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COMPUTATION OF TWO-VARIABLE MIXED ELEMENT NETWORK FUNCTIONS 

 

Abstract 

 

In this dissertation , the algorithm known as  “Standard Decomposition Technique (SDT)” is 

used together with Belevitch’s canonic representation of scattering polynomial for two-port 

networks operate on high frequency, to find the analytical solutions for “Fundamental equation 

set (FES)”. This FES is extracted by using Belevitch canonic polynomials “ 𝑔(𝑝, 𝜆), ℎ(𝑝, 𝜆) 

and 𝑓(𝑝, 𝜆)” used for the description of mixed lumped and distributed lossless two-port 

cascaded networks in two variables  of degree five and the obtained solutions are further used 

to synthesis the realizable networks. The solution to the problem is also classified into two 

cases, first case is discussed for three lumped and two distributed (𝑛𝑝 = 3, 𝑛𝜆 = 2 ) and the 

second is for three distributed and two lumped important (𝑛𝑝 = 2, 𝑛𝜆 = 3 ) the solution for 

both these cases are expressed separately with conclusive examples.  

Keywords: Standard Decomposition Technique (SDT), Belevitch’s canonic representation, 

scattering polynomials, Two-port networks, Fundamental equation set (FES), Mixed lumped 

and distributed lossless networks, Cascaded networks in two variables, Networks of degree 

five. 
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İKİ DEĞİŞKENLİ KARIŞIK ELEMANLI DEVRE FONKSİYONLARININ HESABI 

 

 

Özet 

 

 

Bu tezde, Standart Ayrıştırma Tekniği (SDT) olarak bilinen algoritma, yüksek frekansta 

çalışan iki portlu ağlar için Belevitch'in saçılma polinomunun kanonik gösterimi ile birlikte, 

Temel Denklem Seti (FES) için analitik çözümler bulmak amacıyla kullanılmıştır. Bu denklem 

seti,  Belevitch’in iki değişkenli karışık toplu ve dağıtılmış kayıpsız iki portlu kaskad ağların 

tanımı için kullanılan g (p, λ), h (p, λ) ve f (p, λ) kanonik polinomlarından elde edilmiş ve elde 

edilen sonuçlar daha sonra gerçeklenebilir devrelerin sentezinde kullanılmıştır.  Problem üç 

toplu ve iki dağıtılmış (𝑛𝑝 = 3, 𝑛𝜆 = 2 ) ile iki toplu ve üç dağıtılmış  (𝑛𝑝 = 2, 𝑛𝜆 = 3 )  

eleman olacak şekilde iki ayrı durum için ele alınmış ve çözüm her bir durum için ayrı ayrı 

verilmiştir.  

 

Anahtar Kelimeler: Standart Ayrıştırma Tekniği (SDT), Belevitch'in kanonik gösterimi, 

Saçılma polinomları, İki portlu ağlar, Temel denklem seti (FES), Karışık lumped ve dağıtık 

kayıpsız ağlar, İki değişkenli basamaklı ağlar, Beşinci dereceden ağlar.  
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1 INTRODUCTION 
 

 

1.1 Overview 

In the field of communication systems design and development, one of the most crucial 

problems is to design a coupling circuit model, that work over a broadest attainable frequency 

band to achieve optimum performance. A coupling circuit is used to match one device to 

another, also known as impedance matching network or equalizer network. Characteristically, 

the problem here is to design an impedance matching network, to convert a provided impedance 

to a particular one, the phenomenon usually referred to as equalization or impedance matching. 

The problem of designing, matching networks was considered seriously in literature for several 

decades. The development of millimeter-wave and microwave integrated circuit technology 

motivated new ventures in the design and development of wideband communication systems 

and also stimulated a renewed interest in broadband matching.  

High-frequency telecommunication systems such as satellites, antennas, amplifiers, filter and 

high-frequency transistors contain front-end, inter-stage, and back-end blocks and these blocks 

can be distinguished and classified by their measured data.  For these type of high-frequency 

systems, to control the power flow between above-described stages, filters and equalizer 

circuits are designed by using recognized analytical and semi-analytical techniques. Modeling 

of numerically explained components is mandatory, either by practicable circuit functions or 

components. From this discussion, aim is to develop ability to model numerically define device 

by mean of lossless components by using recent analytic design methods (ŞENGÜL, 2006). 

1.2 Literature Review 

It is contemplated that the broadband matching theory is originated after the development of 

restricted load impedance gain-bandwidth theory and restricted load impedance is composed 

of a parallel combination of a resistor and a capacitor (Bode, 1945). After more developments, 

a generalized gain-bandwidth theory is presented for any random load impedance (Fano, 1950) 

(Youla, 1964). Circuit modeling is critically important to design broadband matching circuits 
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(Chen, 1988). The requirement is to develop an optimum lossless two-port matching network 

(Carlin & Amstutz, 1981) that is able to transfer maximum power between load and source at 

broadest possible frequency band (Aksen, 1994). Here, source and load can be represented by 

numerical data and can also be considered as complex one port networks (ŞENGÜL, 2006) 

(Yarman, 1982). To implement the Analytical Gain-Band Width Theory (Carlin, 1977) 

(Belevitch, 1968) it is necessary to understand basic of complex one port networks. Later on, 

to encounter the broadband matching problems many other researchers had published extended 

works with better elaboration. While working with complex practical application and designing 

complicated matching circuits, the current broadband matching theory faces serious problems. 

Therefore, plenty of literature is available that focused on finding more practical ways to design 

matching networks. 

Precious work is available in the literature about data modeling (Smilen, 1964) (Baum, 1948) 

is available but semi-analytic computer-aided and numerical techniques are practiced because 

of difficulties and presence of inaccuracy in existing methods of modeling the matching 

problems (Kody & Stoer, 1972) (Kotiveeriah, 1972). Carlin (Carlin, 1977) and Yarman (Carlin 

& Yarman, 1983) proposed Real Frequency Technique (RFT), further advancements are made 

by several researchers to encounter the difficulties of modeling the matching problems. These 

latest and efficient and accurate modeling and matching with help of analytic methods are still 

unable to answer all fundamental problems for researchers (Yarman, 1982) (Yarman, 1982) 

(Beccari, 1984) (Yarman & Aksen, 1992). To full the industrial requirements like microwave 

amplifier design problems and equalizer circuit design problems several computer programs 

have been developed (Hatley, 1967). Although these circuit design computer programs are very 

helpful for several practical problems but still insufficient to encounter all kinds of complicated 

design problem, as their working principle is Brute Force method (Yarman & Fettweis, 1990) 

(Fettweis & Pandel, 1987) (Yarman, 1985) (Carlin & Civalleri, 1985).  

It is a normal practice to define the load is by reflection parameters calculated in the desired 

frequency bandwidth or by amplitude and phase or real and imaginary pairs. While modeling 

such types of numerical data, the circuit functions realizability conditions and constraints must 

be considered. Here, a numerical defined physical device as a lossless two-port network 

(Darlington equivalent) (Darlington, 1939). 
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Figure 1.1 Lossless Two-port Darlington equivalent Network (Darlington, 1939). 

In literature, to model, the impedance data two most widely used methods are: 

1. Select a network topology and designate the best appropriate values of components. 

2. Determination of impedance or reflection function which is suitable for the data and 

synthesizes the function to obtain the model. 

In the first method, an optimization tool is applied, after choosing the network topology, to 

define the suitable values to component. Although this is a very easy and uncomplicated 

method, it carries some difficulties: The process of optimization is highly nonlinear with 

respect to the values of component, can achieve a local minimum or can diverge from it. The 

satisfactory result can be achieved after the optimization process, by a proper and careful choice 

of initial values and it is a very hard task to find suitable initial values (Yarman, 1991).  

There is an additional obstacle, there is no explicit answer to, what is the suitable network 

topology for the provided data? Hence, the modeler will try several network topologies to select 

the best suitable or the problem will be unsolved. 

Several data modeling methods are proposed to model the provided impedance or reflection 

data. In the easiest one, rational functions are used to depict impedance data and by using 

interpolation, to estimate the coefficients of the function. A similar rational function 𝑍(𝑝) is 

given in 1.1; 

 𝑍(𝑝) =
∑ 𝛼𝑗𝑝

𝑗𝑛−1
𝑗=0

∑ 𝛽𝑗𝑝𝑗𝑛−1
𝑗=0

                      𝑗 = 0,1, …… , (𝑛 − 1) (1.1) 
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where, complex frequency variable 𝑝 = 𝜎 + 𝑖𝜔 and 𝛼𝑗 and 𝛽𝑗 are positive real coefficients. 

But, positive real function cannot be obtained at the end of this technique. Two other modeling 

tools are proposed, and these methods are based on working with scattering parameters or input 

impedance of the device. The first method, named as Immittance Approach, impedance or 

admittance values are used. Approximation of real part of the input impedance is calculated by 

using a minimum reactance function, then minimum reactive data is removed after this Foster 

function is used to model the remaining imaginary data. In the second method, reflection 

coefficient data is modeled by a bounded function and the method is called Reflection 

Parameter Approach. 

1.3 Thesis Contribution 

In the available literature two port networks of degree five consist of mixed lumped and 

distributed elements, the transfer function and canonic representation are not represented on 

pure analytical basis. In simple words, there is no analytical solution for LPLU of degree five 

exist in literature. So, in this study, the objective is to use a modeling method named “Standard 

Decomposition Technique” and focus will be on the network consist of the cascade of mixed 

lumped and distributed elements of degree five to find analytical solution to the problem. 

1.4 Thesis Outline  

Chapter 1 of the thesis is an introductory novel to the topic and its brief overview, it is also 

covering the previous research in the related field with the contribution of this dissertation. 

Chapter 2 is covering the fundamental concepts of network theory, those are related and helpful 

for further study. The chapter contains a brief introduction of lossless two-port networks, 

scattering representation, canonic representation of scattering matrix and mixed, lumped and 

distributed elements. 

In chapter 3 our focus will be on the description of mixed lumped and distributed elements, the 

issues involving in the fabrication of two-variable network function are also discussed. A semi-

analytical technique is presented to elaborate two-port cascaded mixed networks.  

In chapter 4 the focus is to find the analytical solutions for LPLU of degree five for some real 

and realizable values. A two-variable polynomial with degree five is generated LPLU of degree 
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five, first the discussion is made for three lumped and two distributed (𝑛𝑝 = 3, 𝑛𝜆 = 2 ) and 

the second will be with three distributed and two lumped important (𝑛𝑝 = 3, 𝑛𝜆 = 2 ) . 

Chapter 5 is concluding the discussion and developing the remarks, at the end some important 

Matlab code are given, used to develop the solutions. 
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2 FUNDAMENTAL PROPERTIES OF LOSSLESS TWO-PORT 

NETWORKS 
 

This chapter is dedicated to investigating and discuss the basic ideas related to network theory. 

A review of basic definition and elementary properties regarding the scattering parameters 

description of lossless two-port networks has made. Fundamental properties of the network 

functions related to lossless two-port lumped and distributed networks are elaborated. A brief 

introduction of mixed lumped and distributed elements network is also discussed. 

2.1 Port, Two-Port and n-Port Network 

In network theory, a pair of terminals joining an electrical network or a circuit to another 

external circuit is known as a port and the current entering through one terminal is always equal 

to the current leaving through the other terminal of a port. These terminals are also called nodes. 

Circuit components like capacitors, resistors, inductors, transistors etc., may have two or more 

terminals. The combination of these components in a meaningful manner form networks. 

Figure 2.1 is representing a two-port lossless network a kind of quadripole network consist of 

two ports or four terminals also representing the values of voltages and current on each 

terminal.  Generally, mathematical representation obtained from the values of currents and 

voltages of external terminals are used to determine the source and load response connected to 

the network. 

 
Figure 2.1 General two-port network (four-terminal network). 
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2.2  Scattering Representation of Two-port Networks 

It is a fact that impedance, admittance and transmission parameters are widely used to calculate 

the terminal response of a two-port lossless network and the also work quite beautifully.  

Impedance and admittance parameters are determined with respect to infinite or zero loads at 

the ports although they conclude a useful information about two-port networks. There is no 

assurance of equally well results for all type two-port networks because of the requirement of 

infinite or zero loads at the ports. On contrary, scattering parameters are well defined with 

respect to finite loads and also exist for all kinds of networks. It is well established that 

scattering parameters are used as a powerful tool to understand the power transfer 

characteristics of networks like filter and matching networks especially at microwave 

frequencies, under specific terminations. 

 
Figure 2.2 Doubly terminated two-port network (Medely, 1993) 

Figure 2.2 is referring to a two-port network which is ignited at port 1 by a voltage source 𝐸𝑠, 

through impedance R1, and terminated at port 2 by load impedance R2. R1 and R2, can be of 

any value because they are just reference impedances, although 50Ω is the most commonly 

used value. Figure 2.2 is explaining the definitions of current 𝐼𝑗, voltage 𝑉𝑗 and impedance 𝑅𝑗  

and also, two new parameters 𝛼𝑗  and 𝛽𝑗 can also be defined as (Medely, 1993).    

 

 
𝛼𝑗 =

𝑉𝑗 + 𝑅𝑗𝐼𝑗

2√|𝑅𝑒𝑅𝑗|

 
(2.1) 

and  
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𝛽𝑗 =

𝑉𝑗 − 𝑅𝑗
∗𝐼𝑗

2√|𝑅𝑒𝑅𝑗|

 
(2.2) 

by solving 2.1 and 2.2, the results are  

 

 𝑉𝑗 = (𝛼𝑗 + 𝛽𝑗)√𝑅𝑒|𝑅𝑗|  (2.3) 

and 

 𝐼𝑗 =
(𝛼𝑗 − 𝛽𝑗)

√𝑅𝑒|𝑅𝑗|
 (2.4) 

 

here 𝑅𝑗
* and 𝑅𝑒|𝑅𝑗| is the complex conjugate and real part of reference Impedance 𝑅𝑗 

respectively. Equations for scattering parameters for two-port in Figure 2.2 can be  defined as 

 (Medely, 1993). 

