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DEEP LEARNING APPLICATIONS ON BIOLOGICAL DATA 

 

Abstract 
 
Biological sciences and medicine have been rapidly becoming data-intensive disciplines. 

Machine learning algorithms, in particular deep learning methods are becoming essential tools 

of data analysis to facilitate our understanding of complex biological systems by extracting 

highly non-trivial patterns in data. The focus of this master thesis is to develop a working 

understanding of general deep learning approach, and apply these approaches on a variety of 

biological and medical data classes. More specifically, we aim to utilize Recurrent Neural 

Networks (RNNs) and their more advanced variants on sequential data such as DNA and 

protein sequences. 

ÖZET 
 
Biyolojik bilimlerde ve tıpta datalar hızlıca birikiyor. Makine öğrenmesi algoritmaları özellikle 

de derin öğrenme metotları biyolojik sistemleri daha iyi anlamamızı sağlayacak yüksek 

karmaşıklığa sahip desenleri çıkarmada bize yardım edecek data analiz araçları olmaya başladı. 

Bu yüksek lisans tezinin amacı genel Derin Öğrenme yaklaşımları üzerine bir çalışma anlayışı 

geliştirmek ve bu yaklaşımları çeşitli biyolojik ve tıbbi data setlerine uygulamak. Daha spesifik 

olarak, bu çalışmada biz Tekrarlayan Yapay Sinir Ağları (RNN) ve bunların DNA ve protein 

sekansları üzerine geliştirilmiş versiyonlarını kullanmayı amaçladık. 
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1. Introduction 
 

Biological organisms are composed of  dynamics of particles which move, change and evolve 

through time. Understanding the behavior of life is understanding the mathematics behind it. 

This is where cellular life reduced into proteins; structural life reduced into entropic and 

enthalpic contributions; and thermodynamics determines the rules of the universe with the 

language of mathematics. From this point theoretical realm, abstract view of calculations as 

graphics and formulas, creates its own reality in a much more deterministic and linear way. 

Complex chemicals become a line of numbers. Cellular interactions and regulations expressed 

as multiplication of vectors and matrices. Calculations and plots give birth to mathematical toy 

models and algorithms by machines. 

 

Meaning is an emergent property of language through grammar, which has been used by 

thousands of years in the process of learning. Now, this grammar of language has changed into 

calculations which is very simply done by machines. The concept of machine and learning 

creates an interphase between human and machines, biology and mathematics. Thus, the 

meaning emerged through the new grammar of mathematics as machine learning. 

 

Our brains provide us different kind of models so that we can see and understand the world. 

The models in the brain constantly changing by the feedback of sensory inputs in order to make 

a guess of what we are exposed by nature. If that guess is confirmed by environmental factors 

such as parent, success or amygdala, then the model in the brain will be reinforced. Otherwise, 

brain modifies our model so that we can absorb the new information. (Buduma and Locascio, 

2017)  

 

Ingesting new information is called education and it’s the way of experiencing nature, not 

memorizing the rules of the nature. When kids go to school they were thought natural 

phenomenon with a bunch of instructions and classifications. The examples are originally taken 

by real cases but they are given to kids in lots of pieces so that they can put them all together 

and see the whole picture like a puzzle. An education never be completed without a real case. 

In this way, exams should be evaluating the process of learning by new problems which is never 

confront before.  

 

Traditional computer programs are designed to perform calculations very fast and follow a list 
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of instructions. Until now, machines are used to solve well determined problems. However, the 

problem like how the human brain can recognize a face or speech cannot be determined by list 

of rules because we do not know how it’s done by our brains. For example, distinguishing a 

picture of apple from orange or handwriting digits. It has to be written thousands of lines of 

code to differentiate two different objects from another. With the traditional computer 

programming the distance between eyes for cat and dog the length of the nose, the color…etc. 

has to be calculated and given as an instruction to the machine. This is not an efficient way to 

solve such problems, because it can take many years to prepare such complex list. On the other 

hand, this little problem can be solved by infant within months. If we can let the machine to 

analyze the object in their way (by vectors and matrices) we can show them lots of objects and 

simply test them whether they are accurate. Therefore, there need to be a specialization on how 

to translate complex problems into machine language, and let the machine do the magic. 

 

Deep learning algorithm extracts hidden patterns from highly complex problems such as 

biological and medicinal data.(Ching et al., 2018) It is an evolved form of machine learning as 

it is convenient for complexity. A simple function for a neuron is exponentially grows with a 

neural network which is capable of having many layers and units. Several architectures have 

been developed in deep learning for specific types of problems. And many others are on their 

way to tackle more complex problems in varied fields; medicinal, pharmaceutical, industrial... 

etc. 

 

2. Machine Learning Problems 
 

2.1 Types of Machine Learning 
 
Machine learning is a way of programming machines so that they can learn from data. In this 

learning process machine systems analyze and learn the examples very well and generalize the 

features on the new examples by a similarity measure. Machine learning can be categorized by 

how they generalize the data. Generalization on the given data is called training and 

generalization on the new instances is called testing through the learning procedure. The main 

approaches to this generalization is; instance based- learning and model- based learning. Model 

based learning builds a model and then use this model to make new predictions. First the data 

is analyzed to select the right model and then training-testing steps proceed. In the instance 

based learning, machine learns the examples by heart and generalize them to the new situations. 
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The categorization can be done by the problem of choice as supervised, unsupervised and 

reinforcement learning. (Géron, 2017) 

 

2.1.1 Supervised Learning 

 
In supervised learning, the problem and solution exist already in a given data set as input and 

output. The aim of machine learning is to set the right parameters for a model so that, it can 

generalize the data well. Subsequently, in order to test this generalization skill of a machine, 

the test set which the answers of the problem are removed is given to the machine. In the 

evaluation step, the best model can be selected by tuning the parameters following the process 

of performance measure. The performance is determined by the accuracy metrics and gives the 

result of errors in both training and testing sets. 

 

2.1.2. Unsupervised Learning 

 
If the case is not a problem solution but a discovery of a correlation or anything interesting, 

unsupervised learning can be used (Figure 2.1). Machine can make a prediction with 

unsupervised algorithm on a given data and try to cluster them without any label. Then the user 

can put the label on the clusters or take them as a precursor to the research of interest.   

 

Figure 2 1 Clustering as an unsupervised learning 

 

 

By putting these two algorithms together with semi-supervised learning algorithm machine can 

try to classify huge amount of data with unsupervised learning and when user put some label 

on the classes, the algorithm assigns these given labels and proceed supervised learning.   
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2.1.3. Reinforcement Learning 

 
In reinforcement learning machine is considered as an agent that makes decisions like 

biological organisms (Figure 2.2). Machine classifies all information as the process of penalty-

award decision. All the decisions the agent make is evaluated and improved by having 

experiences on the new problems without explicitly programmed to behave in a specific way.  

 

Figure 2 2 Reinforcement learning teaches the robot what to choose by penalty and award feedbacks. When the robot chooses 

the fire it gains a penalty and learns next time to avoid from fire. 

 

 

2.2 Supervised Learning 
 

2.2.1. Linear Regression 

 
Linear regression is one of the basic models in the field of statistics.  Linear models are 

fundamentals and studied in the field of mathematics for decades. The simplest linear equation 

is 𝒂𝒙 + 𝒃 which 𝒂 is the slope of line and 𝒃 is the interception point on the y axis (Figure 2.3). 

Regression is the calculation of the correlation between the mean value of one variable and 

corresponding values of another.  In this learning algorithm, linear model and regression model 

are combined to predict the output label y from input features x. 
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Figure 2 3 Line equation 

 

Here is the mean value of X features of a data with a relation to the Y output values is measured 

by linear regression model.A linear regression formula is the following: 

 

𝒚 = 𝒘[𝟎]. 𝒙[𝟎] + 𝒘[𝟏]. 𝒙[𝟏] + ⋯ 𝒘[𝒏]. 𝒙[𝒏] + 𝒃 

 

This is the regression version of a data with n features. 𝒘[𝟎] is a weight parameter 

corresponding to the slope of the equation of 𝒘. 𝒙 + 𝒃 where b is the y intercept corresponding 

to the bias parameter. For a data set with a single feature gives the line equation of the following: 

y= 𝒘. 𝒙 + 𝒃 

When the number of feature increases weight of the parameter is taken as matrices in the shape 

of (𝒏, 𝒎) where n is the number of samples and m is the number of features. Thus, the 

prediction is done by the weighted sum of all the features with weights and biases. 

