= Psign_test(array1);

 injection{i,8}=ordReject;

 injection{i,9}=numReject;

 injection{i,10}=decision;

end

62

APPENDIX B

B.1 Detected Click Spammers According to Experiment

Publisher
Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs
Publisher

Detecting

Test Total

Installs

5 9 159 2592 68 697 7542 1 23 11783 1 10

6 4 258 2822 101 1219 7543 1 39 11785 16 396

10 41 421 2832 7 74 7593 1 19 11786 3 227

60 5 72 2836 100 1010 7594 1 14 11790 3 62

65 3 359 2837 1 34 7608 1 10 11824 1 31

81 1 30 2842 7 1102 7615 40 757 11825 1 44

152 1 20 2910 12 121 7619 327 5692 11826 1 27

158 1 16 2923 7 70 7627 34 406 11830 1 20

159 1 115 3111 17 728 7661 28 343 11831 3 211

160 1 25 3157 1 25 7664 33 423 11868 3 72

161 3 362 3175 17 303 7668 68 820 11897 1 13

162 1 78 3193 5 54 7683 116 1160 11908 15 151

163 3 701 3195 3 31 7691 47 1244 12163 20 294

165 1 11 3196 5 86 7694 29 369 12165 8 184

167 1 13 3358 1 17 7702 20 223 12166 56 4343

169 1 65 3360 1 24 7711 383 9670 12168 8 95

170 1 18 3467 1 184 7733 3 68 12170 9 121

171 1 12 3469 1 29 7736 1 13 12244 1 14

172 3 151 3473 1 406 7739 10 109 12346 51 609

173 1 21 3475 1 12 7745 1 51 12347 35 389

174 1 10 3476 47 978 7749 1 12 12354 20 1738

175 1 10 3485 4 130 7750 6 79 12355 1 150

177 1 25 3488 9 136 7752 1 17 12367 11 1824

178 1 13 3489 4 101 7753 4 100 12377 5 57

207 3 34 3492 4 56 7755 1 10 12384 17 1075

241 1 10 3497 14 224 7756 3 33 12385 17 302

249 1 53 3527 1 10 7757 9 90 12389 14 1124

256 1 10 3536 1 23 7758 7 94 12390 1 21

268 1 11 3539 1 30 7761 1 20 12391 15 2487

63

Publisher
Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs

272 1 14 3540 1 11 7763 5 76 12398 4 41

282 1 10 3543 1 53 7764 1 18 12400 7 126

322 13 207 3553 21 228 7773 3 33 12404 1 16

324 3 51 3560 1 23 7776 5 79 12408 1 13

330 1 13 3562 3 148 7778 1 12 12409 6 69

331 1 10 3565 1 33 7779 3 38 12412 12 137

336 1 15 3567 1 516 7780 76 992 12420 1 10

343 1 15 3568 1 2103 7803 1 22 12421 1 10

345 1 19 3569 4 1402 7809 1 12 12422 3 35

352 1 17 3570 5 164 7811 1 12 12430 1 20

360 1 22 3571 1 23 7812 38 385 12437 1 18

362 1 13 3572 1 337 7813 32 332 12442 1 10

365 1 10 3573 4 70 7818 17 179 12443 1 12

369 1 14 3574 5 67 7829 41 489 12444 1 24

371 1 12 3575 4 177 7830 16 247 12447 5 71

382 27 270 3577 1 45 7842 19 589 12450 15 174

383 1 19 3578 1 54 7851 17 297 12453 4 49

385 98 1003 3579 1 33 7855 25 325 12454 21 353

387 1 11 3580 1 105 7871 5 65 12456 3 183

405 1 59 3581 1 232 7872 1 26 12457 1 41

406 1 14 3582 1 96 7873 1 10 12463 4 49

407 1 12 3583 3 140 7948 9 123 12467 1 12

408 1 20 3584 3 32 7952 1 14 12468 12 135

409 1 15 3587 1 84 7957 4 70 12471 1 19

427 1 34 3588 3 686 7958 1 25 12502 1 17

441 1 10 3590 4 56 7961 3 42 12507 3 792

447 53 708 3591 1 309 7962 3 30 12513 1 44

498 34 678 3593 1 26 7963 1 14 12515 1 25

509 39 509 3594 1 215 7965 1 13 12522 1 19707