 

 𝛽1 = 𝑆11𝛼1 + 𝑆12𝛼2 (2.5) 

 𝛽2 = 𝑆21𝛼1 + 𝑆22𝛼2 (2.6) 

 

Expression for scattering parameter in matrix form any n-port network is 

 

 𝛃 = 𝐒𝛂 (2.7) 

 

The evaluation of coefficients of 2.5 and 2.6 can be estimated by placing 𝛼1 = 0 and 𝛼2 = 0. 

Now consider the Figure 2.2, the output voltage is −𝐼2𝑅2 and substituting this value in 2.1 the 

result is; 

 

 𝛼2 =
−𝑉2𝑅2 + 𝑉2𝑅2

2√|𝑅𝑒𝑅2|
= 0 (2.8) 

 

If any of the ports is not connected to the source and having reference impedance on termination 

that specific 𝛼𝑗 is always zero. Transmission line theory (Medely, 1993) the expression can be 

written as, 
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 𝑉𝑗 = 𝑣𝑗𝑖 + 𝑣𝑗𝑟 (2.9) 

and, 

 𝐼𝑗 =
𝑣𝑗𝑖 − 𝑣𝑗𝑟

𝑅𝑗
 (2.10) 

 

here the subscripted 𝑖 and 𝑟 are representing the incident component and reflected component 

of voltage, respectively. Considering 𝑅𝑗to be real and substituting in 2.1 

 

 

 𝛼𝑗 =

(𝑣𝑗𝑖 + 𝑣𝑗𝑟) + 𝑅𝑗 (
𝑣𝑗𝑖 − 𝑣𝑗𝑟

𝑅𝑗
)

2√|𝑅𝑒𝑅𝑗|

=
𝑣𝑗𝑖

√|𝑅𝑒𝑅𝑗|

 (2.11) 

 

and from 2.2, 

 

 𝛽𝑗 =

(𝑣𝑗𝑖 + 𝑣𝑗𝑟) − 𝑅𝑗
∗ (

𝑣𝑗𝑖 − 𝑣𝑗𝑟

𝑅𝑗
)

2√|𝑅𝑒𝑅𝑗|

=
𝑣𝑗𝑟

√|𝑅𝑒𝑅𝑗|

 (2.12) 

 

It can be seen in 2.11 that 𝛼𝑗 is the function of incident voltage and 𝛽𝑗 is a function of reflected 

voltage by 2.12. It can also be observed that the squares of 𝛼𝑗 and  𝛽𝑗 gives us the dimensions 

of power. Mathematically; 

 

 |𝛼𝑗|
2

=
|𝑣𝑗𝑖|

2

|𝑅𝑒𝑅𝑗|
     𝑎𝑛𝑑     |𝛽𝑗|

2
=

|𝑣𝑗𝑟|
2

|𝑅𝑒𝑅𝑗|
 (2.13) 

 

So, 𝛼𝑗 and  𝛽𝑗 are representing incident and reflected waves respectively, also |𝛼𝑗|
2
 and |𝛽𝑗|

2
  

are representing incident and reflected powers respectively. From 2.5 and 2.6, it can be 

observed that the reflected wave from any port is equal to the submission of modified incident 

waves from all the ports, this modification is made by S-parameter matrix.  
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Mathematically, |𝛼𝑗|
2
 can be represented by Figure 2.2, 

 

 |𝛼1|
2 = |

𝑉1 + 𝑅1 (
𝐸𝑠 − 𝑉1

𝑅1
)

2√𝑅𝑒𝑅1

|

2

=
|𝐸𝑠|

4|𝑅𝑒𝑅1|
 (2.14) 

 

Form 2.14 it can be observed that |𝛼1|
2 is total power available from the source, by subtracting 

reflected power from total available power, power delivered to the network can be obtained, 

that is represented as, 

 

 

|𝛼𝑗|
2
− |𝛽𝑗|

2
= 𝛼𝑗𝛼𝑗

∗ − 𝛽𝑗𝛽𝑗
∗ 

=
(𝑉1 + 𝑅1𝐼1)(𝑉1

∗ + 𝑅1
∗𝐼1

∗)

4|𝑅𝑒𝑅1|
−

(𝑉1 − 𝑅1𝐼1)(𝑉1
∗ − 𝑅1

∗𝐼1
∗)

4|𝑅𝑒𝑅1|
 

=
2𝑅1(𝑉1𝐼1

∗ + 𝑉1
∗𝐼1)

4|𝑅𝑒𝑅1|
 

(2.15) 

                             =
𝑅1

|𝑅𝑒𝑅1|
𝑅𝑒(𝑉1𝐼1

∗) (2.16) 

 

If the source is terminating port 1, then |𝛼𝑗|
2
 will be zero and  |𝛽𝑗|

2
 can be expressed as, 

 

 |𝛽2|
2 = |

𝑉2 − 𝑅2
∗𝐼2

2√𝑅𝑒𝑅2

|

2

= |𝑅𝑒𝑅2||𝐼2|
2 (2.17) 

 

where 2.17 is representing the delivered load power. 

 

Coefficients 𝑆𝑚𝑛 of S-parameter matrix are representing the ratios between reflected and 

incident waves, is most appropriate depiction of microwave circuits. When a source with 

available power |𝛼𝑗|
2
 is attached to port 𝑗, value of 𝛼 for port 𝑗 and value of 𝛽 for all ports can 

be calculated.  

 

At port 𝑗, 𝑆𝑗𝑗 will be, 
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 𝑆𝑗𝑗 =
𝛽𝑗

𝛼𝑗
=

𝑉𝑗 − 𝑅𝑗
∗𝐼𝑗

𝑉𝑗 + 𝑅𝑗𝐼𝑗
=

Ω𝑖𝑛𝐼𝑗 − 𝑅𝑗
∗𝐼𝑗

Ω𝑖𝑛𝐼𝑗 + 𝑅𝑗𝐼𝑗
=

Ω𝑖𝑛 − 𝑅𝑗
∗

Ω𝑖𝑛 + 𝑅𝑗
 (2.18) 

 

in 2.18, Ω𝑖𝑛 is representing the input impedance of port 𝑗. The reflection coefficient of port 

𝑗 will be 𝜌𝑖𝑛 and is equal to 𝑆𝑗𝑗, power loss at port 𝑗 can be given by, 

 

 |𝑆𝑗𝑗|
2

=
|𝛽𝑗|

2

|𝛼𝑗|
2 = 

Reflected power from input port

Availale power at source to port
 (2.19) 

 

at any other port 𝑘 and 𝑗 ≠ 𝑘 , transducer power gain can be given as, 

 

 |𝑆𝑘𝑗|
2

=
|𝛽𝑘|

2

|𝛼𝑗|
2 = 

 Power delivered to the load

Availale power at source to port
 (2.20) 

 

By the law of conservation of energy, the total incident power at all the ports of a passive 

network system must be equal to the power dissipated by in the network and power reflected 

from the network. The dissipated power by the network can be calculated by subtracting the 

reflected power from incident power as |𝛼𝑗|
2
− |𝛽𝑗|

2
. The total dissipated power 𝑃∆ can be 

given as the summation of the dissipated powers at every port of the network (Medely, 1993).  

 

 𝑃∆ = ∑ ( |𝛼𝑗|
2
− |𝛽𝑗|

2
) = ∑ 𝛼𝑗𝛼𝑗

∗ − ∑ 𝛽𝑗𝛽𝑗
∗𝑚

𝑗=1
𝑚
𝑗=1

𝑚
𝑗=1   (2.21) 

or, 

 𝑃∆ = [𝛼∗]𝑡𝛼 − [𝛽∗]𝑡𝛽 (2.22) 

 

here [𝛼∗]𝑡 and [𝛽∗]𝑡 are representing the transpose of complex conjugate of each element of 𝛼 

and 𝛽. By 2.7, 

 

 [𝛽∗]𝑡 = [𝑆∗]𝑡[𝛼∗]𝑡 (2.23) 

substituting 2.23 in 2.22, 

 𝑃∆ = [𝛼∗]𝑡𝛼 − [𝑆∗]𝑡[𝛼∗]𝑡𝑆𝛼 (2.24) 
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after simplifying, 

 𝑃∆ = [𝛼∗]𝑡{𝐼 − [𝑆∗]𝑡𝑆}𝛼 (2.25) 

 

the term in curly braces of 2.25 determines whether the dissipated power is positive or negative.  

The definition can be given as (Medely, 1993).  

 

 𝑊 = 𝐼 − [𝑆∗]𝑡𝑆 (2.26) 

 

The expression in 2.26 is showing the dissipation matrix and if 𝑊 is nonnegative quantity the 

behavior of network will be passive means the dissipated power is zero or greater than zero. 

For two-port passive networks,  

 

 |𝑆11|
2 + |𝑆21|

2 ≤ 1    𝑎𝑛𝑑    |𝑆22|
2 + |𝑆12|

2 ≤ 1 (2.27) 

For two-ports lossless networks the power dissipation will be zero and the expression in 2.26 

will become, 

 𝐼 = [𝑆∗]𝜏𝑆 (2.28) 

 

or in matrix form, 

 

 [
1 0
0 1

] = [
𝑆11

∗ 𝑆21
∗

𝑆12
∗ 𝑆22

∗ ] [
𝑆11 𝑆12

𝑆21 𝑆22
] (2.29) 

 

and the can also be  

 

 𝑆11
∗ 𝑆11 + 𝑆21

∗ 𝑆21 = 1 (2.30) 

 𝑆11
∗ 𝑆12 + 𝑆21

∗ 𝑆22 = 0 (2.31) 

 𝑆12
∗ 𝑆11 + 𝑆22

∗ 𝑆21 = 1 (2.32) 

 𝑆12
∗ 𝑆12 + 𝑆22

∗ 𝑆22 = 0 (2.33) 

 

by solving 2.30, 2.31, 2.32 and 2.33 the expression will be, 
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 𝑆11
∗ 𝑆11 = 𝑆22

∗ 𝑆22     𝑎𝑛𝑑      𝑆12
∗ 𝑆12 = 𝑆21

∗ 𝑆21 (2.34) 

 

The relations derived earlier are concluding that the magnitudes of reflection coefficients and 

transmission coefficients are bounded by unity, i.e. |𝑆𝑘𝑗| ≤ 1 for 𝑝 = 𝑖𝜔. 

 

The discussion earlier can be summarized as following fundamental properties of lossless two-

port networks (ŞENGÜL, 2006) (Aksen, 1994). 

1. For real 𝑝 the elements of matrix 𝑆 are real and rational. 

2. In 𝑅𝑒 𝑝 ≥ 0 the matrix 𝑆 will be analytic. 

3. Matrix 𝑆 is paraunitary and satisfies [𝑆∗]𝜏𝑆 for all 𝑝. 

4. The lossless two port system will be reciprocal if matrix 𝑆 is symmetric,  

i.e. 𝑆12 = 𝑆21. 

 

The corresponding impedance and admittance matrices can be easily estimated if the scattering 

matrix satisfies all the conditions discussed above.  The realizability theory based on 

Darlington approach, in immittance formalism, can be established and expressed by using the 

driving point functions of a two-port network terminated at the output by a resistance.  At this 

point of discussion, it is relevant to describe the following fundamental properties in 

correspondence to the driving point impedance and reflectance functions (ŞENGÜL, 2006) 

(Aksen, 1994). 

 

• The function 𝑆1(𝑝) will be bounded and real if  

 

1. For all real 𝑝, 𝑆1(𝑝) is real. 

2. In 𝑅𝑒 𝑝 > 0 the matrix 𝑆1(𝑝) is analytic. 

3. |𝑆1(𝑖𝜔)| ≤ 1 , ∀ 𝜔. 

 

• The relative input impedance 𝑅1(𝑝) of a resistively terminated two-port can be given 

as, 

 

 𝑅1(𝑝) =
1 + 𝑆1(𝑝)

1 − 𝑆1(𝑝)
 (2.35) 
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the impedance function 2.35 is positive real function (p.r.f) and satisfying the  

following properties as well, 

 

1. For all real 𝑝, 𝑅1(𝑝) is real. 

2. for 𝑅𝑒 𝑝 > 0,  𝑅𝑒 𝑅1(𝑝) > 0. 

 

The conclusion can be made for a resistively terminated two-port network that the realizability 

of driving point functions that, "A rational and positive real impedance function (or also be a 

bounded real reflection/impedance function) can be achieved as a resistively terminated 

lossless two-port”. 

2.3 Scattering Transfer Representation of Two-Ports 

The more appropriate way of dealing with, cascaded two-port networks, is to use the scattering 

transfer matrix instead of the scattering matrix. Consider 2.5 and 2.6 , rearrange the port 

variables 𝛼𝑗 and 𝛽𝑗, the rersult can be expressed as 

 

 𝛽1 = 𝑇11𝛼2 + 𝑇12𝛽2 (2.36) 

 𝛼2 = 𝑇21𝛼2 + 𝑇22𝛽2 (2.37) 

   

and the matrix representation of 2.36 and 2.37 is, 

 

 [
𝛽1

𝛼2
] = [

𝑇11 𝑇12

𝑇21 𝑇22
] [

𝛼2

𝛽2
] (2.38) 

 

The definition of scattering transfer matrix 𝑇 is explained in 2.38, the members of matrix 𝑆 are 

related to the members of matrix 𝑇, as follows, 

 

 𝑇11 = −
det 𝑆

𝑆21
 , 𝑇21 = −

𝑆22

𝑆21
 , 𝑇12 =

𝑆11

𝑆21
 𝑎𝑛𝑑 𝑇22 =

1

𝑆21
 (2.39) 
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In 2.39 det 𝑆 is representing the determinant of matrix 𝑆, also the elements of scattering transfer 

matrix are rational functions, the reciprocity condition for two-port in the case of scattering 

transfer matrix is 𝑆12 = 𝑆21that gives to det 𝑇 = 1.  