  

 

Figure 2 4 The linear regression model is shown on the artificial data. 
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In the figure above (Figure 2.4) regression model is shown. Here the data is only one 

dimensional which means one feature corresponds to the output label. As the features increase 

the dimension of the problem also increases. For example, the prediction of a house price in a 

city is based on the following features, the place, the size of the house, the type of the house, 

the amount of room, etc. So, each feature has different amount of contribution to the house 

price. The regression model tries to predict the price considering all the features. If there is an 

irrelevant feature in the data it can be excluded.  

 

The application of the linear regression model to the problem can be implemented by the 

following code (Figure 2.5): 

  

Figure 2 5 Python script for supervised classification problems 

 

In the linear regression model, the distance between prediction and label is measured by cost 

function. The aim of the learning algorithm is to find a way to minimize the cost. Optimization 

is a process in which the minimization of these distances provided by adjusting the parameters 

in training step.  

 

2.2.2. Binary Classification: Logistic Regression  

 

Unlike linear models, logistic regression classifies a problem by giving the probabilistic 

distribution of output y values. Thus, the prediction is done by decision boundaries which 

separates the probability of the output labels. Logistic regression makes the prediction by using 

the following formula: 

𝒚 = 𝒘[𝟎]. 𝒙[𝟎] + 𝒘[𝟏]. 𝒙[𝟏] + ⋯ 𝒘[𝒏]. 𝒙[𝒏] + 𝒃 > 𝟎 
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This formula gives the output either +1 or 0 like a logistic gate. Despite the name of regression 

this model is a classification algorithm. Like the regression model the formula provides the 

probability of the points in the feature and label coordinates. Hence, the decision boundary 

determined by inequality in the formula. 

 

 

Figure 2 6 An example for logistic regression prepared by blob data set 

 

In this artificial data (Figure 2.6) we want to separate the blobs according to their colors. If we 

have a binary classification, we can use the model logistic regression. In the figure, the data has 

two features. For each blob, we know the color and the location on the plane. Our aim is to 

draw the boundary for the plane so that, different colors are separated from each other. We have 

the following: 

𝐗 = [𝒙𝟏, 𝒙𝟐]     𝚯 = [ 𝛉𝟎,  𝛉𝟏,  𝛉𝟐] 

 

Parameter tuning is continuing until finding the best parameter set that gives the accurate 

results. The parameter search is carried on until the training and testing accuracies are very 

close to each other. The question is, how do we tune the parameters to make them optimal for 

the problem? Optimization technique provides us the right parameters by iteratively tuning the 

model. Thus, the error is minimized and performance is maximized. There are several 

optimization methods, stochastic gradient descent (SGD), Adams etc. that we’ll be described 

later on. 

 

In the figure (Figure 2.6), a blob data set is prepared and logistic regression applied with the 

following code (Figure 2.7): 
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Figure 2 7  Python script for Logistic Regression 

 Logistic regression is used for binary classification problem with the sigmoid activation 

function. It is used for the binary classification problem like whether the picture is cat or dog.  

 

Sigmoid is an activation function is applied to estimate the probability of a label by the threshold 

of 50%. In logistic regression, the inputs are firstly linearized (like linear regression) then output 

gives a logistic result with a sigmoid function. The given output is a number between 0 and 1 

which represents the choice of category machine does.  The sigmoid function and the formula 

is the following (Figure 2.8): 

 

Figure 2 8 Sigmoid function makes decision in the logistic regression problems either 0 or 1 

 

𝝈(𝒕) =  
𝟏

𝟏+𝐞𝐱 𝐩(−𝒕)
         𝒚𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 = {

𝟎, 𝒑 < 𝟎. 𝟓
𝟏, 𝒑 ≥ 𝟎. 𝟓

                                              (2.1) 

 

 

2.2.3. Multiclass Classification: Softmax Regression 

 
Logistic regression can be generalized to multiclass classification by the softmax activation 

function. Unlike logistic regression, instead of output y, there are categories to which is 

assigned to a probability between 0 and 1.(Nahid, Mehrabi and Kong, 2018) Softmax activation 

function distributes the probabilities into output categories by the following formula: 
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𝑨𝒊 =
𝒕𝒊

∑ 𝒕𝒊
𝒄
𝒊=𝟏

           𝒕𝒊 = 𝒆𝒛𝒊         𝒛𝒊 =  𝒘𝒊 . 𝑨 + 𝒃                             (2.2) 

 

Where A is the feature matrix in the shape of (𝒎, 𝒏) m is the number of samples and n is the 

number of features, 𝒛𝒊  is the logits of weighted sum, 𝒕𝒊 is the exponential of logits, and 𝒄 is the 

category number of outputs. 

 

Figure 2 9 A single neuronal unit structure with softmax activation function. 

For the multi label classification problems, we use the function softmax, to classify multi label 

blob data set.  

 

Figure 2 10  As an example, multiclass classification with softmax regression 

In the figure (Figure 2.10) there are different clusters which are separated by softmax function.  
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Figure 2 11 Softmax classification python script 

 

Softmax regression is a generalization model for logistic regression which makes binary 

classification. With softmax regression multiple choice predictions can be processed, by 

calculating the probability of scores for each class in a given data set. After linearization 

function, weighted sums are calculated by the softmax activation function. 

 

The models we used so far was included only one neuronal unit. With one unit and one 

activation function we can make only linear separations. However, this is not the case in many 

other problems. As we go further to much more complex problems; such as genome sequencing, 

pattern recognition our data becomes extremely high dimensional and non-linear. 

 

Deep learning is one of the machine learning algorithm which has a very high capacity to make 

huge networks.(Learning, 2006) For all of these problems machine learning has an effort to 

build models with different architectures, by mimicking our brain structure, neural networks, 

commonly referred as deep learning. The models have been built so far, tackling problems in 

object recognition and language process has had magnificent success. Recent study shows that 

a sexual preferences of a person can be recognized by deep neural network. (De Schutter, 2018). 

Likewise face recognition, these algorithms have potential for future to tackle the problems 

even humans cannot reach (Buduma and Locascio, 2017). 
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2.3. Neural Networks 
 
An artificial neuron takes signals as an input, processes it and sends it to the other neuron 

through axon as an output. Each neural pathway dynamically strengthened or weakened by how 

often they are used. Biological neurons can be mimicked by creating artificial neuron models 

to translate the information into computer language.  

 

 

Figure 2 12 Neuron structure and function description (Buduma and Locascio, 2017) 

 

In the Figure 2.13, a functional unit that receives information as features [𝒙𝟏, 𝒙𝟐 …  𝒙𝒏] and 

multiplied by weights  [𝒘𝟏, 𝒘𝟐 …  𝒘𝒏] are linearized and activated by functions in the neuron 

units. Linearization function creates logits  𝒁 =  ∑ 𝒘𝒊. 𝒙𝒊  and activation function can be 

sigmoid, relu or tanh depends on the problem of choice. The logits are passed through one of 

these activation function 𝒚 = 𝒇(𝒛) so that, the output can be passed into another unit. The 

output result can be obtained by carrying out vector multiplications of features and weights 

with the addition of biases as the following formula; 

                                         y= 𝒘. 𝒙 + 𝐛                                                                 (2.3) 
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Figure 2 13 An artificial neuron structure with features vectors X and parameter vectors W  

 

 

 

2.3.1. Feed Forward Neural Networks 

 
Technology has enabled us to discover the universe in many aspects. From stars to cells, from 

galaxies to atoms we’ve built machines that always serve us, make our life easier, make distance 

closer. Now we are at the edge of machine intelligence. we don’t need to solve the problem by 

giving instructions to machines, instead we give them what we have; experience, information 

as data. 

 

Neural networks are mimicking our brain. The way neurons making synapsis and transferring 

one signal to another is electricity. A baby brain can recognize faces within months and within 

year babies start to distinguish the voice around them and understand the language.(Kuhn et al., 

2006) The way they learn how to separate cat from dog is not by measuring or calculating the 

features of the objects. First, they are exposed to many images of cats and dogs, then they are 

reinforced by their parents whether they did something right or wrong. Just like human brain 

neural networks can distinguish different objects by deep learning which is an active field of 

artificial intelligence. (Buduma and Locascio, 2017) 
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Figure 2 14 Deep neural network structure (Deep learning Essentials) 

With the method of artificial neural network, input and output data is optimized in a neuron 

network structure with many layers and units. Each unit acts like a single neuron by taking input 

data and giving output data. In machine learning, a neuron network is called perceptron Each 

unit in a perceptron has linearization function and an activation function where aligned by all 

the layers. In a neural network there are three types of layers; input, output and hidden layers. 

Input layers are the features of the data and output layers are the labels of the data. On the other 

hand, in hidden layers all the neurons have activation function either tanh or relu which makes 

the equation non-linear. For the classification problems, in their last layer all the output neurons 

have sigmoid function as an activation. 