593 1 40 3595 1 43 7970 1 19 12525 8 365

603 1 12 3598 1 13 7973 4 248 12543 17 265

614 1 12 3599 1 12 7976 1 16 12570 15 162

623 1 17 3602 30 310 7981 9 101 12609 5 57

650 1 20 3614 32 335 7982 7 1950 12610 3 31

658 1 13 3615 26 269 7984 13 1843 12613 1 30

663 1 32 3633 5 74 7985 1 11 12620 4 57

665 1 21 3637 10 139 7986 10 286 12623 13 236

676 1 18 3638 5 339 7987 14 157 12624 1 121

678 1 13 3639 1 468 7988 7 76 12626 1 10

64

Publisher
Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs

687 1 22 3641 1 129 7989 4 309 12627 1 72

691 4 41 3642 1 32 7993 3 44 12628 1 60

692 3 68 3651 79 833 7994 7 143 12629 1 10

693 1 10 3652 1 10 8010 1 37 12638 1 32

710 46 469 3654 1 99 8011 1 10 12679 6 597

718 4 68 3655 1 10 8015 1 11 12680 5 51

720 5 53 3657 85 865 8016 1 11 12693 1 10

721 8 237 3659 1 67 8017 3 47 12695 1 121

724 4 91 3667 4 41 8018 1 11 12697 3 50

725 9 182 3668 1 68 8037 18 185 12720 1 31

746 14 10740 3671 7 371 8117 1 10 12721 1 20

747 1 64 3703 1 21 8118 1 16 12722 1 12

748 1 31 3704 3 255 8119 1 10 12730 1 12

772 1 21 3705 1 283 8120 1 11 12742 9 115

822 1 32 3706 1 36 8121 1 17 12745 1 22

847 3 100 3707 4 51 8122 1 12 12746 3 50

848 1 19 3713 1 17 8124 1 12 12747 19 877

849 1 12 3717 4 167 8125 1 23 12748 1 11

850 1 10 3723 3 62 8187 18 248 12751 5 201

851 3 170 3724 1 13 8205 6 80 12758 1 10

852 1 33 3729 16 160 8220 17 217 12767 3 42

853 1 16 3731 24 252 8232 1 18 12771 1 17

854 1 16 3743 4 176 8233 1 11 12774 5 55

891 16 902 3744 3 41 8234 1 82 12776 6 70

895 1 23 3748 1 12 8235 1 15 12785 135 1353

902 1 34 3760 1 17 8237 1 284 12786 3 850

913 1 11 3761 3 50 8241 1 13 12787 1 396

947 1 45 3766 1 11 8314 1 11 12821 18 264

948 1 13 3830 7 79 8315 16 1170 12830 1 42

956 12 122 4093 1 20 8351 96 973 12834 4 52

957 8 84 4094 1 34 8355 30 373 12848 19 208

958 4 104 4142 1 24 8361 43 437 12849 3 40

960 1 24 4235 13 138 8362 27 626 12917 144 1785

965 1 49 4258 123 2723 8379 17 181 12968 1 15

966 1 16 4287 6 91 8380 24 417 12970 1 20

968 10 336 4333 1 49 8384 162 3191 12984 1 569

971 1 20 4334 1 85 8397 7 95 12986 1 24

991 6 462 4335 3 37 8411 43 474 12996 1 44

992 11 851 4338 1 10 8417 80 815 13001 3 45

993 3 167 4339 1 10 8437 22 1795 13002 20 493

65

Publisher
Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs

994 3 44 4340 1 10 8482 42 433 13003 10 119

995 7 420 4341 21 304 8487 21 258 13020 20 213

996 1 131 4345 1 19 8493 9 3172 13062 1 85

998 4 127 4346 1 20 8495 110 1177 13063 6 93

1003 13 142 4351 1 25 8497 1 15 13064 9 118

1004 39 508 4385 40 400 8517 25 257 13065 4 58

1013 1 12 4410 1 43 8527 22 232 13067 1 148

1015 1 15 4411 1 30 8542 35 356 13069 1 30

1016 1 12 4413 1 73 8548 1 18 13071 4 73

1026 1 35 4415 1 32 8560 1 12 13072 1 232

1031 4 340 4420 1 24 8564 5 1364 13074 1 42

1035 10 376 4430 1 106 8576 12 1060 13075 3 1937

1037 7 129 4436 1 13 8615 1 35 13077 1 69