2.4 Canonic Representation of Scattering and Scattering Transfer Matrix 

Scattering parameters of a two-port can also be represented in term of compact three canonic 

polynomials. The Belevitch canonic representation of scattering matrix and scattering transfer 

matrix can be given as (Belevitch, 1968), 

 

 𝑆 =
1

𝑔
[
ℎ 𝜎𝑓∗
𝑓 −𝜎ℎ∗

]      𝑎𝑛𝑑     𝑇 =
1

𝑓
[
𝜎𝑔∗ ℎ
𝜎ℎ∗ 𝑔

] (2.40) 

  

where 𝑓∗ = 𝑓(−𝑝) is paraconjugate of a real function. The properties of canonic polynomial 

𝑓, 𝑔, 𝑎𝑛𝑑 ℎ are given as (Aksen, 1994) (ŞENGÜL, 2006). 

 

• 𝑓 is monic, i.e. its leading coefficient is equal to unity. 

• 𝑔 is strictly Hurwitz polynomial. 

• 𝑓 = 𝑓(𝑝), 𝑔 = 𝑔(𝑝) and ℎ = ℎ(𝑝) are real polynomials in complex frequency domain. 

• The relation between 𝑓, 𝑔 and ℎ is, 

 

 𝑔𝑔∗ = 𝑓𝑓∗ + ℎℎ∗ (2.41) 

 

• 𝜎 is constant and its value is ±1. 

 

If the two-port network is reciprocal, then the polynomial 𝑓 will be either even or odd in the 

case of even the 𝜎 = +1 and if it is odd then 𝜎 = −1, so as result, 

 

 𝜎 =
𝑓∗
𝑓

= ±1 (2.42) 

 

now the relation expressed in 2.41 can be expressed as  
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𝑔𝑔∗ = 𝜎𝑓2 + ℎℎ∗ (2.43) 

 

as 𝑝 = 𝑖𝜔, and from 2.41, 

 

 |ℎ| ≤ |𝑔|     𝑎𝑛𝑑     |ℎ| ≤ |𝑓| (2.44) 

 

which in turn imply following degree relations, 

 

 deg ℎ ≤ deg𝑔      𝑎𝑛𝑑    deg ℎ ≤ deg 𝑓 (2.45) 

 

the notation deg stands for degree of the canonic polynomials, the term deg 𝑔 − deg 𝑓 is 

representing the number of transmission zeros at infinity and the information about the degree 

of lossless two-port network lies and equal to the degree of polynomial 𝑔. 

 

In the canonic representation, there is a possibility of the presence of common factor of 𝑔, 𝑓 and 

ℎ at same time. Simply, generally it is not necessary that 𝑔 is least common divider for 

scattering polynomial 𝑆𝑘𝑗. For example, consider 𝑔 and 𝑓 have a common factor, the transfer 

factor 𝑆21will be irreducible from 𝑓/𝑔, and the same description will old for other terms of 𝑆. 

As from the mentioned characteristics, 𝑔 the common divider is strictly Hurwitz polynomial, 

so any common factor of the canonic polynomials is also necessarily Hurwitz. Moreover from 

2.41, a common factor between any two of three polynomials 𝑔, ℎ and 𝑓 must necessarily 

divide the third polynomial or its paraconjugate.  

 

A brief discussion about transmission zeros will be part, in next lines. The transmission zeros 

for a two-post lossless network in forward direction are defined by the zeros of 𝑆21(𝑝) and in 

revers direction by zeros of 𝑆12(𝑝). Hence, the calculation of total transmission zeros can be 

estimated by the product of irreducible forms of 𝑓/𝑔 and 𝑓/𝑔∗, by using 2.41 result is 

 

 
𝑓𝑓∗
𝑔2

=
𝑔𝑔∗ − ℎℎ∗

𝑔2
 (2.46) 
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Note from 2.46 that the cancelation of possible common factors between 𝑓𝑓∗ and 𝑔2 may only 

occur at those zeros of 𝑔 which are zeroes of  ℎ or ℎ∗. Here 𝑓𝑓∗ is real even polynomial, 

therefore its zeros must be located symmetrically with respect to 𝑖𝜔-axis, and they are double 

on this axis. On the other hand, since 𝑔 is strictly Hurwitz polynomial, there is no possibility 

of the existence of any cancelation of 𝑓𝑓∗ in the close right half plan(RHP), i.e. 𝑅𝑒 𝑝 ≥ 0. 

Consequently, the number of finite zeros of transmission in 𝑅𝑒 𝑝 ≥ 0 are equal to the degree 

of 𝑓. The number of transmission zeros at infinity is then determine by the degree difference 

between 𝑔 and 𝑓. Obviously, the total number of transmission zeros in 𝑅𝑒 𝑝 ≥ 0 including 

those at infinity is equal to the degree of 𝑔. 

 

If the two-port lossless network is reciprocal, then by 2.42 𝑓𝑓∗ = 𝜎𝑓2, and therefore each 

distinct finite transmission zero occurs with even multiplicity. If, in addition, all the 

transmission zeros are located on 𝑖𝜔-axis including infinity then because of  2.46 and 

Hurwitzness of  𝑔, the polynomial 𝑓, 𝑔 and ℎ have no common factor and two-port is all-pass 

free. 

Now consider the input impedance 𝑅1(𝑝) of the lossless two-port network 𝑁 as shown in 

Figure 2.2, and its output is terminated by a resistor. Using the bilinear relation between  𝑅1 

and 𝑆11, the input impedance can be given as, 

 

 𝑅1 =
1 + 𝑆11

1 − 𝑆11
=

𝑔 + ℎ

𝑔 − ℎ
=

𝑛

𝑑
 (2.47) 

 

here polynomial ratio 
𝑛

𝑑
 is an irreducible form in above expression.  

2.5 Distributed Networks with Commensurate lines 

While working with microwave frequencies, there are problems related to the realization of the 

conventional lumped elements, to resolve these issues the phenomenon of distributed networks 

made by transmission lines are appointed. the designing of the distributed circuit by using 

transmission lines is a very well discussed topic in the literature. 

 

While synthesizing a distributive network, most of the approaches are based on utilization of a 

building block of a unit length of a transmission line and commonly known as the unit element 
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(UE). The original idea by Richard (Richards, 1948) was, in most of the microwave filters and 

matching design techniques, homogeneous and finite transmission lines of commensurable 

length are used as ideal unit elements. Carefully focus that all the lengths of line elements must 

be multiples of UE lengths. By keeping the idea of distributed networks composed of 

commensurate lengths of transmission lines transformation in mind one can analyze and 

synthesize the networks as lumped element networks. 

 

 λ =  tanh𝑝𝜏 (2.48) 

 

where 𝜏 is representing the delay of transmission line and 𝑝 = 𝜎 + 𝑖𝜔 is complex variable for 

frequency. Also 𝜆 = 𝛴 + 𝑖Ω  is known as Richards variable. By using this transformation, 

periodic mapping of 𝜆-plan onto 𝑝-plan is possible. The conclusion is, a distributed network 

employed of commensurated transmission lines shows periodic frequency response with 

respect to the original real frequency. 

 

The important thing is to take care about while mapping, right half plan (RHP) and left half 

plan (LHP) 𝑝-plan directly mapped onto the respective right half plan (RHP) and left half plan 

(LHP) 𝜆-plan as {𝑅𝑒 𝑝 > 0 ↔ 𝑅𝑒 𝜆 > 0 }{𝑅𝑒 𝑝 < 0 ↔ 𝑅𝑒 𝜆 < 0}. As realizability conditions 

as based on the criteria of RHP, so RHP criteria must kept same in 𝜆-domain. 

 

The transmission lines in 𝜆-domain of Richards transformation, can be treated as inductor if 

they are short circuited and as of capacitor if they are open circuited, in specific case if the 

length of transmission line is shorted then quarter of wavelength, as shown in Figure 2.3. So, 

the driving point impedance function of a network composed of open or short-circuited 

transmission lines, is real and positive rational function of 𝜆. Eventually, synthesis techniques 

used for lumped reactance two-port networks can be utilized for the networks built by 

commensurated transmission lines, In the case of cascaded connected transmission line, it has 

no lumped counterparts so must be dealt separately. This is the reason that the two-port 

equivalent network of transmission line in 𝜆-domain is taken as a unite element (UE).  
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Figure 2.3 Representation of transmission line unit elements and their counterparts in 

Richards transformation (ŞENGÜL, 2006). 

 

 

The networks functions of UEs based networks are clearly are the functions of 𝜆. The input 

impedance 𝑍(𝜆) of a unit element terminated network with another impedance 𝑍′(𝜆) can be 

expressed as, 

 

 𝑍(𝜆) = 𝑍0

𝑍′(𝜆) − 𝜆𝑍0

𝜆𝑍′(𝜆) + 𝑍0
 (2.49) 

  

here 2.49 shows that if 𝑍′(𝜆) is rational then 𝑍(𝜆) will be rational as well. Conclusion can be 

give as (ŞENGÜL, 2006) (Aksen, 1994), 
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• The driving point impedance of a distributed network composed of cascaded 

UEs is a positive real rational function of 𝜆. 

 

By Richards theorem, UE of characteristic impedance 𝑍0 = 𝑍(1) may always be obtained from 

the positive real impedance function 𝑍(𝜆) as in 2.49 and the expression became, 

 

 𝑍′(𝜆) = 𝑍(1)
𝑍(𝜆) − 𝜆𝑍(1)

𝑍(1) − 𝜆𝑍(𝜆)
 (2.50) 

 

𝑍′(𝜆) is also a positive real function with degree not higher than that of 𝑍(𝜆) in Figure 2.4. 

Moreover, for 𝐸𝑣 𝑍(𝜆)|𝜆=1 = 0 in that case the degree of 𝑍′(𝜆) will be one less than 𝑍(𝜆). A 

very similar expression of the theorem can also be given for the input reflection function 

(Carlin, 1971). 

 

 

 
 

Figure 2.4 Application of Richards theorem. 

 

2.6 Network Composed of Mixed Elements (Lumped and Distributed)  

Working with waves of micro and millimeter frequency range, for circuit realization the use of 

lumped component only, causes serious implementation difficulties, these problems are 

physical interconnection of components and parasitic effects. To resolve these problems 

distributed structures made up of transmission line are used between the lumped element, these 

transmission lines are also helpful for design problems to improve the performance. A very 
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useful model can be concluded by the cascaded network of two-port reciprocal networks 

connected by mean of equal delayed ideal transmission lines. 

 

In literature, designing of mixed lumped and distributed element was very important and has 

grasped attention for long time but still not able to develop and complete design theory for 

mixed lumped and distributed elements. Although some concepts of classical network theory 

have been used to design some types of mixed element two-port networks but not able to do 

approximation and synthesis of all arbitrary mixed element completely. 

 

In the literature, work and devotion can be observed specifically for the mixed elements 

networks composed of lumped reactance and uniform ideal transmission lines (lossless and 

uniform). The idea is, cascaded lossless lumped two-ports connected with ideal transmission 

lines (UEs) (ŞENGÜL, 2006) (Aksen, 1994). 

 

Matching networks and microwave filters are composed of this kind of cascaded structures. It 

is so obvious that they have properties of both lumped and distributed networks. These 

structures also offer advantages over those networks, designed only by transmission lines or 

lumped elements alone, harmonic filtering property is the most important benefit of the mixed 

structure. Furthermore, the physical circuit interconnections are made by nonredundant 

transmission line elements, help and contribute to the filtering performance of the structure.  
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3 A SEMI-ANALYTIC PROCEDURE FOR DESCRIBING LOSSLESS 

TWO-PORT MIXED (LUMPED AND DISTRIBUTED ELEMENT) 

NETWORKS 
 

This chapter is committed to initiating the fundamental concepts and description of two-

variable cascaded mixed (lumped and distributed elements) networks. Two-variable 

characterization of mixed cascades will be encountered and the discussion on the problems 

related to the creation of network functions with two variables will be studied, based on 

scattering parameters.  

3.1 Two Variable Characterization of Cascaded Mixed Elements (Lumped 

and Distributed) Two-port Networks 

In several engineering problems, complex function with multivariable are commonly used to 

describe the response of a system. Design of a micro wave lossless two-port network 

constituted mixed lumped-distributed elements can be considered as a best example as 

designing of microwave lossless two-ports composed of mixed lumped-distributed elements. 

A microwave filter or a matching network may contain equal length transmission lines as well 

as lumped elements. To work with these kind of problems, the lumped sections of problems 

are expressed in terms of the complex frequency variable 𝑝 and the distributed section is 

described by using Richards variable λ =  tanh 𝑝𝜏.  To describe this system mathematically, a 

complex two variable function is used. Indeed, both complex variables λ and 𝑝 are 

hyperbolically dependent so that makes it a single variable problem. However, if we assume 

that both complex variables λ and 𝑝 are independent then it can be solved as two variable 

problem (Koga, 1971). KOGA has studied the existence of a relationship between 

multivariable and a certain class of single-variable transcendental functions (Koga, 1971). His 

work is redesigned for two-variable case is as follows; 

 

• A rational multivariable function 𝑆(𝑝, 𝜆) is bounded if and only if the single variable 

function 𝑆(𝑝, λ =  tanh𝑝𝜏) is bounded for all 𝜏. 
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Two variable scattering matrix representation of a lossless two-ports composed of mixed 

lumped-distributed elements is 𝑆(𝑝, 𝜆) and transfer scattering matrix representation is 𝑇(𝑝, 𝜆). 