 

To solve a problem with a machine learning, featurization of a problem should be 

accomplished. In a problem, featurization is a process to vectorize the features in a way that 

machine can analyze, efficiently. In the Figure 2.15, there is an example of vectorization of a 

picture data. 
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Figure 2 15 Image vectorization process (Buduma and Locascio, 2017) 

  

Our model is defined by the function of 𝒇(𝒙, 𝜽). The input x is the expression of picture in the 

form of vectors. White, gray and black pixels are given as numbers and translated into vector 

forms (Figure 2.15). The input 𝜽 is a list of parameters in our model. During learning, our 

machine tunes the parameter 𝜽 by the help of examples we gave it as an input.  

 

2.3.2. Training Neural Networks 

 
How do we find the best parameters, the weights in between the units, in a neural network? 

This so-called training process finds the best parameter through a neural network. During 

training, our data is fed into the neural network and iteratively modify the weights to minimize 

errors on the model. After training, we’re expecting that our model can solve the problem in 

the test set with high accuracy.  

 

In the training process, input features are taken and trained by machine learning algorithm by 

mixing and optimizing weights and biases through hidden layers to make a prediction. This 

process is called forward propagation. These predictions and ground truth values (labels) are 

compared with loss functions that tells the distance between the predictions and true labels. 

After that, penalties are given by cross entropy function as a cost. At the end of the last layer, 

the predictions are obtained. Second step is backward propagation in which all weights and 

biases are changed with the derivative of cost functions. This is the way the machine corrects 

itself. All these steps are count as a single iteration. After many iterations (1000, 10.000 or 

more) all weights and biases continue to be optimized until the predictions are improved and 

give higher accuracy.  
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Figure 2 16 Artificial Neural Network training processes (Angermueller et al., 2016) 

 

In the figure (Figure 2.16), a training step is illustrated by forward and backward propagations. 

(Figure 2.16A) The forward propagation accomplished to the direction from input features to 

the output layers. At the last layer, output layers yield some predictions to be measured. The 

measurement gives the difference between the predicted label and the true label as a loss. After 

many iterations, numerous forward and backward propagations are completed. (Figure 2.16B) 

When the loss is minimized enough the prediction is reached to the true label. (Figure 2.16C) 

Shows the minimization process of weight parameters. 

 

 

2.3.2.1 Loss and Cost Function  

 
In the, neural networks weights and biases are blending to match the input features through the 

training process. At the end of the layers, all parameters are evaluated by several performance 

measures. The performance is measured by the calculation of the distance between the 

prediction vector and the vector of ground truth values (labels). Several measurements are 

RMSE, MAE and cross entropy. Root mean square error (RMSE) corresponds to the Euclidian 

distance indicated by L2 norm. The formula is the following, 

RMSE( X, h(x) ) = √ 
𝟏

𝒎
∑(𝒉(𝒚) − 𝒚)𝟐                                     (2.4) 

 



 

 

22 

Where the 𝒉(𝒚)  function represents the prediction of the y probability found in this category. 

And the y is the label.  The distance between the label and prediction gives the performance of 

this model. In other words, it gives how well the model generalizes the data. Mean absolute 

error (MAE) corresponds to the L1 norm with the following formula: 

 

MAE( X, h(x) ) = 
𝟏

𝒎
∑ | 𝒉(𝒚) − 𝒚|𝒎

𝒊=𝟏     (2.5) 

 

In each iteration of the training process, the parameters are modified by the aim of minimizing 

the cost function. Unlike logistic regression in which, the predictions are either True or False, 

cross entropy gives higher penalty to the wrong answers which is predicted with a higher 

probability. Calculating loss, with log effect makes it grow very large when the wrong answer 

is estimated with certainty. In this case, the function doesn’t only evaluate the correctness of 

the results but also evaluates how much the prediction is close to the correct answer.  

The formula of the loss function of cross entropy is the following: 

 

𝓛 = −[𝒉(𝒚) 𝐥𝐨𝐠 𝒚 + (𝟏 − 𝒉(𝒚))𝐥𝐨𝐠 (𝟏 − 𝒚)]    (2.6) 

  

At the end of the training, cost function takes the mean of summation for all the loss functions 

in a single iteration with the following formula: 

𝑱 =  
𝓛(𝒉(𝒚)𝟏,𝒚𝟏),𝓛(𝒉(𝒚)𝟐,𝒚𝟐)…𝓛(𝒉(𝒚)𝒏,𝒚𝒏)

𝒎
            (2.7) 

 

𝑱(𝒘, 𝒃) =  
𝟏

𝒎
∑ 𝓛(𝒉(𝒚)𝒊, 𝒚𝒊)𝒎

𝒊=𝟏              (2.8) 

 

In order for search algorithm to work efficiently and guaranties a solution, cost function  𝑱(𝒘, 𝒃) 

needs to be convex function of w and b. It gives the penalty for the wrong answers as an 

adjustment procedure. 

 

2.3.2.2 Gradient Descent 

 

Gradient descent is a general optimization technique which is capable of finding the minimum 

by tuning parameters iteratively. It gives a convex cost function that only have a global 

minimum which makes it guarantee to minimize cost function correctly. If we draw a three-

dimensional space with two weights w1, w2 on the x and y axis, and error on the z axes we can 

see the quadratic shape bowl (Figure 2.17). 
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Figure 2 17 The quadratic error surface for a neuron unit 

We can also draw trace of this quadratic bowl with elliptic contours, where the minimum error 

is at the center. In this set up, elliptic contours are the combination of parameters w1 and w2 

for the same Error value. In order to approach the minimum, we need to take perpendicular 

steps gradually. If parameters of weights and values are chosen randomly, by evaluating the 

steepest decent and going further through these steps minimum point is reached, shown in the 

(Figure 2.18). This algorithm known as gradient descent. It’s a method used in training of 

neural networks.  

 

 

Figure 2 18 Approaching to  the global minimum by learning rate (Buduma and Locascio, 2017) 

 

Training a model, actually searching for a parameter set that minimize the cost function over 

iteration. Hence, it is a search in the parameter space, where each parameter corresponds to a 

dimension, the more you have it the harder to search for the right combination. Learning rate 

is one of the hyper parameter to carry out training process. During the optimization process of 

weights, gradient descent looking for the minimum. Learning rate is our steps to the minimum 

in gradient descent. If the steps are taken too small, it takes too much time to minimize. 

However, if it is taken too large it may jump over, means that it may end up a higher position 

then initial condition (Figure 2.19) (Buduma and Locascio, 2017). 
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Figure 2 19 If the learning rate taken too large convergence is difficult(Buduma and Locascio, 2017) 

 

 

2.3.2.3 Preventing Overfitting and Regularization 

 

To select the best model for the data, training parameters should be evaluated on the test set. 

Possible problems of a model for a specific data set are overfitting and underfitting. In the 

(Figure 2.21) there are two models for a bunch of data. If the problem is to predict the y value 

with a given x, which model would be best to describe our problem? A twelve-degree 

polynomial which travels around almost each of the data point or a linear model which is almost 

getting no training example correct?  

 

 

Figure 2 20 Splitting data set into train and test sets in order to evaluate training fairly.  

 
In order to decide which model is better, a different set of data should be added to the data set 

to see how well the models perform (Figure 2.20). Then it is clear that linear model fits data 

more than 12 polynomial models (Figure 2.22). The key point is that; a model should generalize 

on the test data without making too much differences with training data. For instance, a very 

complex model can very strictly fit the data, however on the test data set it may perform very 

poorly. The situation which the model cannot generalize well enough is defined as overfitting. 
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This issue becomes more problematic in deep learning where large numbers of neurons and 

hidden layers take place in the neural network.  

 

 

 

Figure 2 21 Linear model and degree 12 polynomial model comparison for training(Buduma and Locascio, 2017) 

 

Figure 2 22 Linear model and degree 12 polynomial model comparison when test data is added (adapted from Buduma and 
Locascio, 2017) 

Overfitting: 

If training error is lower than validation error, it means that your model cannot generalize well. 

The model over fits the data. The polynomial model makes overfitting, because it travels around 

every each of the data (Figure 2.21). 

 

Underfitting: 

The Second model (shown by dashed line) is an example to an underfitting (Figure 2.21). It 

gives a prediction with high error shows that model cannot generalize the data well enough. It’s 

like a student only knows the 4 operations of math but try to solve a calculus problem with 
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derivatives and integrals. The model makes the real problem so simple that any prediction 

doesn’t approach to the truth values.  