1038 1 53 4439 1 15 8632 13 184 13078 3 255

1042 1 17 4441 1 11 8635 68 684 13079 1 174

1043 1 17 4457 1 74 8638 1 41 13082 4 72

1048 1 16 4458 1 15 8649 1 14 13083 1 11

1051 3 74 4460 1 349 8650 1 36 13087 1 140

1053 1 18 4462 1 42 8651 1 41 13088 8 240

1054 3 43 4491 6 83 8653 1 510 13089 3 39

1061 1 13 4495 1 29 8654 3 834 13092 7 300

1062 1 12 4497 6 65 8655 3 741 13093 4 51

1063 1 12 4523 21 227 8656 1 49 13097 1 103

1065 1 20 4611 31 390 8658 1 92 13099 1 11

1066 1 13 4612 12 148 8659 3 122 13101 37 434

1067 1 21 4630 1 67 8660 1 153 13103 1 11

1075 1 21 4631 1 59 8661 1 75 13104 4 43

1076 1 10 4633 3 30 8662 1 15 13114 15 163

1080 1 12 4634 3 44 8663 4 56 13116 1 50

1090 1 27 4635 29 668 8664 1 29 13119 9 240

1093 16 327 4638 3 32 8665 3 148 13130 1 14

1094 3 38 4664 29 346 8668 3 148 13131 1 33

1095 1 28 4672 10 301 8669 4 41 13132 1 13

1096 1 14 4704 95 1096 8670 1 354 13134 1 17

1116 1 11 4804 1 24 8671 1 46 13136 1 19

1160 3 111 4812 3 411 8682 63 737 13138 3 252

1163 6 63 4898 44 559 8685 11 665 13140 21 325

1179 6 859 4900 3 194 8713 1 32 13141 3 94

1182 5 444 4919 6 67 8728 1 53 13142 13 634

1184 8 539 5003 5 57 8729 1 21 13143 4 109

66

Publisher
Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs

1185 13 135 5019 6 104 8732 1 348 13144 6 151

1187 4 147 5025 20 428 8742 13 504 13145 10 450

1189 3 254 5027 1 25 8746 1 27 13146 1 10

1203 3 434 5029 1 11 8748 4 114 13150 1 45

1213 1 10 5030 3 101 8749 1 134 13151 7 76

1217 1 55 5037 1 51 8750 18 825 13152 1 50

1218 1 11 5042 19 198 8751 19 1312 13153 1 24

1221 1 19 5057 12 120 8761 16 224 13157 1 15

1231 1 16 5070 16 168 8767 12 593 13166 6 79

1232 1 11 5073 14 149 8769 19 274 13167 3 50

1242 1 10 5083 7 72 8782 9 149 13173 1 139

1288 14 152 5092 3 42 8809 4 55 13176 1 23

1289 6 69 5093 18 1525 8811 13 233 13180 1 130

1292 1 17 5094 1 40 8812 4 51 13188 1 14

1321 1 32 5095 1 20 8816 8 215 13190 13 1002

1340 5 287 5114 16 226 8817 4 49 13191 1 40

1341 10 557 5254 39 422 8825 7 72 13192 3 99

1342 1 15 5282 12 174 8863 3 36 13193 1 65

1343 1 22 5343 27 431 8864 1 28 13194 1 46

1345 4 428 5350 18 188 8865 6 131 13195 7 356

1346 3 71 5373 11 110 8870 4 58 13197 8 398

1348 1 11 5427 25 288 8875 22 257 13198 1 717

1361 5 199 5469 20 217 8895 1 43 13199 1 16

1363 3 51 5494 13 187 8896 1 12 13201 1 19

1366 1 13 5495 1 148 8897 1 38 13203 1 16

1368 1 32 5534 19 232 8901 1 15 13204 5 166

1370 1 18 5547 10 267 8906 1 20 13205 1 234

1373 3 43 5557 5 58 8936 55 566 13206 1 44

1374 9 1722 5610 19 260 8988 3 50 13208 1 86

1382 1 53 5621 1 38 8995 7 146 13214 4 98

1396 1 70 5623 10 116 9001 13 191 13220 3 284

1397 1 16 5625 47 993 9002 11 243 13224 3 49

1400 1 10 5648 43 760 9016 11 2073 13231 130 2851

1403 6 89 5650 10 187 9024 5 69 13234 1 178

1404 3 44 5651 1 12 9029 24 538 13241 1 214

1407 1 10 5654 1 10 9038 80 826 13242 1 319