The canonic representation of  𝑆(𝑝, 𝜆) and 𝑇(𝑝, 𝜆), in terms of two-variable polynomials 

𝑔(𝑝, 𝜆), ℎ(𝑝, 𝜆), and 𝑓(𝑝, 𝜆)  is (Fettweis, 1982); 

 

 𝑆(𝑝, 𝜆) =
1

𝑔(𝑝, 𝜆) 
[
ℎ(𝑝, 𝜆) 𝜎𝑓(−𝑝, −𝜆) 

𝑓(𝑝, 𝜆) −𝜎ℎ(−𝑝, −𝜆)
]  (3.1) 

 

 

 𝑇(𝑝, 𝜆) =
1

𝑓(𝑝, 𝜆)
[
𝜎𝑔(−𝑝,−𝜆) ℎ(𝑝, 𝜆) 

𝜎ℎ(−𝑝,−𝜆) 𝑔(𝑝, 𝜆) 
]  (3.2) 

 

     

The properties of canonic polynomial 𝑓, 𝑔, 𝑎𝑛𝑑 ℎ are given as (Aksen, 1994) (ŞENGÜL, 

2006). 

 

• 𝑓 is monic, i.e. its leading coefficient is equal to unity. 

• 𝑔 is strictly Hurwitz polynomial. 

1. 𝑔(𝑝, 𝜆) ≠ 0 for Re {𝑝, 𝜆} > 0, 

2. 𝑔(𝑝, 𝜆) ≠ 0 is relatively prime with 𝑔(−𝑝,−𝜆). 

• 𝑓 = 𝑓(𝑝, 𝜆), 𝑔 = 𝑔(𝑝, 𝜆) and ℎ = ℎ(𝑝, 𝜆) are real polynomials in complex frequency 

domain. 

• The relation between 𝑓, 𝑔 and ℎ is, 

 

 𝑔(𝑝, 𝜆)𝑔(−𝑝,−𝜆) = ℎ(𝑝, 𝜆)ℎ(−𝑝,−𝜆) + 𝑓(𝑝, 𝜆)𝑓(−𝑝,−𝜆) (3.3) 

 

• 𝜎 is constant with value ±1. 

• If two-port network includes UEs, then the definition of 𝑓 will be, 

 

 𝑓(𝑝, 𝜆) = 𝑓(𝑝)𝑓(𝜆) = 𝑓(𝑝)𝑓(1 − 𝜆2)
𝑛𝜆

2⁄  (3.4) 

 

 

where 𝑛𝜆 is showing the number of unit elements UEs. 

In the upcoming sections, the discussion on the cascades of mixed lumped and distributed two-

port lossless networks is entirely based on the canonic representation of scattering matrix.  
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3.1.1 Basic Definitions and Properties 

In this section, to get understanding and awareness about common terminologies, some 

fundamental definitions will be introduced to represent the properties of lossless two-port 

networks made up of mixed lumped and distributed elements. 

3.1.1.1 Lossless Lumped ladder 

 

Definition 1:  A lossless two-port, consists of just a single transmission zero in 𝑝 domain will 

be referred to as simple lumped section (SLS). 

 

The transmission zeros of the SLS on the finite 𝑖𝜔-axis are located at 𝑝 = 0 , 𝑝 = ∞ and 𝑝 =

𝑖𝜔 and realization of the concept is shown in Figure 3.1. The point should be noted that the 

transmission zeroes of 𝑖𝜔-axis must always be present with its complex conjugate as a pair. To 

fulfill the practical desires, transmission zeroes at 𝑝 = 0 and/or 𝑝 = ∞ are preferred to be work 

with. 

 

 

Transmission zeros and their corresponding realization in 𝒑 domain 

𝒑 = 𝟎 𝒑 = ∞ 𝒑 = ±𝒊𝝎𝟎 

   

 

 

Figure 3.1 Simple Lumped Section. 

 

 

Definition 2:  Cascaded connection of SLS, consists of just 𝑖𝜔 transmission zeros in 𝑝 domain 

will be referred to as lossless lumped ladder (LLL) or simply ladder network.  
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Belevitch’s scattering representation of an LLL network is, 

 

 𝑆(𝑝) =
1

𝑔(𝑝) 
[
ℎ(𝑝)    𝜎𝑓(−𝑝) 

𝑓(𝑝) −𝜎ℎ(−𝑝)
]  (3.5) 

 

   

The properties of canonic real polynomial 𝑓(𝑝), 𝑔(𝑝), 𝑎𝑛𝑑 ℎ(𝑝) are given as (Aksen, 1994) 

 (ŞENGÜL, 2006). 

 

• 𝑓 is monic, i.e. its leading coefficient is equal to unity. 

• 𝑔 is strictly Hurwitz polynomial. 

• 𝑓 = 𝑓(𝑝), 𝑔 = 𝑔(𝑝) and ℎ = ℎ(𝑝) are real polynomials in complex frequency 

domain. 

• The relation between 𝑓, 𝑔 and ℎ is, 

 

 𝑔(𝑝)𝑔(𝑝) = ℎ(𝑝)ℎ(−𝑝) + 𝜎𝑓2(𝑝) (3.6) 

 

• 𝜎 is constant and 𝑓(𝜎 = ±1). 

 

Equation 3.6 in turn imply following degree relations, 

 

 deg ℎ ≤ deg 𝑔      𝑎𝑛𝑑    deg ℎ ≤ deg 𝑓 (3.7) 

 

The term deg 𝑔 − deg 𝑓 is representing the number of transmission zeros at infinity and the 

information about the degree of lossless two-port network lies and equal to the degree of 

polynomial 𝑔. 

 

Consider 𝑛𝑝 = deg 𝑔 and the coefficient form of 𝑓(𝑝), 𝑔(𝑝), 𝑎𝑛𝑑 ℎ(𝑝). 

 

 𝑓(𝑝) = ∑ 𝑓𝑘𝑝
𝑘

𝑛𝑝

𝑘=0

 ,    ℎ(𝑝) = ∑ ℎ𝑘𝑝𝑘

𝑛𝑝

𝑘=0

 ,    𝑔(𝑝) = ∑ 𝑔𝑘𝑝
𝑘

𝑛𝑝

𝑘=0

 (3.8) 
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In 3.8 all the polynomials are considered as of degree 𝑛𝑝 for the sake of convenience to 

formulate the upcoming equations. From 3.7, the inequality relations of degree of polynomial 

that if deg 𝑓 <𝑛𝑝 and deg ℎ <𝑛𝑝 one must set corresponding coefficient of the polynomial ℎ 

and 𝑓 equal to zero. Consider 3.6 which led us to, 

 

 

𝐹(−𝑝2) = 𝑓(𝑝)𝑓(−𝑝) = ∑ 𝑓𝑘𝑝2𝑘

𝑛𝑝

𝑘=0

 

𝐻(−𝑝2) = ℎ(𝑝)ℎ(−𝑝) = ∑ ℎ𝑘𝑝
2𝑘

𝑛𝑝

𝑘=0

 

𝐺(−𝑝2) = 𝑔(𝑝)𝑔(−𝑝) = ∑ 𝑔𝑘𝑝
2𝑘

𝑛𝑝

𝑘=0

 

(3.9) 

 

 

The coefficient of 𝐹𝑘 , 𝐺𝑘 and 𝐻𝑘 can be given as, 

 

 𝐹𝑘 = ∑𝑓𝑙𝑓2𝑘−𝑙 ,

2𝑘

𝑙=0

     𝐺𝑘 = ∑(−1)2𝑘−𝑙𝑔𝑙𝑔2𝑘−𝑙 ,

2𝑘

𝑙=0

     𝐻𝑘 = ∑(−1)2𝑘−𝑙ℎ𝑙ℎ2𝑘−𝑙 

2𝑘

𝑙=0

 (3.10) 

 

where set the values of  𝑓𝑙 = 𝑔𝑙 = ℎ𝑙 = 0 for 𝑙 > 𝑛𝑝 and by using the relationship in 3.10 the 

lossless relation in 3.6 can be given as, 

 

 𝐺(−𝑝2) =  𝐻(−𝑝2) + 𝐹(−𝑝2) (3.11) 

 

The following set of  𝑛𝑝 + 1 quadratic equations can be obtained. 

 

 

                                               𝑔0
2 = ℎ0

2 + 𝑓0
2 

𝑔𝑘
2 + 2∑(−1)𝑘−𝑙𝑔𝑙𝑔2𝑘−𝑙 

𝑘−𝑙

𝑙=0

= ℎ𝑘
2 + 𝑓𝑘

2 + 2∑(−1)𝑘−𝑙(ℎ𝑙ℎ2𝑘−𝑙 + 𝑓𝑙𝑓2𝑘−𝑙) 

𝑘−𝑙

𝑙=0

 

                                        ⋮                           for 𝑘 = 1,2, … , 𝑛𝑝 − 1 

                                               𝑔𝑛𝑝
2 = ℎ𝑛𝑝

2 + 𝑓𝑛𝑝
2  

 

(3.12) 
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where set the values of  𝑓𝑙 = 𝑔𝑙 = ℎ𝑙 = 0 for 𝑙 > 𝑛𝑝.  

3.1.1.2 Cascaded Distributed Section 

 

Definition 1:  A lossless two-port network, consists of just a single transmission line of 

characteristic impedance 𝑍0 and delay length 𝜏 is called a simple distributed section (SDS).  

 

It is clear now, that SDS may include a unit element or open or short remnant in series or shunt 

configuration. Figure 3.2 is a depiction of the Richard’s domain realization and transmission 

zeroes associated with simple distributed section and here open stubs are represented by 𝜆-

capacitors and short stubs are represented by 𝜆-inductors.  

 

  

Transmission zeros and their corresponding realization in 𝒑 domain 

𝝀 = 𝟎 𝝀 = ∞ 𝝀 = ±𝟏 

  
 

 

Figure 3.2 Simple Distributed Section. 

 

Definition 2:  Cascaded connection of equal length SDS, will be referred to as cascaded 

distributed section (CDS).  

 

Definition 3:  A CDS, that consist of only commensurated UEs, will be called as cascaded UE 

section (CUS).  

 

Generally, a normal CDS can be expressed in term of its bounded real scattering parameters by 

using Richard’s variable 𝜆. In this case, 𝑝 will be changed into 𝜆 in 3.5, expression for canonic 

polynomial representation and a factor 𝑓(1 − 𝜆2)
1

2⁄  will be introduced in polynomial 𝑓(𝜆) as 

explained in earlier sections.  
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 𝑓(𝜆) = 𝑓0(𝜆)𝑓(1 − 𝜆2)
𝑛

2⁄  (3.13) 

 

where 𝑓0(𝜆) is real polynomial could be even or odd and 𝑛 is showing the number of UEs in 

cascade.  

 

Like the lumped element case, CDS can also be expressed completely in terms of ℎ(𝜆) if 𝑓(𝜆) 

is preselected. So 3.6 can be written as, 

 

 𝑔(𝜆)𝑔(−𝜆) = ℎ(𝜆)ℎ(−𝜆) + 𝜎𝑓2(𝜆)𝑓(1 − 𝜆2)𝑛 (3.14) 

 

where 𝜎 is constant, as expressed earlier. 

Consider all the polynomials 𝑔(𝜆), ℎ(𝜆) and 𝑓(𝜆) are of degree 𝑛𝜆 for the sake of convenience 

to formulate the upcoming equations. If ℎ(𝜆) and 𝑓(𝜆) are known then the value of 𝑔(𝜆) can 

be estimated explicitly by factorization of 𝑔(𝜆)𝑔(−𝜆) given in 3.14 or by solving set of 

quadratic equations, can be derived in similar manner as of lumped case discussed above,  

 

 

                                               𝑔0
2 = ℎ0

2 + 𝑓0
2 

𝑔𝑘
2 + 2∑(−1)𝑘−𝑙𝑔𝑙𝑔2𝑘−𝑙 

𝑘−𝑙

𝑙=0

= ℎ𝑘
2 + 𝑓𝑘

2 + 2∑(−1)𝑘−𝑙(ℎ𝑙ℎ2𝑘−𝑙 + 𝑓𝑙𝑓2𝑘−𝑙) 

𝑘−𝑙

𝑙=0

 

                                        ⋮                           for 𝑘 = 1,2, … , 𝑛𝜆 − 1 

                                              𝑔𝑛𝜆

2 = ℎ𝑛𝜆

2 + 𝑓𝑛𝜆

2  

 

(3.15) 

 

where set the values of  𝑓𝑙 = 𝑔𝑙 = ℎ𝑙 = 0 for 𝑙 > 𝑛𝜆. 𝑔(𝜆) is strictly Hurwitz polynomial. 

 

The above discussion can be concluded in following points. 

• Any LLL and CDS can completely described in terms of real coefficient of ℎ 

polynomial, if 𝑓 is known in advance. To achieve the desire goal, carry out Hurwitz 

factorization to generate 𝑔 a strictly Hurwitz polynomial. 

• There is another alternative method to generate 𝑔, a strictly Hurwitz polynomial. In this 

method a set of quadratic equation is obtained by solving the losslessness equation 3.6 

and 3.14, and solve them to get 𝑔. 
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• In the above formulations of transfer scattering function, the numerator polynomial 

𝑓(𝜆) or 𝑓(𝑝) imposes restricted class of topologies such as ladder or cascaded 

distributed section. Despite the selective choice of 𝑓(𝜆) or 𝑓(𝑝), still there is a 

possibility of ending up with different circuit configurations with in the past class 

topologies. 

• While in working with one kind of network elements, either only lumped elements or 

only commensurate transmission line and synthesis procedures are well established in 

𝜆 or 𝑝 domain. The synthesis can easily be completed by extracting the transmission 

zeros, which in turn yields a degree reduction in the driving point function. In this case, 

the driving point function may be expressed as a reflection or immittance function, in 

Darlington sense. Extraction of simple transmission zeros from a given driving point 

function is equivalent to the extraction of a simple selection. In this type of cascade 

synthesis procedure, it is not necessary to have the knowledge about how the simple 

section are connected to each other. The information about the connection is imbedded 

in the synthesis procedure, in the realization of single variable driving point function. 