 

 

Solution to this problem is; 

First, model complexity and overfitting should be considered. If the model is not complex 

enough, training error becomes high because the model cannot train the data enough. On the 

other hand, if the model is too complex, it is more likely to over fit the data. It’s like a student 

memorizes every formula in a calculus book but cannot solve any problem other than the book.  

 

Second, to evaluate the model, you need another evaluation set other than training set. Whole 

data should be split into two set; train and test set. This method provides user to see, how well 

does the model generalize on unseen data. Third, since the data is trained over iterations, early 

stopping is used as a regularization to prevent overfitting. To accomplish this, whole training 

process is divided into epochs. Each epoch is a single iteration with the processes of forward 

and backward propagation. In order to control your model during training, at the end of each 

epoch training and validation errors can be controlled. Validation set is also another split from 

the data. With the validation set, hyper parameters can be searched and tuned. If the training 

error decreases over iteration while validation error increases, it’s time to stop training because 

the model has begun to overfitting. Hyper parameter optimization, is the process where the 

validation set has a very close accuracy to the training accuracy. Best model is selected by 

looking for the best hyper parameters where the validation accuracy must be confirmed by test 

accuracy. Comparison between the validation and test accuracy is another confirmation for the 

user to understand whether hyper parameters have made overfitting.  

 

Regularization: 

In order to avoid the problem of overfitting, regularization steps are applied to the model. It 

prevents the excessive learning during training and reduces the overfitting. If the model under 

fits the data, training should be increased by splitting more training data or making the model 

more complex.  

 

There are several ways to prevent training process form overfitting. These methods are; L1 and 

L2 regularization. Regularization strength is determined by the hyper parameter of lambda 

during minimization of weights. The larger the lambda, the higher the model is prevented from 
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overfitting. If L=0 there is no regularization applied to the model. L2 regularization is very 

common in machine learning. This method provides a homogeny distribution among the input 

values, instead of using some inputs a lot. In the figure, (Figure 2.23) there is a classification 

problem in which L2 regularization is applied with L= 0.01, L=0.1, L=1 L2 lambda values.  

 

Figure 2 23 Regularization strengths of 0.01, 0.1 and 1. (Buduma and Locascio, 2017) 

 

The second type of regularization is L1 regularization. It is used for the comprehension of 

feature distribution, to understand which neuron affects the decision more in a neural network. 

If the feature analyzes is not important, it is better to use L2 regularization. Moreover, Dropout 

method prevents the network from being too dependent on any one of the neurons in a layer. 

By deactivating only some neurons with probability p, neighboring neurons try to handle the 

representation for the missing neurons. In the (Figure 2.24) you can see how dropout carried 

out on the neural networks.  

 

 

Figure 2 24 During training Dropout sets several units inactive in the network with some random probability. (Buduma and 

Locascio, 2017) 
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2.3.2.4 Training, Development, Test Sets 

 

In machine learning, 3 different data set is prepared for 3 different generalization error as 

follows; 

Bias, is an error from incorrect predictions in the learning algorithm. High error usually leads 

to underfitting of the data by missing the relations between features and labels. The Variance, 

is caused by sensitivity error when the model includes all small variations inside the training 

set. High variance error occurs usually because, the model learns irrelevant details inside the 

training set. This situation leads overfitting. Irreducible error, is because of the data itself by 

nosiness.  

 

A favorable model should be neither biased nor variance. Complex models usually tend to high 

variance while simple models tend to the high bias. That’s the reason it’s called bias variance 

tradeoff. Data splitting approaches have developed to avoid bias and variance. In addition to 

training and testing data sets a validation set should be split from data to make a good parameter 

estimation.  

 

How do we know that our model is generalizing well on new data set? The only way to 

understand is to test our model on an unseen data set. If there is more than one model, the best 

way to understand which model is the best is, to use hold out method. With the holdout method, 

validation set can be split out from data (Figure 2.25). In general, the ratio of splitting train, 

validation and test should be 60%, 20%, 20%. The three types of data sets have to be evaluated 

by their biases and variances which cause the problem of overfitting and underfitting. The 

solution is; either to train more or prevent more training by regularization. 

 

 

Figure 2 25 To prevent the overfitting on the parameters they are applied on the validation set before testing. 
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2.3.3 Recurrent Neural Networks  

 

Language, music and genome have something in common, the structure of sequence. Naturally 

we are always predicting the future of a sequence when we are listening a speech or a music. 

In deep learning Recurrent Neural Networks (RNN) can predict the future a little. With RNN, 

time series data can be analyzed to predict the future price of a product. More generally, RNN 

can trained on different fractions of sequences rather than fixed sized inputs like Feed Forward 

Neural Network (FFNN).  

 

 

 

Figure 2 26 Recurrent neuron and the unrolled version of it through time 

 

An RNN is very much like a FNNN except they have a feedback loop that pointing themselves 

in a series of timeline. This structure gives them a second chance to correct themselves during 

training. In the figure (Figure 2.26) it is shown a single RNN with single input and output on 

the left side and the unrolled version of RNNs through time on the right side. 

 

The capability of talking to itself of an RNN cell is expressed in the following formula: 

𝒚(𝒕) = 𝝓( 𝒙(𝒕). 𝒘𝒙 + 𝒚(𝒕−𝟏). 𝒘𝒚 +  𝒃) 
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Figure 2 27 RNN architectures: sequence to sequence, sequence to vector, vector to sequence and encoder to decoder 

 

 

(Figure 2.27) RNN architecture can be used in 4 different ways. On the top left graphic 

represents the sequence to sequence analyzes. It takes the input as sequence and gives the output 

also in the form of sequence. On the top right, the structure can be built as sequence to vector. 

This type of analyzes ignores all the outputs but the last one. On the bottom left, graphic shows 

from vector to sequence structure. For example, from an input image to an output caption of 

that image. The last one, on the bottom right shows the encoder-decoder interaction. Encoder 

takes the input as sequence and gives it to the decoder as vector output, then the decoder takes 

the input as vector and gives the output in the form of sequence. 

 

RNN can be used for sequence data in many forms however, there are some difficulties for long 

term training. Training with the RNN algorithm for long sequences brings the necessities of 

running over many time steps. Generally, this situation brings the problem of vanishing 

gradients which means that during gradient descent the gradients get smaller and smaller and 

finally stops converging to the minimum. In addition to long training problem, the memory is 

another problem for long running RNN. The information in the input neurons are fade away 
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through time. This may become a series problem, for example in language translations the first 

word of the sentence may change the meaning with the last word. The algorithm should link 

the beginning and the final part of the sentence through some memory state. With long term 

memories, LSTM (Long Short Term Memory) is an alternative for this kind of problems of 

RNN. 

 

2.3.3.1 Long Short Term Memories 

 
In general, Long Short Term Memories (LSTM) are also neural networks that have basic cells 

in several layers. Unlike the basic cells, LSTM cells perform much better. Training is converged 

faster and long term dependencies can be detected with LSTM cells. As the name refers, LSTM 

has two state vectors: ℎ(𝑡) h stands for hidden and represents the short term stage. Long term 

stage is represented by  𝑐(𝑡) and c stands for cell. Briefly, LSTM cells can learn what should be 

stored in the long term, what should be thrown away and when it should be extracted. (Figure 

2.28) 

 

 

Figure 2 28 RNN on the top, LSTM on the bottom left and GRU on the bottom right 
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3. Preparation of Data 
 
Learning is a process of generalization of the data into new problems. The data can be used for 

specific problems or it can be used for open-ended problem like unsupervised learning.  

 

Having clean and appropriate data is the first important thing for a successful machine learning 

process. A data is composed of rows and columns in which features and samples are filled. In 

the data processing, features that are in consideration are called attributes and the samples are 

called instances. For a balance and accurate training results the data should be shuffled and all 

the attributes should be fulfilled before running the learning process.  

 

Feature selection is a significant process to approach a problem with machine learning. In 

biological, medical and pharmaceutical fields, the most important thing is the representation of 

the natural phenomenon as vectors and matrices. This process is called featurization. In 

bioinformatics problem DNA and proteins can be transformed into vectors. In pharmaceutical 

problems such as, toxicity measurement, biological activity measurement or protein tertiary 

structure analysis the chemicals can be transformed into vectors by several approaches, such as 

physicochemical properties, presence or absence of a specific compounds or geometric 

characteristics.(Wu et al., 2017) 

 

3.1. Cleaning Data 
 
In a machine learning project, the most time spending part is the cleaning data. Most algorithms 

cannot work properly with missing data. There are two strategies for a missing data. Either 

excluding the entire instance or attribute or filling the missing value with zero, mean or median.  