1409 5 579 5655 1 29 9050 24 285 13245 1 57

1410 4 66 5661 1 17 9068 69 697 13246 3 157

1414 8 204 5662 1 78 9072 16 180 13247 1 18

1415 5 502 5724 20 247 9087 21 211 13248 1 486

67

Publisher
Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs

1416 15 659 5729 3 86 9089 24 252 13249 1 20

1417 1 85 5775 28 1966 9099 9 92 13250 1 23

1419 25 553 5776 18 187 9102 6 65 13251 1 12

1421 12 129 5829 1 30 9103 18 187 13253 1 14

1422 20 609 5831 18 184 9109 1 14 13254 1 1489

1423 7 152 5877 4 46 9118 7 79 13255 1 411

1424 4 46 5901 3 36 9126 14 242 13256 1 53

1425 6 134 5904 1 43 9130 5 306 13258 377 3784

1426 14 1423 5931 26 321 9131 5 111 13260 1 12

1429 15 238 5934 1 72 9135 1 15 13262 47 1860

1431 9 1445 5954 3 64 9136 1 38 13264 1 17

1432 1 69 5960 3 65 9137 3 127 13267 1 18

1447 1 11 6036 18 273 9138 1 35 13268 5 1157

1458 10 214 6038 1 10 9139 1 14 13272 19 519

1510 8 111 6039 1 10 9142 7 109 13275 22 860

1513 19 449 6041 1 10 9144 3 53 13291 1 48

1518 6 88 6044 1 23 9148 1 23 13292 1 11

1527 5 86 6069 1 29 9172 21 255 13293 1 30

1531 6 232 6080 1 32 9280 10 472 13295 3 34

1540 1 28 6082 3 39 9286 1 11 13296 1 72

1549 13 295 6094 1 13 9288 1 22 13298 1 14

1550 7 277 6095 1 10 9294 3 117 13299 1 18

1555 1 15 6096 1 12 9314 1 16 13300 1 16

1557 3 60 6097 1 13 9315 1 88 13312 1 30

1560 3 415 6098 3 107 9316 1 26 13330 1 30

1562 5 53 6100 5 59 9319 3 78 13332 1 259

1601 1 12 6102 4 41 9322 5 73 13344 1 32

1605 1 16 6104 1 10 9324 1 19 13355 6 85

1606 1 12 6111 44 1581 9326 1 18 13375 18 2685

1617 1 12 6114 1 23 9328 4 142 13376 1 77

1647 18 263 6116 1 23 9336 14 199 13377 3 98

1654 27 567 6123 6 414 9343 18 1127 13379 3 56

1655 1 10 6124 1 11 9345 5 99 13404 1 38

1656 4 50 6125 5 51 9347 7 277 13405 1 23

1657 4 43 6128 1 10 9351 6 143 13411 1 10

1661 6 92 6137 1 14 9360 20 598 13412 3 367

1663 1 13 6141 7 88 9361 7 82 13415 5 98

1668 18 187 6173 15 2621 9362 11 145 13416 13 218

1671 103 1143 6174 1 24 9369 6 150 13417 1 10

1678 105 1157 6175 1 40 9370 15 164 13418 3 39

68

Publisher
Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs

1693 1 15 6181 1 15 9371 7 82 13420 1 44

1697 1 25 6183 1 526 9372 8 85 13421 4 150

1698 1 38 6184 1 22 9373 11 125 13422 1 55

1699 5 60 6187 1 11 9403 1 44 13434 1 351

1704 3 35 6189 1 35 9408 1 15 13438 1 12

1719 1 22 6190 10 398 9415 1 10 13487 3 70

1720 1 22 6197 5 117 9417 1 19 13499 19 524

1721 1 18 6198 3 84 9418 1 21 13500 19 671

1722 1 15 6201 24 470 9420 1 16 13501 1 10

1723 1 11 6203 6 107 9439 1 10 13502 1 105

1747 12 132 6206 1 11 9440 1 13 13509 1 70

1760 130 1364 6208 4 51 9443 1 14 13510 1 23

1773 20 286 6214 1 10 9445 1 11 13513 1 29

1778 22 220 6216 4 115 9449 8 286 13514 1 48

1788 9 90 6218 5 303 9482 1 12 13516 1 22

1789 21 210 6222 1 20 9483 3 46 13518 1 42

1791 29 307 6225 4 53 9496 1 14 13520 1 112

1808 97 1465 6234 1 13 9535 1 12 13521 1 16