3.1.2 Cascaded Lumped-Distributed Two-Port Networks 

Definition 1:  A lossless two-port network, that consist of cascade connection of simple lumped 

section and commensurated length simple distributed sections, is known as cascaded lumped-

distributed two-port (CLDT).  

 

Definition 2:  A special cascaded lumped-distributed two-port, that is formed by employing 

commensurate length UEs placed between the elements of an LLL referred to as low-pass 

ladder with UEs (LPLU). Here an assumption has been made that the low-pass type LLL 

includes the transmission zeros only at ∞.    

 

A CLDT can be represented by using the two-variable scattering parameters, function of 

complex frequency variable 𝜆 and 𝑝. The scattering matrix representation of a CLDT can be 

denoted as 𝑆 = 𝑆(𝑝, 𝜆) and for scattering transfer matrix 𝑇 = 𝑇(𝑝, 𝜆). The Belevitch’s canonic 

representation in terms of two variable polynomial is as 𝑓 = 𝑓(𝑝, 𝜆), 𝑔 = 𝑔(𝑝, 𝜆) and ℎ =

ℎ(𝑝, 𝜆)follows, 

 



 

 

 

 

30 

 

 

 

 

 𝑆 =
1

𝑔
[
ℎ 𝜎𝑓∗
𝑓 −𝜎ℎ∗

]      𝑎𝑛𝑑     𝑇 =
1

𝑓
[
𝜎𝑔∗ ℎ
𝜎ℎ∗ 𝑔

] (3.16) 

   

where 𝑓∗ = 𝑓(−𝑝, −𝜆) is paraconjugate of a real function. The properties of canonic 

polynomial 𝑓, 𝑔, 𝑎𝑛𝑑 ℎ are given as (Aksen, 1994) (ŞENGÜL, 2006). 

 

• 𝑓 is monic, i.e. its leading coefficient is equal to unity. 

• 𝜎 is constant and 𝜎 = ±1. 

• 𝑔 is strictly Hurwitz polynomial.  

1. 𝑔(𝑝, 𝜆) ≠ 0 for Re {𝑝, 𝜆} > 0, 

2. 𝑔(𝑝, 𝜆) ≠ 0 is relatively prime with 𝑔(−𝑝,−𝜆). 

• 𝑓, 𝑔 and ℎ are real polynomials with complex variable 𝜆 and 𝑝. 

• The relation between 𝑓, 𝑔 and ℎ is, 

 

 𝑔𝑔∗ = 𝑓𝑓∗ + ℎℎ∗ (3.17) 

 

• If two-port network includes UEs, then the definition of 𝑓 will be, 

 

 𝑓 = 𝑓0(𝑝, 𝜆)𝑓(1 − 𝜆2)
𝑛

2⁄  (3.18) 

 

where 𝑢 is showing the number of unit elements UEs.  

 

3.1.2.1 Connectivity Information Cascaded Lumped-Distributed Two-Port Networks 

 

It is proven fact that canonic representation of two-variable network is possible (Fettweis, 

1982).  As for as the realizability conditions are concerned, it has also been asserted that 

scattering matrix satisfying the conditions explained in earlier sections (Aksen, 1994). While 

working with the case of cascaded topology, to insure the realizability and practicability as a 

cascade network then the scattering matrix and its canonic polynomial with two variables must 

satisfy some more conditions. The most intuitive way to apply these extra conditions for 

cascaded structures is to study the effect of the topologic constraints and restrictions on the 

polynomial form. To achieve our purpose, some properties of the polynomials 𝑓, 𝑔 and ℎ 

related to cascaded lumped-distributed two-port are discussed as follows, 
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Let’s start with the introductory notations and fundamental definition related to the two-

variable polynomials, will be used in upcoming discussion. A two variable polynomial say, 

𝑔 = 𝑔(𝑝, 𝜆), its coefficient form will be, 

 

 𝑔(𝑝, 𝜆) = ∑ ∑𝑔𝑘𝑙𝑝
𝑙𝜆𝑘

𝑛𝑝

𝑙=0

𝑛𝜆

𝑘=0

 (3.19) 

 

where 𝑛𝜆 is a partial degree of 𝑔 in the variables 𝜆 and 𝑛𝑝 is partial degrees of 𝑔 in the variables 

𝑝. The arrangement shown in 3.19 can also be rearrange and written as, 

 

 𝑔(𝑝, 𝜆) = ∑ 𝑔𝑘(𝜆)𝑝𝑘 = ∑ 𝑔𝑘(𝑝)𝜆𝑘

𝑛𝜆

𝑘=0

𝑛𝑝

𝑘=0

 (3.20) 

 

 There is another form to represent a two-variable polynomial is, 

 

 𝑔(𝑝, 𝜆) = 𝐩𝐓𝐀𝐠𝛌 = 𝛌𝐓𝐀𝐠𝐩 (3.21) 

 

where  

 

 𝐀𝐠 = [

𝑔00 𝑔01

𝑔10 𝑔11
⋯

𝑔0𝑛𝜆

𝑔1𝑛𝜆

⋮ ⋱ ⋮
𝑔𝑛𝑝0 𝑔𝑛𝑝1 ⋯ 𝑔𝑛𝑝𝑛𝜆

]    , 𝑝 =

[
 
 
 
 

1
𝑝

𝑝2

⋮
𝑝𝑛𝑝]

 
 
 
 

 𝑎𝑛𝑑 𝜆 =

[
 
 
 
 

1
𝜆
𝜆2

⋮
𝜆𝑛𝜆]

 
 
 
 

 (3.22) 

 

Definition 1:  The highest power of a variable, with non-zero coefficient is the definition of a 

two-variable polynomial 𝑔 = 𝑔(𝑝, 𝜆), i.e. 𝑛𝑝 = deg𝑝 𝑔(𝑝, 𝜆) and 𝑛𝜆 = deg𝜆 𝑔(𝑝, 𝜆). 

 

Definition 2:  The absolute total degree of a two-variable polynomial 𝑔(𝑝, 𝜆) with partial 

degrees 𝑛𝑝and 𝑛𝜆, will be equal to the sum of these partial degrees and mathematically can be 

expressed as, 
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 𝑛 = 𝑚𝑎𝑥𝑔𝑘𝑙≠0
{𝑘 + 𝑙}                        𝑘 = 0,1, … , 𝑛𝑝  ,   𝑙 = 0,1, … , 𝑛𝜆 (3.23) 

 

Now from a cascaded topology consider the transmission zeroes. It is critical to select and 

appropriate 𝑓(𝑝, 𝜆) function for a mixed lumped-distributed two-port, because 𝑓(𝑝, 𝜆) includes 

transmission zeros, which in turn enforce topological restrictions on the loss two-port 

constructed with lumped elements and commensurated distributed elements. 

 

In a mixed element design composed of cascaded connection of 𝑛𝑝 lumped and 𝑛𝜆 distributed 

elements. The polynomial 𝑓(𝑝, 𝜆)  can be given as, 

 

 𝑓(𝑝, 𝜆) = ∏𝑓𝑘(𝑝) 𝑓𝑘(𝜆) 

𝑛

𝑘=1

 (3.24) 

 

where 𝑓𝑘(𝑝) and 𝑓𝑘(𝜆) interpret the transmission zeros of discrete lumped and distributed 

subsegments present in the cascade. Generally, the transmission zeros can possess any place in 

the 𝑝 and 𝜆 plane. From 3.24, an immediate conclusion can be drawn, that in the cascade the 

transmission zeros in each subsegment have to appear in multiplication form. In simple words, 

the polynomial 𝑓(𝑝, 𝜆) of whole mixed element network can be assumed as product separable 

form,  

 

 𝑓(𝑝, 𝜆) = 𝑓′(𝑝)𝑓′′(𝜆) (3.25) 

 

𝑓′(𝑝) will be a real even or odd polynomial if the transmission zeroes are considered on the 

imaginary axis 𝑖𝜔 or 𝑖Ω, and general expression for 𝑓′′(𝜆) is, 

 

 𝑓′′(𝜆) = 𝑓0(𝜆)𝑓(1 − 𝜆2)
𝑛

2⁄  (3.26) 

 

where 𝑢 is indication the number of UEs present in the principal path from input to output of 

CLDT. By overlooking the zeros of the finite imaginary axis in 𝑓′(𝜆) and 𝑓′′(𝜆) 

(𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑡ℎ𝑜𝑠𝑒 𝑎𝑡 𝑑𝑐), a realistic form of 𝑓(𝑝, 𝜆) can be derived as, 

 

 𝑓(𝑝, 𝜆) = 𝑝𝑞1𝜆𝑞2𝑓(1 − 𝜆2)
𝑛

2⁄  (3.27) 
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here total number of transmission zeros at dc of the lumped and distributed are represented by 

𝑞1 and 𝑞2 respectively. After excluding the transmission zeros at dc, the expression in 3.27 can 

be written as, 

 

 𝑓(𝑝, 𝜆) = 𝑓(1 − 𝜆2)
𝑛

2⁄  (3.28) 

 

This is the characteristic configuration of  𝑓(𝑝, 𝜆) of an LPLU design composed of simple 

lumped elements and UEs. It is clear in this case that 𝑓(𝑝, 𝜆) is only dependent function of 𝜆 . 

Matrix representation of the real coefficients of 𝑔(𝑝, 𝜆) and ℎ(𝑝, 𝜆) is, 

 

 𝐀𝒉 =

[
 
 
 
 

ℎ00 ℎ01

ℎ10 ℎ11
⋯

ℎ0𝑛𝜆

ℎ1𝑛𝜆

⋮ ⋱ ⋮
ℎ𝑛𝑝0 ℎ𝑛𝑝1 ⋯ ℎ𝑛𝑝𝑛𝜆]

 
 
 
 

   ,    𝐀𝐠 = [

𝑔00 𝑔01

𝑔10 𝑔11
⋯

𝑔0𝑛𝜆

𝑔1𝑛𝜆

⋮ ⋱ ⋮
𝑔𝑛𝑝0 𝑔𝑛𝑝1 ⋯ 𝑔𝑛𝑝𝑛𝜆

] (3.29) 

  

 

Property 1:  The two-variable polynomial 𝑔(𝑝, 𝜆), ℎ(𝑝, 𝜆) and 𝑔(𝑝, 𝜆) can be expressed in 

term of a single variable 𝑝 by putting 𝜆 = 0, the lumped lossless two-port in this case can be 

completely described by columns of 𝐀𝒉 matrix. 

 

Property 2:  The two-variable polynomial 𝑔(𝑝, 𝜆), ℎ(𝑝, 𝜆) and 𝑔(𝑝, 𝜆) can be expressed in 

term of a single variable 𝜆 by putting 𝑝 = 0, the lumped lossless two-port in this case can be 

completely described by rows of 𝐀𝒉 matrix. 

 

According to the above properties, it can be proved that the coefficient matrices 𝐀𝒉 and 𝐀𝒈 can 

entirely be generated by using first column and first row of matrix 𝐀𝒉, if the information about 

the cascaded connection is pre-known, while assuming the cascaded connections of lumped 

and distributed two-ports structures, in alternating order. This claim can be proved by 

considering following assumption, 
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Figure 3.3 a) Cascaded Distributed Design and Lossless Lumped Ladder. b) Cascaded 

Decomposition. c)Cascade of Simple Lumped and Distributed Section. 

 

Consider Figure 3.3(a) where L is representing LLL (lossless lumped ladder) and D is denoting 

CSD (cascaded distributed section). With the help of algebraic network decomposition 

technique (Aksen, 1994)  the network present in Figure 3.3 can be decomposed into their Lk 

and Dk subsections as depicted in Figure 3.3(a). Now consider Figure 3.3(c), in which a lossless 

two-port network is constructed by using alternating ordered cascade connections of lumped 

and distributed subsections.  

 

Assume that 𝑆(𝜆) and 𝑆(𝑝) are respectively representing the scattering matrix 𝑆(𝑝, 𝜆)of 

cascaded distributed section D and lossless lumped ladder L. In this representation, the 

scattering matrix of the developed mixed composition, can be determined in terms of scattering 

matrices of subsections 𝑆𝑘(𝜆) and 𝑆𝑘(𝑝), determine from 𝑆(𝜆) and 𝑆(𝑝) respectively. While 

working on the decomposition of 𝑆(𝜆) and 𝑆(𝑝), the number of elements and the corresponding 

zeros of transmission are designer’s choice for every subsegment, after these selections with 
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no effort scattering parameters for each subsegment can be derived form 𝑆(𝜆) and 𝑆(𝑝). The 

scattering parameters of mixed structure can be calculated effortlessly by cascading these 

subsections. 

 

The summary of above explained idea can be stated again, regarding to the scattering 

parameters matrix of mixed lumped-distributed networks, the observations are as following, 

• For 𝜆 = 0,    𝑆(𝑝, 0) = 𝑆(𝑝) 

• For 𝑝 = 0,    𝑆(0, 𝜆) = 𝑆(𝜆) 

From above points, if the number of subsection pre-chosen and the information about the 

connections (the order of subsection) is known then from the first row and first column of 

matrix 𝐀𝒉, the scattering parameters 𝑆(𝑝, 𝜆) can be obtained easily. If 𝜆 = 0 and 𝑓(𝑝) is given, 

then by using ℎ(𝑝) polynomial of 𝑆(𝑝) the first column of 𝐀𝒉 and 𝐀𝒈 can be developed easily. 