 

3.2. Input Normalization 
 
In data preprocessing steps, input normalization (min-max scaling) is performed to standardize 

the data. To make all attributes in the same scale, minimum and maximum values should be 

scaled. Normalization makes the minimization procedure go faster. The center of the data is 

calculated by the mean and each value is subtracted by this mean. It makes the data shift back 
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to the origin. Then the result divided by the variance which calculates how far the data is spread 

apart. Input normalization is calculated by the following formulas; 

 

Mean= 𝝁 =  ∑
𝒙𝟏

𝒊

𝒎

𝒎
𝒊=𝟏           Variance= 𝝈𝟐 =  ∑

(𝒙𝟏
𝒊 −𝝁𝟏)𝟐

𝒎

𝒎
𝒊=𝟏    (3.1) 

Normalization= 𝒙𝒏𝒐𝒓𝒎
𝒊 =  

𝒙𝒊−𝝁

𝝈𝟐  

 

The calculation can be implemented by this python script, 

 

 

Figure 2 28 Input normalization python script 

 

 

4. Implementing Machine Learning  
 

4.1. Python and Jupyter Notebook 
 

Python has become very popular programming language in recent years. It is used in a very 

broad field of application with explicit libraries for visualization, statistics, natural language 

processing, image processing and more. With python the user can directly interact with the code 

using terminal or different environments like Jupyter Notebook. The main libraries for machine 

learning are, numpy; which provides the array construction, pandas; data frame construction 

and manipulation, scikitlearn; machine learning functions, matplotlib; visualization for plots, 

histograms and creating artificial data. 
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4.2. Tensor Flow 
 
Tensor Flow is a python library that we can perform highly complicated computations with a 

graph by flowing through the data as tensors (Figure 2.29). In this graph two edges (data) 

connected each other by nodes (mathematical operations). Data can be 1D tensor like vectors, 

2D tensor like matrices in Tensor Flow. In order to build a deep learning network model with 

Tensor Flow, variables are used to represent the parameters. Unlike other tensors, variables are 

kept in the computational graph model. By each iteration, variables can be modified by gradient 

descent and can be saved for later use. Tensor Flow apply transformations to the tensors in the 

computational graph such as, elementwise mathematical operations, array operations, matrix 

operations etc. To pass the input data into our deep model we use placeholders. It is efficient 

because it is not initialized once like variables do. Instead, it is fed by data in every run in the 

computational graph. With variables, placeholders and operations we can draw a computational 

graph. With Tensor Flow sessions we can initiate and run the whole graph. 

 

 

 

Figure 2 29 Computational graph in Tensor Flow(Buduma and Locascio, 2017) 
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4.3. Keras 
 
Keras is a python deep learning library. It is a high level neural network API (Application 

Programing Interphase), written in python. Tensor Flow, CNTK and Theano are the backend 

for Keras. Thus, it is capable of very fast experimentation with CPU and GPU. It is very user 

friendly, powerful and fast. With the Keras library, a simple neural network can be built in just 

a few lines. Modifying and evaluating the result with the Keras is very quick and efficient.  

 

There are two types of usage for Keras; Sequential Modelling and Functional API. Sequential 

Modelling has neural network architectures, several optimization options, accuracy metrics and 

fitting methods. This gives the user a flexible and creative way of writing machine learning 

algorithms. The second option is Functional API. It gives more freedom, more words and more 

work to the user. With Tensor Flow backend, Keras has a higher capacity for expression of the 

computational demands. 

 

5. Data sets 
 

 5.1 Anuran Call 
 
Anurans (frog or toads) are important for the ecosystem and they are used as earl indicators for 

ecological stress. Their calls are indicator of their behavioral and biological differences. Thus 

biologist analyze anuran calls by processing the voice frequency which has enough information 

to identify an anuran species. (Colonna et al., 2016) 

 

Mel- Frequency Cepstral Coefficient (MFCCs) are one of the most popular technique to present 

the audio signal as features in speech recognition. Therefore, data set is prepared for the 

challenge of detection of the species of anuran from its voice. This data set is created from 60 

audio record of individual frog which belongs to 15 species. (Figure 5.1) For the segmentation 

process of audio frames into syllables, spectral entropy and binary cluster method is used. At 

the end of segmentation 7195 syllables are obtained. from each syllable 22 MFCCs are 

extracted and normalized between -1< mfcc <1  (Colonna et al., 2016). 

 



 

 

36 

For the machine learning process 7195 syllables are considering as instances and 22 MFCCs 

are the attributes. At the last column, frog species labels are located.  

All family labels are; 

 

 

Anuran Species The amount of species in the 

Data set 

 

    AdenomeraAndre              

     AdenomeraHylaedact…      

     Ameeregatrivittata         

     HylaMinuta                  

     HypsiboasCinerascens         

     HypsiboasCordobae           

     LeptodactylusFuscus          

     OsteocephalusOopha  

     Rhinellagranulosa            

     ScinaxRuber                 

 

672 

3478 

542 

310 

472 

1121 

270 

114 

68 

148 

 

  

 

Figure 5.1 Processing anuran calls for classification. (Colonna et al., 2016) 

 

5.2 Thyroid Patients 
 
This data set is a combination of different medical sources about thyroid. The goal is to detect 

whether the patient is healthy, hyperthyroid or hypothyroid. There are 72,000 patients’ records 

with 21 attributes, which is shown in the table: 
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Table 6 1 Thyroid patients attributes 

 

 

5.3 E. coli 
 
This data set predicts the localization site of a protein in the prokaryotic organism E. coli. There 

are 336 instance and 8 attributes for the E. coli data set.  

 

Attributes 

mcg: McGeoch's method for signal sequence recognition. 

gvh: von Heijne's method for signal sequence recognition. 

lip: von Heijne's Signal Peptidase II consensus sequence score. 

chg: Presence of charge on N-terminus of predicted lipoproteins. 

aac: score of discriminant analysis of the amino acid content of outer membrane and periplasmic proteins. 

alm1: score of the ALOM membrane spanning region prediction program. 

alm2: score of ALOM program after excluding putative cleavable signal regions from the sequence. 
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Class Labels  

cp  (cytoplasm)                                    

im  (inner membrane without signal sequence)  

pp  (perisplasm)                                    

imU (inner membrane, uncleavable signal sequence)    

om  (outer membrane)                                 

omL (outer membrane lipoprotein)                     

imL (inner membrane lipoprotein) 

imS (inner membrane, cleavable signal sequence)                      

      

  

5.4 HIV 
 
In the Human Immunodeficiency Virus (HIV) data set 746, 1625, schilling and Impens data 

sets are concatenated to 6,590 instances. The attributes are 8 letter strings as octamers and a 

binary label that tells whether this octamer is cleaved by the HIV cleavage enzyme. Octamer 

strings are 8 letter amino acids which vectorized into numbers. Each number corresponds to 

one of the 20 amino acid. This problem is a binary classification. The aim of machine learning 

in this data set is to analyze the octamer sequence whether they are cleaved by enzyme or not. 

 

6. Results and Discussions 
 
All data sets are applied to different machine and deep learning algorithms gradually. From 

single neuronal unit to multi layers and from multi-layer to recurrent cell. Single cell can 

classify the problem by linear division. However, neural networks have additional neuronal 

units with non-linear activation function. This non-linearity gives model to draw a flexible 

division. 
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6.1 Softmax Classifications 
 
The simplest approach to apply is a single neuronal unit. Each data sets are classified linear 

separation with sigmoid and softmax function.  For binary classification problems like HIV 

data sigmoid is used because it gives an output either 0 or 1. Frog, thyroid and E. coli data sets 

are multi label classifications. Therefore, softmax classification gives a probability distribution 

between 0 and 1. Table 6.2 shows training and testing accuracies of the four data sets. In order 

to increase an accuracy there are 3 ways to apply. First, finding a better optimizer which we 

already changed the optimizer to ADAM. Second, train more which we already train long 

enough so that, the line is flattened enough. Final approach is, using a complex model. Thyroid 

data set shows a very high accuracy. However, Frog, HIV and E. coli data need to be improved 

with a complex model strategy. E. coli data set cannot be implemented to a more complex 

model because it has only 336 instances and model with this much parameter would be very 

flexible. And flexible models are over fits the data. In other words, they have high variance 

error. Finally, all the results are calculated according to the accuracy metric. The formula is the 

following: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑡𝑛+𝑓𝑝+𝑓𝑛
       (6.1) 

 
In the (Table 6.2), the accuracy and loss plot results are shown for all different data sets. For 

HIV data 5.000 iteration is applied with 10−3 learning rate. The training and testing accuracy 

are 81% and they are the same. The closer the training error and testing error the higher 

consistent of the learning. However, 81% accuracy can be improved by a higher complex model 

like Feed Forward Neural Network. For the thyroid patient data set, 5,000 iteration is applied 

with 10−3 learning rate. The accuracy is very high and the plot lines are the same which means 

a successful prediction. For the E. coli data set, 20,000 iterations are applied with 10−3 learning. 