1813 37 1589 6239 1 10 9536 1 17 13522 1 53

1815 20 400 6240 1 19 9539 1 21 13527 1 10

1818 26 446 6241 1 10 9540 1 12 13545 1 16

1823 21 352 6351 3 238 9542 1 23 13548 7 90

1872 1 11 6352 1 194 9543 1 16 13549 1 84

1873 1 15 6354 1 77 9544 1 12 13582 27 317

1875 1 73 6358 8 104 9547 1 13 13620 1 46

1876 7 83 6359 1 313 9562 1 12 13621 1 23

1878 1 25 6366 1 11 9563 1 15 13622 1 12

1885 1 25 6370 1 32 9564 1 25 13637 1 118

1886 1 14 6371 5 92 9588 1 14 13641 4 41

1887 5 50 6376 1 13 9609 9 111 13642 1 128

1890 4 57 6377 1 20 9611 13 148 13644 1 10

1894 1 22 6379 1 13 9632 6 460 13649 1 19

1899 1 15 6382 5 54 9654 7 80 13652 4 204

1900 1 10 6383 15 774 9662 1 86 13654 1 88

1904 1 10 6384 9 376 9663 3 89 13657 3 40

1911 1 11 6387 1 11 9678 1 14 13663 1 10

1919 20 293 6388 3 44 9759 1 18 13667 1 14

1928 1 39 6389 1 21 9770 1 11 13682 1 14

1934 1 27 6390 1 29 9792 1 52 13684 1 11

1935 1 11 6391 1 30 9807 1 13 13692 1 15

69

Publisher
Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs

1938 8 111 6392 1 26 9863 16 278 13693 1 24

1942 1 69 6393 1 31 9869 10 176 13696 1 72

1944 1 95 6394 24 323 9937 9 116 13697 1 53

1945 5 196 6396 15 191 9955 4 177 13701 5 88

1947 1 25 6397 1 213 9957 1 39 13737 337 5266

1951 1 20 6401 1 12 9959 4 105 13765 168 2218

1952 13 189 6406 16 382 9960 1 20 13823 401 9743

1956 1 17 6407 3 1237 9963 14 166 13867 6 60

1958 1 84 6409 16 187 9964 1 12 13871 120 1233

1961 1 65 6475 1 10 9966 1 60 13876 366 4162

1963 1 31 6476 1 10 9999 18 200 13879 15 196

1965 1 29 6482 1 17 10006 1 18 13910 1 20

1966 4 1810 6548 1 37 10009 9 91 13912 6 60

1971 5 216 6562 1 26 10010 7 199 13921 1 13

1972 1 32 6602 1 45 10011 1 27 13922 1 14

1973 7 362 6646 13 136 10082 1 15 13923 1 34

1975 4 74 6657 12 190 10084 6 135 13924 1 11

1976 7 160 6658 10 180 10086 1 35 13925 1 10

1977 1 69 6662 6 82 10087 1 10 13926 1 23

1978 1 13 6669 9 181 10088 1 34 13927 1 21

1979 1 29 6676 326 24253 10118 8 88 13928 3 581

1980 1 25 6677 5 64 10125 1 11 13931 1 47

1981 3 120 6683 1 17 10140 1 35 13934 1 13

1982 3 65 6684 1 52 10180 3 46 13935 1 10

1983 1 83 6687 5 445 10188 1 62 13936 4 52

1985 1 15 6780 9 686 10209 3 175 13938 1 31

1988 10 409 6783 8 1816 10211 1 11 13942 3 58

1990 4 53 6788 21 445 10212 1 24 13944 1 11

1991 1 11 6803 25 330 10222 9 110 13947 3 61

1992 5 176 6807 16 280 10227 1 12 13948 1 244

1993 5 91 6809 20 218 10228 7 97 13949 1 107

1994 1 15 6811 3 441 10245 24 331 13998 1965 19658

1997 1 45 6817 36 411 10281 1 34 14079 5 1116

2085 3 119 6818 4 524 10430 19 190 14096 4 2045

2086 1 25 6866 3 249 10442 1 13 14125 3 86

2095 1 12 6871 5 52 10461 1 14 14137 20 381

2155 1 41 6872 1 11 10493 5 54 14150 12 198

2165 22 233 6876 7 319 10498 1 21 14155 108 5763

2168 1 13 6877 1 22 10531 1 164 14163 8 82

2173 26 277 6878 1 14 10553 3 97 14168 6 79

70

Publisher
Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs

2176 15 159 6940 11 112 10566 3 77 14174 8 145

2180 15 161 6943 7 81 10573 1 16 14175 4 51

2198 8 393 6960 1 11 10606 44 470 14184 6 60

2202 3 31 6963 1 59 10616 22 225 14195 9 402

2203 3 121 6969 7 128 10617 147 1477 14198 1 85

2210 110 1108 7004 1 29 10636 5 53 14209 1 77

2212 1 181 7018 1 16 10651 1 10 14263 80 1327

2220 26 1402 7022 1 15 10680 1 94 14267 1 55

2221 5 309 7023 1 22 10681 1 26 14272 1 55

2222 1 48 7024 1 19 10682 1 86 14278 5 230

2228 3 41 7025 1 30 10683 1 12 14279 31 1980

2230 3 106 7026 1 19 10684 1 14 14280 11 271

2236 4 64 7031 1 14 10685 1 79 14338 6 72

2240 1 43 7032 1 14 10686 1 10 14389 3 313

2241 4 166 7071 14 433 10722 97 2287 14398 3 292

2260 1 11 7085 1 35 10758 1 80 14448 8 106

2262 1 10 7092 1 65 10774 20 1038 14453 52 542

2266 1 10 7102 1 20 10788 3 98 14463 29 438

2268 3 52 7104 1 16 10789 1 27 14475 9 103

2269 1 57 7112 1 40 10891 279 2832 14489 8 85

2275 13 328 7122 241 2891 10947 11 198 14491 1 220

2276 4 56 7129 17 218 11075 9 95 14526 3 36

2280 4 827 7131 1 11 11170 104 1179 14634 48 1013

2285 5 155 7165 1 47 11175 22 231 14637 54 1549

2286 5 279 7170 320 5158 11181 12 140 14650 51 801

2287 5 59 7211 45 1025 11201 1 59 14655 10 138

2288 3 66 7217 17 442 11202 1 29 14660 1 22

2295 11 276 7237 8 87 11230 1 63 14697 44 536

2296 1 29 7238 12 143 11233 1 18 14698 15 266

2298 1 18 7248 21 222 11319 7 157 14699 4 336

2299 3 118 7257 3 40 11324 8 163 14700 26 968

2301 9 247 7260 6 69 11365 3 60 14702 14 170

2307 1 27 7267 91 1653 11366 17 367 14706 3 1138

2308 1 18 7271 12 185 11368 4 63 14707 1 100

2316 5 1222 7272 66 5238 11370 5 73 14711 16 167

2317 4 414 7286 121 1480 11373 5 81 14713 1 132

2321 1 514 7290 1 157 11374 12 176 14715 1 448

2328 3 47 7293 4 113 11377 4 42 14716 15 226

2329 3 210 7308 22 367 11378 22 322 14718 1 11

2341 1 79 7309 1 38 11380 6 218 14737 5 217

71

Publisher
Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs
Publisher

Detecting

Test

Total

Installs

2346 1 97 7329 1 4584 11382 3 414 14759 18 247

2347 1 19 7331 1 31 11386 1 39 14772 1 12

2350 1 16 7333 9 99 11387 10 300 14780 24 1045

2354 5 87 7334 762 8796 11424 14 265 14862 266 8217

2357 1 32 7337 78 994 11461 1 82 14908 1 42

2360 1 16 7338 208 25625 11472 13 207 14918 3 251

2384 59 629 7356 87 1019 11484 21 246 14919 1 42

2417 6 74 7357 37 1637 11504 15 183 14921 1 29

2434 1 18 7379 3 37 11508 36 497 14960 3 58

2435 1 33 7394 657 8424 11544 5 60 15044 47 571

2436 3 38 7396 42 676 11548 29 312 15200 13 176

2442 1 25 7411 14 628 11552 12 408 15202 1 15

2463 1 22 7439 32 401 11641 7 105 15230 26 271

2470 6 64 7455 22 272 11660 21 220 15231 21 266

2475 1 11 7460 29 334 11676 15 176 15233 7 72

2481 7 617 7467 195 1964 11680 44 529 15253 1 26

2482 9 820 7472 6 61 11689 4 49 15263 17 3863

2483 9 524 7530 1 54 11755 1 15

2562 38 7323 7532 1 47 11761 1 10

2588 47 509 7541 5 66 11781 1 12