Similarly, if 𝑝 = 0 and 𝑓(𝜆) is given, then by using ℎ(𝜆) polynomial of 𝑆(𝜆) the first row of 

𝐀𝒉 and 𝐀𝒈 can be obtained readily. Afterwards, by using the connectivity information of 

sequential cascades remain elements of the matrices 𝐀𝒉 and 𝐀𝒈 can be generated with the help 

of 𝑆𝑘(𝜆) and 𝑆𝑘(𝑝). So, the point can be affirmed that by deleting the first row and first column 

of 𝐀𝒉 and 𝐀𝒈 the submatrix can be obtained, and these submatrices are related to the 

connectivity information of mixed structures. 

 

Let’s separate the first columns 𝐀𝒉𝒄
 and 𝐀𝒈𝒄

  and first rows 𝐀𝒉𝒓
 and 𝐀𝒈𝒓

  of matrices 𝐀𝒉 and 

𝐀𝒈and the remain matrices can be named as 𝐀𝒉𝒌
 and 𝐀𝒈𝒌

respectively and can be given as, 

 

 𝐀𝒉𝒓
= [

ℎ00

ℎ01

⋮
ℎ0𝑛𝜆

] ,   𝐀𝒉𝒄
=

[
 
 
 
ℎ00

ℎ10

⋮
ℎ𝑛𝑝]

 
 
 
, 𝐀𝒉𝒌

=

[
 
 
 
 

ℎ11 ℎ12

ℎ21 ℎ22
⋯

ℎ1𝑛𝜆

ℎ2𝑛𝜆

⋮ ⋱ ⋮
ℎ𝑛𝑝1 ℎ𝑛𝑝1 ⋯ ℎ𝑛𝑝𝑛𝜆]

 
 
 
 

 (3.30) 

 

 

 𝐀𝒈𝒓
= [

𝑔00

𝑔01

⋮
𝑔0𝑛𝜆

] ,   𝐀𝒈𝒄
= [

𝑔00

𝑔10

⋮
𝑔𝑛𝑝

] , 𝐀𝒈𝒌
= [

𝑔11 𝑔12

𝑔21 𝑔22
⋯

𝑔1𝑛𝜆

𝑔2𝑛𝜆

⋮ ⋱ ⋮
𝑔𝑛𝑝1 𝑔𝑛𝑝1 ⋯ 𝑔𝑛𝑝𝑛𝜆

] (3.31) 

 

 



 

 

 

 

36 

 

 

 

 

here,  [𝐀𝒉𝒓
, 𝐀𝒈𝒓

] and [𝐀𝒉𝒄
, 𝐀𝒈𝒄

] are representing the polynomials of  ℎ(𝜆) and 𝑔(𝜆) distributed 

cascaded designs and lumped cascades respectively, as shown Error! Reference source not f

ound. and the information about the connection order of subsection in the cascade is  

determining the submatrices [𝐀𝒉𝒌
, 𝐀𝒈𝒌

] of order 𝑛𝑝 × 𝑛𝜆. 

3.2 Construction of Two-variable Network for Cascaded Designs  

In this specific part, our goal is to develop a real parameter characterize the lossless two-port 

networks built with mixed lumped and distributed elements and to achieve our aim simplified 

real frequency technique(SRFT) is used (Aksen, 1994). Generally, in SRFT a lossless two-port 

network made up of single kind of elements, lumped or distributed can only be express 

completely in terms of real polynomial of  ℎ  and polynomial 𝑓 is given. In our recent problem 

it may be suitable to apply SRFT to extract real coefficient of ℎ(𝑝, 𝜆)polynomial of lossless 

mixed two-port with lumped and distributed elements. 

3.2.1 Factorization of Two-Variable Polynomials 

While studying the case of a single polynomial, the factorization of polynomial can be done by 

simply finding the roots, and there are well established tools are present to find location of 

roots. But, in the case of multivariable polynomial, root finding is not possible by using 

conventional tools unless they are separable in each variable (Seaks, 1976) (Bose, 1982). This 

is the basic reason that causes the major problem in synthesizing the network functions with 

multivariable.  

 

In designing the lossless mixed two-ports (lumped and distributed elements), paraunitary 

condition needs to be encounter with, that requires the explicit factorization of a two-variable 

polynomial of the form 𝐺(𝑝, 𝜆) = 𝑔(𝑝, 𝜆)𝑔(−𝑝,−𝜆) if the network is advised in terms of real 

coefficients of the ℎ(𝑝, 𝜆) polynomial. Root finding technique to factorize the single variable 

polynomial may be considered as an equivalent method to find the solution for a set of quadratic 

equations. By using this approach, it may be possible to obtain a generalized factorization 

procedure for multivariable polynomials with the restricted condition that 𝑔(𝑝, 𝜆) is strictly 

Hurwitz polynomial in nature. 
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To be more specific, the polynomial 𝑓(𝑝, 𝜆), 𝑔(𝑝, 𝜆) and ℎ(𝑝, 𝜆) can be written as, 

 

 

𝑓(𝑝, 𝜆) = ∑ 𝑓𝑘(𝜆)𝑝𝑘 , 𝑔(𝑝, 𝜆) = ∑ 𝑔𝑘(𝜆)𝑝𝑘

𝑛𝑝

𝑘=0

,

𝑛𝑝

𝑘=0

𝑎𝑛𝑑   ℎ(𝑝, 𝜆) = ∑ ℎ𝑘(𝜆)𝑝𝑘

𝑛𝑝

𝑘=0

 

(3.32) 

 

where the coefficients of polynomials 𝑓𝑘, 𝑔𝑘 and ℎ𝑘 are, 

 

 𝑓𝑘(𝜆) = ∑𝑓𝑘𝑙𝜆
𝑘

𝑛𝜆

𝑙=0

,   𝑔𝑘(𝜆) = ∑𝑔𝑘𝑙𝜆
𝑘

𝑛𝜆

𝑙=0

,   ℎ𝑘(𝜆) = ∑ℎ𝑘𝑙𝜆
𝑘

𝑛𝜆

𝑙=0

 (3.33) 

 

unitary conditions from 3.17, can be given as 

 

 𝐺(𝑝, 𝜆) = 𝐻(𝑝, 𝜆) + 𝐹(𝑝, 𝜆) (3.34) 

 

where, 

 

 
𝐺(𝑝, 𝜆) = 𝐺(𝑝, 𝜆)𝐺(−𝑝,−𝜆), 𝐻(𝑝, 𝜆) = 𝐻(𝑝, 𝜆)𝐻(−𝑝,−𝜆),

𝑎𝑛𝑑    (𝑝, 𝜆) = (𝑝, 𝜆)(−𝑝,−𝜆) 
(3.35) 

and, 

 

 𝐺(𝑝, 𝜆) = 𝐺0(𝜆) + 𝐺1(𝜆)𝑝 + 𝐺2(𝜆)𝑝2 + ⋯+ 𝐺𝑛𝑝
(𝜆)𝑝𝑛𝑝 (3.36) 

 

where the coefficient polynomials 𝐺𝑘(𝜆) are, 

 

 𝐺𝑘(𝜆) = ∑(−1)𝑘𝑔𝑘−𝑙(𝜆)𝑔𝑙(−𝜆),     for 𝑘 = 0 to 2𝑛𝑝 

𝑘

𝑙=0

 (3.37) 

 

where  𝑔𝑙 = 0 for 𝑙 > 0.  

If the expression 3.37 is examined closely, the fact will be revealed that for even values of 𝑘, 

𝐺𝑘(𝜆) is even and for odd values of values of 𝑘, 𝐺𝑘(𝜆) is odd.  The whole expression in 3.34 
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can be written in the similar generic form used in expression 3.37 and by equating the 

coefficients polynomial of same power 𝑝, the obtained (2𝑛𝑝 + 1), equations can be given as, 

 

 ∑
(−1)𝑘𝑔𝑘−𝑙(𝜆)𝑔𝑙(−𝜆) = ∑(−1)𝑘[ℎ𝑘−𝑙(𝜆)ℎ𝑙(−𝜆) + 𝑓𝑘−𝑙(𝜆)𝑓𝑙(−𝜆)

𝑘

𝑙=0

]

                             ⋮                                  for 𝑘 = 0  to  2𝑛𝑝 

𝑘

𝑙=0

 (3.38) 

 

where  𝑔𝑙 = ℎ𝑙 = 𝑓𝑙 = 0 for 𝑙 > 𝑛𝑝. 

 

The equation set in 3.38, have 𝑛𝑝 + 1 equation with even polynomials and 𝑛𝑝 equation with 

odd polynomials. Now, substitution the polynomials 𝑓𝑘  , 𝑔𝑘 and ℎ𝑘 of 3.33 in 3.38 and by 

comparing the coefficients having same power of 𝜆 in each polynomial equation, following set 

of nonlinear equation are obtained, 

 

 

𝑔0,𝑚
2 + 2 ∑(−1)𝑚−𝑛𝑔0,𝑛𝑔0,2𝑚−𝑛 = ℎ0,𝑚

2 + 𝑓0,𝑚
2

𝑚−1

𝑛=0

+ 2 ∑(−1)𝑚−𝑛[ℎ0,𝑛ℎ0,2𝑚−𝑛 + 𝑓0,𝑛𝑓0,2𝑚−𝑛]

𝑚−1

𝑛=0

 

                              ⋮                   for 𝑚 = 0  to  2𝑛𝜆 

 

(3.39) 

 

 

∑ ∑(−1)𝑘−𝑙−𝑛

𝑚

𝑛=0

𝑔𝑙,𝑛𝑔𝑘−𝑙,2𝑚−1−𝑛

𝑘

𝑙=0

=∑ ∑(−1)𝑘−𝑙−𝑛

𝑚

𝑛=0

[ℎ𝑙,𝑛ℎ𝑘−𝑙,2𝑚−1−𝑛 + 𝑓𝑙,𝑛𝑓𝑘−𝑙,2𝑚−1−𝑛]

𝑘

𝑙=0

 

                              ⋮      for 𝑘 = 1,3,⋯ , 2𝑛𝑝 − 1  and  𝑚 = 0  to  2𝑛𝜆 

 

(3.40) 
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∑(−1)𝑘−𝑙

𝑘

𝑙=0

(𝑔𝑙,𝑚𝑔𝑘−𝑙,𝑚 + 2 ∑(−1)𝑚−𝑛𝑔𝑙,𝑛𝑔𝑘−𝑙,2𝑚−𝑛)

𝑚−1

𝑛=0

= ∑(−1)𝑘−𝑙

𝑘

𝑙=0

(ℎ𝑙,𝑚ℎ𝑘−𝑙,𝑚 + 𝑓𝑙,𝑚𝑓𝑘−𝑙,𝑚

+ 2 ∑(−1)𝑚−𝑛

𝑚−1

𝑛=0

[ℎ𝑙,𝑛ℎ𝑘−𝑙,2𝑚−𝑛 + 𝑓𝑙,𝑛𝑓𝑘−𝑙,2𝑚−𝑛] 

                              ⋮      for 𝑘 = 2,4,⋯ , 2𝑛𝑝 − 2  and  𝑚 = 0  to  𝑛𝜆 

 

(3.41) 

 

 

𝑔𝑛𝑝,𝑚
2 + 2 ∑(−1)𝑚−𝑛𝑔𝑛𝑝,𝑛𝑔0,2𝑚−𝑛 = ℎ𝑛𝑝,𝑚

2 + 𝑓𝑛𝑝,𝑚
2

𝑚−1

𝑛=0

+ 2 ∑(−1)𝑚−𝑛[ℎ𝑛𝑝,𝑛ℎ𝑛𝑝,2𝑚−𝑛 + 𝑓𝑛𝑝,𝑛𝑓𝑛𝑝,2𝑚−𝑛]

𝑚−1

𝑛=0

 

                              ⋮                   for 𝑚 = 0  to  𝑛𝜆 

 

(3.42) 

 

The set of equations from 3.39 to 3.42 are called as the fundamental equation set (FES) because 

the solution of above set of equations for the coefficient of 𝑔𝑘𝑙 is equivalent to factorization of  

𝐺(𝑝, 𝜆) = 𝑔(𝑝, 𝜆)𝑔(−𝑝,−𝜆). 

 

Each equation in FES is quadratic and contains 𝑔𝑘 and 𝑔𝑙coefficients. By inspection of each 

subset in each subset of FES, total number of equation 𝑁𝑒can be calculated and expression can 

be given as, 

 

 𝑁𝑒 = (𝑛𝑝 + 1)(𝑛𝜆 + 1) + 𝑛𝑝𝑛𝜆 (3.43) 

  

Now to estimate the number of unknow is important, for this purpose consider 𝑓(𝑝, 𝜆) is known 

then total number of unknown coefficients in polynomial  ℎ(𝑝, 𝜆) and 𝑔(𝑝, 𝜆) will be 2(𝑛𝑝 +

1)(𝑛𝜆 + 1). If we consider that the first row and first column of matrix 𝐀𝒉 consists independent 

descriptive parameters of the lossless two-port network or the pre-known, then the remaining 

𝐀𝒉 coefficients, those compose 𝐀𝒉𝒌
 and all the coefficients of corresponding 𝐀𝒈𝒌

 matrix have 

to be computed. So, in this scenario the number of unknowns in FES is greater than that number 

of equations hence the solution set of above equation for unknown cannot be determined.  On 
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the other hand, by using one subset of above system of equation the elements of first row and 

first column can be calculated. In fact, a close examination of above FES unveils the following, 

 

• As 𝑛𝑝 + 1 independent equations are expressed in terms of {𝑔𝑘0, ℎ𝑘0, 𝑓𝑘0}, ( 𝑘 =

0,1,⋯ , 𝑛𝑝 ). It reflects that 𝑓𝑘0, ℎ𝑘0 are known and the unknows 𝑔𝑘0can be calculated 

by the help of 𝑛𝑝 + 1 independent equations. i.e., 

 

 

                                               𝑔0,0
2 = ℎ0,0

2 + 𝑓0,0
2  

𝑔𝑚,0
2 + 2 ∑(−1)𝑚−𝑛𝑔𝑛,0𝑔2𝑚−𝑛,0 

𝑚−1

𝑛=0

= ℎ𝑚,0
2 + 𝑓𝑚,0

2 + 2 ∑(−1)𝑚−𝑛(ℎ𝑛,0ℎ2𝑚−𝑛,0 + 𝑓𝑛,0𝑓2𝑚−𝑛,0) 

𝑚−𝑙

𝑛=0

 

                                        ⋮                           for 𝑘 = 1,2, … , 𝑛𝑝 − 1 

                                              𝑔𝑛𝑝,0
2 = ℎ𝑛𝑝,0

2 + 𝑓𝑛𝑝,0
2  

 

(3.44) 

one thing must be kept in mind while working with this scenario that the resulting 

coefficients 𝑔𝑘0 are positive and real and satisfying the condition that 𝑔(𝑝, 𝜆) is strictly 

scattering Hurwitz polynomial. 