The training and testing error are the same. Finally, in the frog data set, 5,000 epochs (iterations) 

are done by 10−3 learning rate and the accuracy is 78% with both training and testing. Like 

HIV data, frog data set can be improved with a higher complex model. 

 

For softmax multiclass classification algorithm all learning process is optimized by ADAM 

optimizer. It is a strengthen form of gradient descent. It makes the minimization quicker and 

more sustainable. The other optimizers, SGD (Stochastic Gradient Descent), RMSprop (Root 

Mean Square Propagation) are also tested. It can be concluded that, from all the different 

optimizers ADAM is the most effective one for our data sets. 
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Table 6 2 Loss and training accuracy plots of softmax multiclass classification 

 
 

 

 

 

In the (Table 6.3) the training and testing accuracies are compared with all different data sets. 

It is concluded that; Frog and HIV data set can be implemented to a neural network which has 

more complex structure with multiple layers and units.  
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Table 6 3 Softmax Classification on 4 different Data sets 

 

 
 

 

 

 

6.2 Classification using Feed Forward Neural Networks 
 

Frog and HIV data set can be improved by Feedforward Neural Network (FFNN). Unlike 

softmax classification, FFNN can have more complex architecture so that, it can give more 

accurate results. Constructing a neural network is a state of art approach. How many hidden 

layers should be added? How many neuron units should be included? Do they have to be 

symmetric or not? All these situations are depending on the problem, data and computer power, 

time etc. There is no strict rule to build a neural network architecture. However, there are several 

rule of thumbs method (Heaton, 2008) ; 

• The number neurons should be between the size of the input layer and the output layer.  

• The number neurons should be 2/3 of the attributes plus the labels.  

• The number neurons should be less than twice the size of attributes.   

These methods can be considered as a beginning of trial and error process of model selection. 

Building a neural network, splitting and shuffling the data are the first step of FFNN. Running 

and parameter tuning is the second step. The first and second part of FFNN should be 

considered as separate. If different models are examined on different split of data, the 
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predictions cannot be fair. Therefore, after the model selection trials can be proceed by 

regularization steps in which hyper parameters are evaluated. 

 

Frog data is applied to several different Neural Network models. (Table 6.4) shows the selected 

models. Model 1 has two hidden layers with 7 neuron units and Model 2 has 22 neuron units 

with 2 hidden layers. It is selected to make a comparison with accuracy levels between a very 

complex and rather simple structure. Learning rate is chosen as 10−3 with ADAM optimizer. 

Different activation functions such as tanh, relu are both applied and tanh activation function 

shows a better performance. Each neuron unit has one linearization unit and one activation part. 

The selection of tanh and relu are for the hidden layer neurons. On the other hand, softmax is 

also an activation function but it is applied only on the output layer neuron units. More 

specifically, softmax functions are capable of multilayer classifications. In this example frog 

data set are meant to predict the species of a frog from the audio record. And there are 15 

different frog species which gives 15 neuronal units with softmax activation function in the 

output layer.  

 

Table 6 4 Different 2 FFNN models for frog data set 

 

 

(Table 6.5) shows the loss and accuracy plot for Model 1 and Model 2. The difference between 

the training and validation shows how well the machine learns the parameters. In the Model 1 

the difference is around 0.3% and in the model 2 it is almost 2.0% which tells that Model 1 is 

better than Model 2. Also it can be seen that, on the second model training and validation lines 

(the blue and orange lines) are breaks apart at the end of the iterations. However, in the first 

model it was overlapped. Furthermore, these results are not strict and can be varied with the 

epoch numbers. Here we choose to run the plot with 200 epochs. As it is seen, the loss plot 

approach to zero and becomes steady.  
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Table 6 5 Loss and Accuracy plot for Model 1 and Model 2 Multilayer Perceptron 

 

 

 

Model 1 with 96% accuracy can be regularized and the difference between the training and 

validation can be decreased. L2 and Dropout methods applied with 3 different regularization 

steps (Table 6.6). 
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Table 6 6 Regularizations for Frog FFNN Model 1 

 

 

In the (Table 6.7) Frog species Model 1 with 3 different regularizations are shown with their 

loss and accuracy plots. For each plot 200 epochs are applied. Regularization 2 with 0.1 dropout 

is the best form of Model 1 because training and validation accuracies are almost the same. 

However, in regularization 3, both dropout and L2 is too much and the distance has increased 

a little bit. 

 

Table 6 7 Frog species Model 1 plots with 3 different regularization 
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(Table 6.8) shows the train and validation accuracy for the frog species Model 1. The next step 

is to test the best model and best regularization with a test set as a third split. The validation set 

indicates the overfitting in the training set by analyzing the parameters. The test is like a double 

check for consistent learning by analyzing the hyper parameters. Therefore, the best accuracy 

is calculated after prediction on the test set.  

 

 
 
Table 6 8 Evaluation for the best regularization decision for the frog species Model 1 

 

 

Table 6 9 Implementation of test set and prediction accuracy for frog species data set. 

 

 

Finally, (Table 6.9). Shows the improvement of the accuracy for Frog Species data set. Softmax 

multiclass classification gives the 78% accuracy and Feed Forward Neural Network has 

developed this result to 95% accuracy.  

 

Table 6 10 The improvement of learning from Softmax to FFNN for Frog species data 
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HIV Data set 

 

With the Softmax multiclass classification algorithm, HIV cleavage sites are predicted up to 

81% accuracy. Softmax is a single neuronal unit and we can develop Model 1 and Model 2 

(Table 6.10). Both of two models have ADAM optimizer and relu function for the activation 

unit and they minimized gradient descent with 10−3 learning rate. Model 1 has 2 hidden layers 

with 7 neuronal units which makes it simpler than Model 2. This number has chosen by the rule 

of thumb strategies, mentioned earlier. Model 2 has 13 units in each layer which also gives 

reasonable parameters with respect to attributes given to the model. Moreover, if the 

performance doesn’t differ much when two models are compared, the simpler model is 

preferred to the complex one. 

 

Table 6 11 HIV Model 1 and Model 2 with Feed Forward Neural Network 

 

 

In the table above (Table 6.11) Model 1 and Model 2 is chosen to show how well the accuracy 

on rather simple and complex models. Learning rates, optimizers and activation functions are 

chosen as it is shown on the table.  
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Table 6 12 Model selection for HIV cleavage site data set 
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Table 6 13  Model comparison for HIV cleavage site data set. 

 

 

(Table 6.13) shows the different regularizations applied for Model 2. Dropout and L2 is put on 

the model gradually. The one with two regularizations causes overfitting.   

 

 

Table 6 14 The test accuracy result for the best regularization of HIV Model 2 

 

 

 

 

Finally, the test split also implemented to the model in order to see the final accuracy of Model 

2 for HIV data set (Table 6.14) 
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6.3 Long Short Term Sequence Memory (LSTM) 
 

When the test results are compared with Softmax and FFNN on (Table 6.14) and (Table 6.3), 

HIV data set has not improved a lot. It is because the data is composed of short octamer 

sequences. This data set is a binary classification problem which can be implemented by 

sigmoid function on logistic regression or softmax activation function on softmax classification. 

However, the problem is not the labels but the attributes. It is a sequence data which means 

before and after of an amino acid should be considered as a pattern. Since the data is sequential, 

we also tried a sequential model: the Long Short Term Memory (LSTM) model. (Table 6.15) 

shows the LSTM implementation for HIV data set with; total number of amino acids, max 

review length and embedding vectors as a single octamer length. Memory Cell is the hyper 

parameter for memory. In this case it keeps the value of weights and biases in the memory and 

connects them with an ulterior attribute. 

 

 

Table 6 15 LSTM model structure for HIV data set. 

 

 

LSTM architecture has an additional layer in the neural network. (Table 6.15) shows the hyper 

parameters of LSTM layer. The total amino acids number is 52.720 and all individual sequences 

are octamer (8 amino acids). If they were in different lengths max review length hyper 

parameter can truncate and pad the sequences so that they can be in the same length. Embedding 

vector keeps the location information of an amino acid in a sequence. Moreover, with memory 

cells (smart neurons) LSTM network keep the information during training for long sequences. 

We used sigmoid activation function because the problem is binary classification. 
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Table 6 16 LSTM regularizations 

 

Here in (Table 6.16) different regularizations are applied gradually and the best hyper 

parameters are searched.  

 

 

 

Table 6 17 LSTM regularization comparison
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(Table 6.17) shows different regularizations applied to LSTM neural network. Regularization 

1 and 3 have shown a very similar effects on LSTM. Over 500 iterations regularization 1 and 3 

shows a very clear accuracy plots (Table 6.18). Regularization 1 is very tending to overfitting 

however, regularization 3 shows a perfect overlapping. 

 

 

Table 6 18 Comparison plots for LSTM regularization with longer training 

 

 

Table 6 19 Evaluation of LSTM between different regularizations 
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(Table 6.19) Shows the testing accuracy for regularization 3 in comparison to the LSTM with 

no regularization. 

 

 

 

 
 
Table 6 20 The final comparison for HIV sequence data for Softmax, FFNN and LSTM algorithms. 

 

 

Finally, HIV cleavage site sequence data has implemented on Softmax, FFNN and LSTM 

algorithms and as it is seen on the (Table 6.20) it is improved from 81% to 92% accuracy with 

LSTM. 
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7.  Conclusion 
 

In conclusion, machine learning and more specifically deep learning algorithms are applied on 

4 different data sets: Frog species identification, Thyroid diagnoses, determination of E. coli 

protein localization and activation analyzes of HIV cleavage cite sequence. All types of 

problems are analyzed by, first a single neuronal unit Softmax and then Feed Forward Neural 

Network. The improvement is analyzed in terms of training and testing errors. On the other 

hand, HIV sequence data is classified using an LSTM model, which is a special kind of RNN 

model. With this master study, it is shown that, deep learning is an effective and promising tool 

for understanding complex biological systems in a variety of fields by discovering: patterns, 

correlations between the diagnosis and diseases and drug targets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

54 

 

 

 

8. References 
 

Angermueller, C. et al. (2016) ‘Deep learning for computational biology’, Molecular Systems 

Biology, 12(7), p. 878. doi: 10.15252/msb.20156651. 

Buduma, N. and Locascio, N. (2017) Deep Learning. 

Ching, T. et al. (2018) ‘Opportunities And Obstacles For Deep Learning In Biology And 

Medicine’, bioRxiv. Cold Spring Harbor Laboratory, p. 142760. doi: 10.1101/142760. 

Colonna, J. et al. (2016) ‘Automatic Classification of Anuran Sounds Using Convolutional 

Neural Networks’, in Proceedings of the Ninth International C* Conference on Computer 

Science & Software Engineering - C3S2E ’16, pp. 73–78. doi: 10.1145/2948992.2949016. 

Heaton, J. (2008) Introduction to neural networks with Java. Heaton Research. Available at: 

https://books.google.it/books?id=Swlcw7M4uD8C&pg=PA158&lpg=PA158&dq=Introductio

n to Neural Networks for Java, Second Edition The Number of Hidden 

Layers&source=bl&ots=TJx9QaeWw6&sig=gZqg9e73K1oCqWBxmcBWAf2pbrE&hl=it&s

a=X&ved=0CCUQ6AEwAGoVChMIudnOsJr1yAIVwjkaCh3AAgnU#v=onepage&q=Introd

uction to Neural Networks for Java%2C Second Edition The Number of Hidden 

Layers&f=false (Accessed: 30 May 2018). 

Kuhn, D. et al. (2006) Handbook of child psychology: Vol 2, Cognition, perception, and 

language (6th ed.), Handbook of child psychology: Vol 2, Cognition, perception, and 

language (6th ed.). 

Learning, D. (2006) Deep Learning系列介绍. 

Nahid, A.-A., Mehrabi, M. A. and Kong, Y. (2018) ‘Histopathological Breast Cancer Image 

Classification by Deep Neural Network Techniques Guided by Local Clustering’, BioMed 

Research International. Hindawi, 2018, pp. 1–20. doi: 10.1155/2018/2362108. 

De Schutter, E. (2018) ‘Deep Learning and Computational Neuroscience’, Neuroinformatics. 

Neuroinformatics, 16(1), pp. 1–2. doi: 10.1007/s12021-018-9360-6. 

Wu, Z. et al. (2017) ‘MoleculeNet: A Benchmark for Molecular Machine Learning’, 

Chemical Science. Royal Society of Chemistry, 9, pp. 513–530. doi: 10.1039/C7SC02664A. 

Dua, D. and Karra Taniskidou, E. (2017). UCI Machine Learning Repository 

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information 



 

 

55 

and Computer Science.Angermueller, C. et al. (2016) ‘Deep learning for computational 

biology’, Molecular Systems Biology, 12(7), p. 878. doi: 10.15252/msb.20156651. 

Buduma, N. and Locascio, N. (2017) Deep Learning. 

Ching, T. et al. (2018) ‘Opportunities And Obstacles For Deep Learning In Biology And 

Medicine’, bioRxiv. Cold Spring Harbor Laboratory, p. 142760. doi: 10.1101/142760. 

Colonna, J. et al. (2016) ‘Automatic Classification of Anuran Sounds Using Convolutional 

Neural Networks’, in Proceedings of the Ninth International C* Conference on Computer 

Science & Software Engineering - C3S2E ’16, pp. 73–78. doi: 10.1145/2948992.2949016. 

Heaton, J. (2008) Introduction to neural networks with Java. Heaton Research. Available at: 

https://books.google.it/books?id=Swlcw7M4uD8C&pg=PA158&lpg=PA158&dq=Introductio

n to Neural Networks for Java, Second Edition The Number of Hidden 

Layers&source=bl&ots=TJx9QaeWw6&sig=gZqg9e73K1oCqWBxmcBWAf2pbrE&hl=it&s

a=X&ved=0CCUQ6AEwAGoVChMIudnOsJr1yAIVwjkaCh3AAgnU#v=onepage&q=Introd

uction to Neural Networks for Java%2C Second Edition The Number of Hidden 

Layers&f=false (Accessed: 30 May 2018). 

Kuhn, D. et al. (2006) Handbook of child psychology: Vol 2, Cognition, perception, and 

language (6th ed.), Handbook of child psychology: Vol 2, Cognition, perception, and 

language (6th ed.). 

Learning, D. (2006) Deep Learning系列介绍. 

Nahid, A.-A., Mehrabi, M. A. and Kong, Y. (2018) ‘Histopathological Breast Cancer Image 

Classification by Deep Neural Network Techniques Guided by Local Clustering’, BioMed 

Research International. Hindawi, 2018, pp. 1–20. doi: 10.1155/2018/2362108. 

De Schutter, E. (2018) ‘Deep Learning and Computational Neuroscience’, Neuroinformatics. 

Neuroinformatics, 16(1), pp. 1–2. doi: 10.1007/s12021-018-9360-6. 

Wu, Z. et al. (2017) ‘MoleculeNet: A Benchmark for Molecular Machine Learning’, 

Chemical Science. Royal Society of Chemistry, 9, pp. 513–530. doi: 10.1039/C7SC02664A. 

 

 

 

 

 

 

 

 



 

 

56 

 

 

 

 

                           CURRICULUM VITAE 
 
 

 
 
Zeynep KURT 

Computational Biology and Bioinformatics 
 
 

 

 
 
 

Education  
 
 
 

2016-July 2018 
 

M.Sc. Program, Computational Biology and 
Bioinformatics, Graduate School of Science 
and Engineering, 

Kadir Has University, Istanbul, Turkey, 
Current Average (GPA: 3.06/4.00) 
 

 
 

2011-2015 B.Sc. Program, Department of Biology& 

Molecular Biology and Genetics, Faculty of 
Arts and Science,  
Fatih University, Istanbul, Turkey, Current 

Average (GPA: 3.5/4.00) 
 
 

 
 
2010-2011 

Prep. School of English,  
Fatih University, Istanbul, Turkey  

• Accomodation: İstanbul / Turkey 
• Birth: 01.01.1992 İstanbul/Turkey 
• Married 

• Tel (Mobile):+90-553-0985428 
• E-mail: zeynepkurt.w@gmail.com 

 

mailto:zeynepkurt.w@gmail.com


 

 

57 

(Level grade: 84/100) 

 
 

2006-2010 Şefkat Private High School, 

Istanbul, Turkey, (Grade:93,60) 
 

 

Research & Experience 
 
 
 

 
2015- 2016 Max Delbrück Center (MDC), 

Prof. Dr. Udo Heinemann’s lab group  

Buch-Berlin, Germany 
Recombinant Protein Purification and 
Crystallization  

 
 

 
Research: 
 

Elucidating the structural basis of gene 
regulation by the human transcription factor 
Grainyhead-like 1 (Grhl-1) 

 
 
Experiences:  