 

• 𝑛𝜆 + 1 independent equations are expressed in terms of {𝑔0𝑙, ℎ0𝑙 , 𝑓0𝑙}, ( 𝑘 =

0,1,⋯ , 𝑛𝜆 ). It reflects that 𝑓0𝑙, ℎ0𝑙 are known and the unknows 𝑔0𝑘can be calculated 

by the help of 𝑛𝜆 + 1 independent equations in such a way that the resulting coefficients 

𝑔0𝑙 are positive and real and satisfying the condition that 𝑔(𝑝, 𝜆) is strictly scattering 

Hurwitz polynomial. i.e., 

 

 

                                               𝑔0,0
2 = ℎ0,0

2 + 𝑓0,0
2  

𝑔0,𝑚
2 + 2 ∑(−1)𝑘−𝑙𝑔0,𝑛𝑔0,2𝑚−𝑛 

𝑚−1

𝑛=0

= ℎ0,𝑘
2 + 𝑓0,𝑘

2 + 2 ∑(−1)𝑚−𝑛(ℎ0,𝑛ℎ0,2𝑚−𝑛 + 𝑓0,𝑛𝑓0,2𝑚−𝑛) 

𝑚−1

𝑛=0

 

                                        ⋮                           for 𝑘 = 1,2, … , 𝑛𝜆 − 1 

(3.45) 
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                                              𝑔0,𝑛𝜆

2 = ℎ0,𝑛𝜆

2 + 𝑓0,𝑛𝜆

2  

 

Now the problem is to calculate the remaining coefficients in 𝑔(𝑝, 𝜆) and ℎ(𝑝, 𝜆) to satisfy the 

FES and these unknowns coefficients are constitutes of matrices 𝐀𝒉𝒌
 and 𝐀𝒈𝒌

 of order 𝑛𝑝 × 𝑛𝜆. 

The total number of unknown 𝑁𝑢 can be given as, 

 

 𝑁𝑢 = 2𝑛𝑝𝑛𝜆 (3.46) 

 

Subtracting 3.46 from 3.43 the result is, 

 

 𝑁𝑒 − 𝑁𝑢 = 𝑛𝑝 + 𝑛𝜆 + 1 (3.47) 

 

from 3.47, it can be concluded that the solution of FES is still overdetermined. The intuitive 

approach imposes that for a realistic system the number of equation and number of unknowns 

must be same. Therefor to picture a practical system  𝑛𝑝 + 𝑛𝜆 + 1 independent conditions are 

required. Previously it has been discussed, the coefficients of submatrices 𝐀𝒉𝒌
 and 𝐀𝒈𝒌

 can be 

readily related to the connectivity information of cascaded systems as shown in Figure 3.3. In 

this case, the information about connectivity must be given or estimated on such lines that the 

obtained 𝑔(𝑝, 𝜆) is scattering Hurwitz polynomial. On the other hand, to define a generalized 

explicit solution to obtain 𝑔(𝑝, 𝜆) as a strict Hurwitz scattering polynomial is not clear because 

FES is nonlinear. Therefore, to realize a practical system, some properties of fundamental 

equation set must be explored, and necessary restriction and constraints must be developed. 

Unfortunately, there is no general analytical solution has been proposed yet that can give an 

acceptable solution. However, for some limited classes of circuit configuration, the solution of 

FES is possible up to a certain complexity by using conventional algebraic numerical methods, 

provided that a sufficient information about connectivity is given. As an example, the explicit 

solution for 5 element ladder structure composed of simple lumped sections connected by mean 

UEs can be calculated. For more general cascades, a new approach has been proposed that 

based on the algebraic decomposition technique, which results an acceptable solution for FES.  

The proposed method is called “Standard Decomposition Technique” (SDT) explain in 

upcoming sections.  
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3.2.2 Construction of Low-Pass Ladders with Unit Elements(UEs) 

As for as the practical implementation is concerned, alternating connections of simple lumped 

first order sections with unit elements, is considered as the most practical circuit configuration 

as shown in  Figure 3.3. This kind of circuits are known as low pass ladders with unit elements 

and short form is LPLU or LPLUE. The properties of scattering polynomial describing the 

LPLU can be summarized as following, 

 

 
 

Figure 3.4 Low-pass Ladder with Unit Elements. 

• LPLU includes first order lumped sections with transmission zero only at ∞, and unit 

elements with transmission zeros at 𝜆 = ±1. So, the polynomial 𝑓(𝑝, 𝜆) of the 

discussed LPLU can be given as, 

 

 𝑓(𝑝, 𝜆) = 𝑓(1 − 𝜆2)
𝑛𝜆

2⁄  (3.48) 

 

where 𝑛𝜆 is representing the number of UEs used in ladder. 

 

• For the sake of normalized input and output, the coefficients of the constant term of the 

polynomial ℎ(𝑝, 𝜆) are selected as 𝑔00 = 1 and ℎ00 = 0, for a transform free 

implementation. A vary simple justification of this choice can be given by the 

characteristic of reflection and transmission functions 𝑝 = 𝜆 = 0. For a transparent 

network, the condition must be 𝑆11(0,0) = 0, hence ℎ00 = 0 and  𝑆21(0,0) = 1, so 

𝑓00/𝑔00 = 1 which is leading us to 𝑓00 = 𝑔00 = 1 and can be seen in 3.48. 
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• By setting 𝜆 = 0, will reduce the structure only to the lumped section and the problem 

is now reduced to single variable problem. In this case the polynomial will 

be, {𝑓(𝑝, 0), 𝑔(𝑝, 0) and ℎ(𝑝, 0)} are totally representing an LLL structure. 

 

• Similarly, by considering 𝑝 = 0, will reduce the structure only to the cascaded UE 

section and the problem now is also converted into single variable problem. In this case 

the polynomial will be, {𝑓(0, 𝜆), 𝑔(0, 𝜆) and ℎ(0, 𝜆)} are completely description of a 

CUS structure. 

 

• The sequential cascaded analysis of general ladder designs leads to the coefficient 

matrices 𝐀𝐠and 𝐀𝐡 in 3.49 are showing the general form associated with LPLU 

network. 

 

 𝐀𝒉 =

[
 
 
 
 
0   ℎ01 ℎ02

ℎ10 ℎ11 ℎ12

ℎ20 ℎ21 ⋯
⋯

ℎ0𝑛𝜆

ℎ1𝑛𝜆

0
⋮ ⋱ ⋮

ℎ𝑛𝑝0     ⋯ 0 ⋯  0 ]
 
 
 
 

, 𝐀𝐠 =

[
 
 
 
 
1    𝑔01 𝑔02

𝑔10 𝑔11 𝑔12

𝑔20 𝑔21 ⋯
⋯

𝑔0𝑛𝜆

𝑔1𝑛𝜆

0
⋮ ⋱ ⋮

𝑔𝑛𝑝0     ⋯ 0 ⋯  0 ]
 
 
 
 

 (3.49) 

 

• Properties of matrices 𝐀𝐠and 𝐀𝐡: 

1. The elements of 𝐀𝐠 are nonnegative and real numbers. 

2. 𝑔01 = 𝑔01𝑔10 − ℎ01ℎ10, 

3. 𝑔𝑚𝑛 = ℎ𝑚𝑛 = 0        for  𝑚 + 𝑛 > 𝑛𝜆 + 1  and  𝑚, 𝑛 = 0,1,⋯ , 𝑛𝜆, 

4. ℎ𝑚,𝑛 = 𝜌𝑔𝑚,𝑛   for  𝑚 + 𝑛 > 𝑛𝜆 + 1  and  𝑚, 𝑛 = 0,1,⋯ , 𝑛𝜆  where  𝜌 = ±1, 

5. 𝑛𝑝 = 𝑛𝜆 + 1, then 𝜌 = ℎ𝑛𝑝0/𝑔𝑛𝑝0 = ±1.   

 

The existence of these properties is because of the recursive behavior of LPLU structure and 

readily proved in literature (Aksen, 1994).  

 

The connectivity matrices 𝐀𝐠𝒌
and 𝐀𝐡𝒌

can easily be extracted form coefficient matrices 𝐀𝐠and 

𝐀𝐡 present in 3.49 and both are upper triangular. 
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 𝐀𝒉𝒌
=

[
 
 
 
 
  ℎ11   ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 0
⋯

ℎ1𝑛𝜆

0
0

⋮ ⋱ ⋮
ℎ𝑛𝑝0 0       0 ⋯  0 ]

 
 
 
 

, 𝐀𝐠𝒌
=

[
 
 
 
 
  𝑔11   𝑔12 𝑔13

𝑔21 𝑔22 𝑔23

𝑔31 𝑔32 0
⋯

ℎ1𝑛𝜆

0
0

⋮ ⋱ ⋮
𝑔𝑛𝑝0 0       0 ⋯  0 ]

 
 
 
 

 (3.50) 

 

In this case, it can be notices that number of unknown are reduced because some diagonal terms 

of the connectivity matrix 𝐀𝐠𝒌
are equal in magnitude to the matrix 𝐀𝐡𝒌

, furthermore, some of 

the coefficients are happened to be zero as well. 

 

By using earlier discussed properties and simplified connectivity matrices 𝐀𝐠𝒌
and 𝐀𝐡𝒌

, and 

FES (fundamental equation set) can be solved and development of explicit solution is possible 

that can describe the relation between 𝐀𝐠and 𝐀𝐡 up to degree  𝑛 = 𝑛𝑝 + 𝑛𝜆. In next section an 

improved review for n=5 has been presented. 

3.2.2.1 Explicit Solution for Low Order Ladders  

 

In this part of the novel, the explicit formulas are derived for low order and low-pass ladders. 

The complexity of the structure is considered up to 5 elements, and a FES is developed and 

solved by using the earlier described properties, to determine the explicit magnitude of the 

canonic polynomials. 

• LPLU of Degree Two: 

 

Consider a two-variable polynomial with degree one in each variable as 𝑛𝑝 = 𝑛𝜆 = 1 

and the polynomial 𝑓, 𝑔 and ℎ can be given by utilizing the previously discussed 

details, as 

 

 

𝑓 = (1 − 𝜆2)
1
2,     𝑔 = 𝑔0 + 𝑔1𝑝 ,     ℎ =  ℎ0 + ℎ1𝑝 ,  

where              𝑔𝑘 = 𝑔𝑘0 + 𝑔𝑘1𝜆 ,     ℎ𝑘 = ℎ𝑘0 + ℎ𝑘1𝜆 ,    and    𝑘 = 0,1 
(3.51) 

 

from 3.38 we can obtain, 
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𝑔0∗ = ℎ0ℎ0∗ + (1 − 𝜆2) 

𝑔1𝑔0∗ + 𝑔0𝑔1∗ = ℎ1ℎ0∗ + ℎ0ℎ1∗ 

𝑔1𝑔1∗ = ℎ1ℎ1∗ 

  

 

Now by substituting the values of  𝑔𝑘 and ℎ𝑘 and then comparing the coefficients of 

the same power of 𝜆, the obtained FES will be, 

 

 

𝑔00
2 = ℎ00

2 + 1 

𝑔01
2 = ℎ01

2 + 1 

𝑔01𝑔10 + 𝑔00𝑔11 = ℎ01ℎ01 + ℎ00ℎ11 

𝑔00
2 = ℎ00

2 + 1 

𝑔01
2 = ℎ01

2 + 1 

(3.52) 

 

Here an assumption is made that 𝑔00 = 1 and ℎ00 = 0 and ℎ01 and ℎ10 is taken as 

independent coefficients so, 3.52 is giving 

 

 𝑔01 = (ℎ01
2 + 1)1/2,                   𝑔10 = |ℎ10| (3.53) 

 𝑔11 = 𝑔01𝑔10 − ℎ01ℎ10,          ℎ11 = 𝜂𝑔11 and   𝜂 = ±1 (3.54) 

 

where, 𝑔𝑘𝑙 > 0 , in this specific case, 𝑔01 > |ℎ01|. 

As the polynomial are satisfying these coefficient relations, so to estimate the 

realizations following are to proceed. If the boundary case is considered with 𝜆 =

0 and 𝑝 = 0, then it can easily be expressed that they correspond respectively to a 

simple lumped element and a UE section. It can also be noticed from 3.53 and 3.54, the 

polynomials and coefficient relations specifically in this case are telling clearly that the 

values of elements obtained corresponding to respective section is always positive. This 

is compulsion is true because 𝑔(𝑝, 0) and 𝑔(0, 𝜆) is Hurwitz polynomial. 