 
• Gene Cloning including PCR, DNA cutting 

and ligation, DNA purification, agarose-gel 

electrophoresis, bacterial transformation, 
and colony PCR transformation, colony 
PCR 

• Bacterial cell culture work, including large-
scale bacterial cultures 

• Protein Expression Test 

• Protein purification by ion-exchange, 
affinity and gel-filtration chromatography 

• HPLC Analysis 

• Use of ÄKTA and Biorad chromatographic 
systems 

• SDS (gel preparation, running) 

• Electrophoretic mobility shift assays 
(EMSA) 

• Western Blotting 

• Protein Crystallization 



 

 

58 

• Bioinformatics Analysis 

 
 

 

 
 
 

2013-2015 

 

 
 
 

Dr. Mehmet Taha Yıldız,  
Fatih University, Istanbul,Turkey 
 

 
Research: 
 

Determination and bioinformatics analysis of 
MAPKKK family members of unicellular model 
organism Tetrahymena thermophila 

 
 
 

 
 
Awards & Achievement  
 

 
 
2016-2018 Academic scholarship,  

Kadir Has University, Istanbul, Turkey 

2016 Certificate of Achievement Erasmus Internship 

MDC, Buch-Berlin, Germany 

2014-2015 Certificate of Student Clubs Management 

Fatih University, Istanbul, Turkey 
 

2011 

 

Certificates of Honor & High Honor  

Fatih University, Istanbul, Turkey 
 

2010–2015 

 

Academic scholarship,  

Fatih University, Istanbul, Turkey 

 

 
 
 

Seminars / Workshops 
 



 

 

59 

Congress   

June 2018 Machine Learning Summer School; Natural 

Language Processing and Bioinformatics, 
Bogazici University, Istanbul, Turkey 

 

March 2018 
 

 

MIDST Homology Modelling Workshop, Sabanci 
University, Istanbul, Turkey 
 

Aug 2017 Arduino UNO Education, 
Robot Sepeti, Istanbul, Turkey 
 

June 2017 Robotic Coding, Robotis Stem Education, 
Robot Sepeti, Istanbul, Turkey 

 

May 2017 Apr-May 2017 Orientation for Understanding             
Gifted Children, Sultangazi Science   
Center,Istanbul, Turkey 

 
Jan 2016 
 

Protein Course; Structure analysis of 
biomolecules and protein modelling , 

Max Delbrück Center (MDC), 
Buch-Berlin, Germany 

 

Aug 2015– Feb 2016 MDC weekly seminars and journal club 
Max Delbrück Center, Berlin, Germany 

 

Aug 2015 
 

M.I.T Prof. Harvey Lodish Seminer, 
“Self‐renewal of human hematopoietic 

progenitor cells: Novel therapies for 
erythropoietin‐resistant anemias” 

Max Delbrück Center (MDC),  

Buch-Berlin, Germany 
 

May-2013 Fungal Biotechnology Research Are; Molecular, 

Antimicrobial, Antioxidant Studies on Macro 
fungus; Mycelium Studies 
Fatih University, Istanbul, Turkey  

 
 
Feb- 2013 

Natural Vinegar Workshop 
Traditional Medicine Institution, Istanbul, 

Turkey 
 

Sep-2012 Auricular Medicine Workshop, Cupping 

Therapy Workshop, Medicine of Avicenna 
Workshop 
Halic Congress Center, Istanbul, Turkey 

 



 

 

60 

     

 
Feb- 2018 Kugen 4. MBG Science Congress, Koc 

University, Istanbul, Turkey 

 
Feb- 2015 International Symposium on Evolution 

Middle East Technical University (METU), 

Ankara, Turkey 
 

May-2014 Cancer Symposium 

Fatih University, Istanbul, Turkey 
 

May–2014 GMO-2012 Symposium 

Fatih University, Istanbul, Turkey  
 

Sep-2012 International Symposium on Cupping Therapy 

Halic Congress Center, Istanbul, Turkey 
 

Sep-2012 International Symposium on Vegetable 

Agriculture 
Dedeman Hotel, Konya, Turkey 

 

Oct-2012 International Biotechnology Student Congress 
Fatih University, Istanbul, Turkey 

 

 
Other Skills & Educations 
 
 

 
Language Turkish (Native) 

English (Fluent) 

 
 

Computational Python (Tensorflow, Keras) 
Linux & vi 

Autodock, Vina, Gold 
VMD 
Pymol 

 
 

 

Extracurricular 
Activities  

 
 

Director of the High School projects of 
Tardigrade Hunters, Science Center, 

Istanbul,Turkey. 
 



 

 

61 

Educator in Sultangazi Science 

Center,Istanbul, Turkey 2017-present 
 

Educator in UsturLAB children Scientific 

Workshop, Istanbul, Turkey,2016 
 

Biology Teacher at Kavram Schools, 2016 

 
Chairman, Art in Science Student Club, Fatih 
University, Istanbul, Turkey,2011-2015  

 
Miniature, (Classical Turkish Art) UTISK Art 
Society, Istanbul, Turkey 

 
Classical Kemenche (Classical Turkish Music 
Instrument) UTISK Art Society, Istanbul, 

Turkey 
 

 

 
 
References  
 

 
 
Prof. Dr. Udo Heinemann 

 
Max-Delbrück-Center for Molecular 

Medicine (MDC)  

Robert-Rössle-Str. 10 13125 Berlin, 

Germany Phone: +49 39 9406 3420 

heinemann@mdc-berlin.de 

 

Assoc. Prof. Dr. Cem 

ÖZEN 

 

Faculty of Engineering and Natural 

Sciences  

Kadir Has University,  
Cibali, 34083 Istanbul, Turkey 

Tel : +90-212-533 65  
Fax : +90-212-533 57 53 
cem.ozen@khas.edu.tr 

 

Dr. Öğr. Üyesi M.Taha 

YILDIZ  

  

Faculty of Medicine  

Health Science University, Istanbul,Turkey  
mtahay@gmail.com 

http://www.sultangazibilimmerkezi.com/en/
http://www.sultangazibilimmerkezi.com/en/
http://www.usturlab.com.tr/
https://www.mdc-berlin.de/heinemann
http://www.khas.edu.tr/en/cv/1597
http://www.khas.edu.tr/en/cv/1597
mailto:cem.ozen@khas.edu.tr
https://dosya.sbu.edu.tr/CV/MEHMETTAHAYILDIZ_6464.pdf
https://dosya.sbu.edu.tr/CV/MEHMETTAHAYILDIZ_6464.pdf


 

 

62 

Dr. Öğr. Üyesi Hatice 

Bahar Şahin  

Faculty of Engineering and Natural 

Sciences  

Kadir Has University,  

Cibali, 34083 Istanbul, Turkey 
hbahar.sahin@khas.edu.tr 

 

http://www.khas.edu.tr/cv/2378
http://www.khas.edu.tr/cv/2378
http://www.khas.edu.tr/cv/2378

	ACKNOWLEDGEMENTS
	1.
	1.
	LIST OF FIGURES
	LIST OF TABLES
	Abstract
	ÖZET
	1. Introduction
	2. Machine Learning Problems
	2.1 Types of Machine Learning
	2.1.1 Supervised Learning
	2.1.2. Unsupervis ed Learning
	2.1.3. Reinforcement Learning

	2.2 Supervised Learning
	2.2.1. Linear Regression
	2.2.2. Binary Classification: Logistic Regression


	Figure 2 8 Sigmoid function makes decision in the logistic regression problems either 0 or 1
	2.2.3. Multiclass Classification : Softmax Regression

	Figu re 2 9 A single neuronal unit structure with softmax activation function.
	2.3. Neural Networks
	2.3.1. Feed Forward Neural Networks
	2.3.2. Training Neural Networks
	2.3.2.1 Loss and Cost Function
	2.3.2.2 Gradient Descent
	2.3.2.3 Preventing Overfitting and Regularization
	2.3.2.4 Training, Development, Test Sets

	2.3.3 Recurrent Neural Networks
	2.3.3.1 Long Short Term Memories



	3. Preparation of Data
	3.1. Cleaning Data
	3.2. Input Normalization

	The calculation can be implemented by this python script,
	4. Implementing Machine Learning
	4.1. Python and Jupyter Notebook
	4.2. Tensor Flow
	4.3. Keras

	5. Data sets
	5.1 Anuran Call
	5.2 Thyroid Patients
	5.3 E. coli
	5.4 HIV

	6. Results and Discussions
	6.1 Softmax Classifications
	6.2 Classification using Feed Forward Neural Networks
	6.3 Long Short Term Sequence Memory (LSTM)

	7.  Conclusion
	8. References