 

Suppose 𝑔(𝑝, 0) = 𝑔𝐷, 𝑓(𝑝, 0) = 𝑓𝐷 and ℎ(𝑝, 0) = ℎ𝐷, also 𝑔(0, 𝜆)  = 𝑔𝐿, 𝑓(0, 𝜆)  =

𝑓𝐿 and ℎ(0, 𝜆)  = ℎ𝐿 are notations for the representation of the boundary polynomials 

corresponding to the case 𝑝 = 0 and 𝜆 = 0. Form 3.66 and 3.67, we obtained following, 
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• Case I (𝒑 = 𝟎): 

 

 

𝑓𝐷 = (1 − 𝜆2)
1
2,     𝑔𝐷 = 1 + 𝑔01𝜆 ,     ℎ𝐷 = ℎ01𝜆 , 

where         𝑔01
2 = 1 + ℎ01

2  ,       𝑔01 > |ℎ01|  
(3.55) 

these corelates with a UE of characteristic impedance 𝑅 = 𝑔01 + ℎ01 =

1/(𝑔01 + ℎ01) > 0. 

 

• Case II (𝝀 = 𝟎): 

 

 

𝑓𝐿 = 1,     𝑔𝐿 = 1 + 𝑔10𝑝 ,     ℎ𝐿 = ℎ01𝑝 , 

where         𝑔10 > 0,     ℎ10 = 𝜂1𝑔10     and   𝜂1 = ±1 
(3.56) 

 

Here, the negative and positive signs are a representation for capacitor and 

inductor respectively, but their values are always positive as, 𝐿 = 2𝑔10 and 

𝐶 = 𝑔10. 

 
 

Figure 3.5 LPLU Section of Degree Two. 

 

Suppose, the distributed section described by 3.55 is denoted by [D] and 

lumped section is denoted by [L] and a configuration is in Figure 3.5 . The 

polynomial corresponding to these configurations will differ only in 𝑔11 and 

ℎ11, and end up expressions are in the following form, 

 

 
       [L][D]:    𝑔11 = 𝑔01𝑔10 − ℎ01ℎ10,          ℎ11 = 𝜂1𝑔11 

                       [D][L]:   𝑔11 = 𝑔01𝑔10 − ℎ01ℎ10,          ℎ11 = −𝜂1𝑔11 
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clearly, it can be noticed that these coefficients are similar to the coefficients in 

3.54.  It can also be seen that each case consists two configurations based on the 

sign of 𝜂 = ±1. In above expressions ℎ11 = 𝜂𝑔11,   𝜂 = ±𝜂1 = ±1 is used as 

an additional parameter. For 𝜂 = +1 sections are represented in Figure 3.5 (a) 

and for 𝜂 = −1 sections are represented in Figure 3.5 (b). 

 

• LPLU of Degree Three: 

 

Now Consider a two-variable polynomial with degree three so 𝑛𝑝 = 2   , 𝑛𝜆 = 1 and 

the polynomial 𝑓, 𝑔 and ℎ can be given by utilizing the earlier knowledge, as 

 

 

𝑓 = (1 − 𝜆2)
1
2,     𝑔 = 𝑔0 + 𝑔1𝑝 + 𝑔2𝑝

2 ,     ℎ =  ℎ0 + ℎ1𝑝 + ℎ2𝑝
2 ,  

where         𝑔𝑘 = 𝑔𝑘0 + 𝑔𝑘1𝜆 ,     ℎ𝑘 = ℎ𝑘0 + ℎ𝑘1𝜆 ,    and    𝑘 = 0,1 
(3.57) 

 

Here an assumption is made again that 𝑔00 = 1 and ℎ00 = 0 and ℎ0𝑘 and ℎ𝑘0 is taken 

as independent coefficients so, 3.52 helps to determine 𝑔0𝑘 and 𝑔𝑘0 as 

 

 

𝑔01 = (ℎ01
2 + 1)1/2,                   𝑔01 > |ℎ01| 

𝑔10 = (ℎ01
2 + 𝑔01)

1/2,                 𝑔20 = |ℎ20| 

𝑔11 = 𝑔01𝑔10 − ℎ01ℎ10,          ℎ11 = 𝜂𝑔11 and   𝜂 = ±1 

(3.58) 

 

where, 𝑔𝑘𝑙 > 0 . 

Remaining FES can be written by using the equation from 3.39 to 3.42 and those are, 

 

 

𝑔01𝑔10 − 𝑔11 = ℎ01ℎ10 

𝑔21
2 = ℎ21

2  

𝑔10𝑔21 − 𝑔11𝑔20 = ℎ10ℎ21 − ℎ20ℎ11 

2𝑔01𝑔21 − 𝑔11
2 = ℎ01ℎ21 − ℎ11

2  

(3.59) 
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suppose the convention of sign in second equation is taken as 𝑔21 = 𝜂ℎ21, and where 

𝜂 = ±1. Last two equations will be as, 

 

 

ℎ11 =
1

ℎ20

(𝑔20𝑔11 − 𝜑𝑔21) 

𝑔21
2 = 2(

𝑔20𝑔11

𝜑
+

𝜃

𝜑2
ℎ20

2 ) 𝑔21 −
𝑔11

2

𝜑2
(𝑔20

2 − ℎ20
2 ) 

(3.60) 

 

where 𝜃 = 𝑔01 − 𝜂ℎ01 and  𝜑 = 𝑔10 − 𝜂ℎ10, and the term 
𝑔11

2

𝜑2
(𝑔20

2 − ℎ20
2 ) in last 

equation is zero so the solutions for ℎ11  and 𝑔21 can be obtained are, 

 

 

𝑔21 = 0       →     ℎ11 =
𝑔20

ℎ20
𝑔11 

𝑔21 =
2

𝜑
(𝑔20𝑔11 +

𝜃

𝜑
ℎ20

2 )        →     ℎ11 =
𝑔20

ℎ20
𝑔11 

(3.61) 

 

From 3.58 and 3.61 it can be noticed that the coefficients of two variable polynomials 

𝑔 and ℎ are represented as the combinations of independents coefficients 

{ℎ01, ℎ10, ℎ20}. Figure 3.6(a) is showing the case of alternating connection of elements 

where 𝑔21 = 0 and Figure 3.6(b) is showing the case with 𝑔21 ≠ 0. 

 

 
 

Figure 3.6 LPLU Section of Degree Three. 
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here, the negative and positive signs are a representation for capacitor and inductor 

respectively, but their values are always positive can be proved similarly to the previous 

section of LPLU of degree two. 

 

• Suppose 𝑔(𝑝, 0) = 𝑔𝐷, 𝑓(𝑝, 0) = 𝑓𝐷 and ℎ(𝑝, 0) = ℎ𝐷, also 𝑔(0, 𝜆)  = 𝑔𝐿, 

𝑓(0, 𝜆)  = 𝑓𝐿 and ℎ(0, 𝜆)  = ℎ𝐿 are notations for the representation of the 

boundary polynomials corresponding to the case 𝑝 = 0 and 𝜆 = 0. Form 3.66 

and 3.67, we obtained following, 

• Case I (𝒑 = 𝟎): 

 

Since, the value of 𝑛𝜆 = 1 so the results of 𝑓𝐷 , ℎ𝐷 and ℎ𝐷 will be same as shown 

by 3.55, 

 

𝑓𝐷 = (1 − 𝜆2)
1
2,     𝑔𝐷 = 1 + 𝑔01𝜆 ,     ℎ𝐷 = ℎ01𝜆 , 

where         𝑔01
2 = 1 + ℎ01

2  ,       𝑔01 > |ℎ01|  
(3.62) 

these corelates with a UE of characteristic impedance 𝑅 = 𝑔01 + ℎ01 =

1/(𝑔01 + ℎ01) > 0. 

 

• Case II (𝝀 = 𝟎): 

 

 

           𝑓𝐿 = 1,     𝑔𝐿 = 1 + 𝑔10𝑝 + 𝑔20𝑝
2 ,     ℎ𝐿 = ℎ01𝑝 + ℎ20𝑝

2 , 

where    𝑔10 = (ℎ10
2 + 2𝑔20)

1/2,     ℎ20 = 𝜂1𝑔20     and   𝜂1 = ±1 
(3.63) 

 

It is clear from the impression that the structure is a second order lumped 

ladder. By applying matrix factorization technique (Aksen, 1994), the 

polynomial description of each element present in the ladder can be obtained 

easily. To do so, suppose the setting 𝑓𝐿 = 𝑓𝐿1
= 𝑓𝐿2

= 1 and bring the 

following decompositions of 𝑔𝐿 and ℎ𝐿. 
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𝑓𝐿1
= 1,   𝑔𝐿1

= 1 + 𝐺1𝑝 ,    ℎ𝐿1
= 𝜂1𝐺1𝑝 ,     

 where             𝐺1 =
𝑔20

𝑔10 − 𝜂1ℎ10
 

𝑓𝐿2
= 1,   𝑔𝐿2

= 1 + 𝐺2𝑝 ,    ℎ𝐿2
= −𝜂1𝐺2𝑝 , 

where            𝐺2 = 𝑔10 − 𝐺1 

(3.64) 

 

for 𝜂1 = 1 the inductor in first section is 𝐿 = 2𝐺1 and the capacitor in second 

section is 𝐶 = 2𝐺2 and vice versa for 𝜂1 = −1, and once again it is clear that 

the values of 𝐶 and 𝐿 are positive. 

 

If various cascade connections are made by using the sections [L1], [L2] and 

[D], the outcoming two-variable polynomials will be same for the case 𝑝 = 0 

and 𝜆 = 0, provided the occurrence order of [L1] and [L2] in the cascade remain 

conserved. The change will only occur for the coefficients 𝑔11, ℎ11 and 𝑔21, 

ℎ21 and can be checked readily by using 3.62 and 3.64. consider the example 

of an alternating connection of the sections like ([L1] [D] [L2]), we get 

 

 𝑔21 = ℎ21 = 0,       𝑔11 = 𝑔01𝑔10 − ℎ01ℎ10,          ℎ11 =
𝑔20

ℎ20
𝑔11 (3.65) 

 

These relations are same as the relations in 3.61 and the Figure 3.6(a) is covering 

the both case that [L1] is and inductor or a capacitor. The correspondence 

between  3.61 and the Figure 3.6(b) can also be done in same fashion.  

 

• LPLU of Degree Four: 

 

Now Consider a two-variable polynomial with degree four so 𝑛𝑝 =  𝑛𝜆 = 2 and the 

polynomial 𝑓, 𝑔 and ℎ can be given by using similar method that is used earlier, as 

 

 
𝑓 = 1 − 𝜆2,     𝑔 = 𝑔0 + 𝑔1𝑝 + 𝑔2𝑝

2 ,     ℎ =  ℎ0 + ℎ1𝑝 + ℎ2𝑝
2 , 

(3.66) 
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where          𝑔𝑘 = 𝑔𝑘0 + 𝑔𝑘1𝜆 + 𝑔𝑘2𝜆
2 ,    ℎ𝑘 = ℎ𝑘0 + ℎ𝑘1𝜆 + ℎ𝑘2𝜆

2 ,     

and             𝑘 = 0,1 

 

By solving the relationship explained in 3.44 and 3.45, following expressions for 𝑔01 

and 𝑔10 can be obtained Here an assumption is made again that 𝑔00 = 1 and ℎ00 = 0 

and ℎ0𝑘 and ℎ𝑘0 is taken as independent coefficients so, 3.52 helps to determine 𝑔0𝑘 

and 𝑔𝑘0 as 

 

 

𝑔01 = (2(1 + 𝑔02) + ℎ01
2 )1/2,                   𝑔02 = (1 + ℎ02

2 )1/2 

𝑔10 = (2𝑔02 + ℎ02
2 )1/2,                               𝑔20 = |ℎ20| 

(3.67) 

 

and remaining coefficients of polynomial 𝑔 and ℎ can be produced by using FES those 

are produced by 3.39 to 3.42. now consider the coefficients properties associated to 

LPLU structure in FES, a simplified set of equation can be written, that enables to find 

the unique solution for unknows 𝑔𝑘𝑙 and 𝑘𝑘𝑙 and 𝑘, 𝑙 ≠ 0. In this case the restriction 

𝑔22 = ℎ22 = 0, leads us to following, 

 

 

𝑔12
2 = ℎ12

2  

𝑔21
2 = ℎ21

2   

𝑔12𝑔21 = ℎ12ℎ21 

𝑔01𝑔10 − 𝑔11 = ℎ01ℎ10 

𝑔10𝑔12 − 𝑔11𝑔20 = ℎ10ℎ12 − ℎ02ℎ11 

2(𝑔10𝑔12 + 𝑔01𝑔21 − 𝑔20𝑔02) − 𝑔11
2 = 2(ℎ10ℎ12 + ℎ01ℎ21 − ℎ20ℎ02) − ℎ11

2  

𝑔11𝑔20 − 𝑔10𝑔21 = ℎ11ℎ20 − ℎ10ℎ21 

(3.68) 

 

from first four equations the value of 𝑔12, 𝑔21 and 𝑔11 can be obtained and suppose the 

convention of sign in second equation is taken as 𝑔21 = 𝜂ℎ21, and where 𝜂 = ±1. Last 

two equations will be as, 
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𝑔12 =
1

𝜃
(𝑔02𝑔11 − ℎ11ℎ02) 

𝑔21 =
1

𝜑
(𝑔20𝑔11 − ℎ11ℎ20) 

ℎ11
2 = 2(

𝜑

𝜃
ℎ02 +

𝜃

𝜑
ℎ20) ℎ11 − (

𝜃2

𝜑2
ℎ20

2 +
𝜑2

𝜃2
ℎ20

2 + 2ℎ02ℎ20) 

(3.69) 

 

where 𝜃 = 𝑔01 − 𝜂ℎ01 and  𝜑 = 𝑔10 − 𝜂ℎ10, and the in last equation is a pure quadratic 

equation so a unique solution for ℎ11 can be obtained, 

 

 ℎ11 =
𝜑

𝜃
ℎ02 +

𝜃

𝜑
ℎ20 (3.70) 

 

From 3.67, 3.68 and first four equations of 3.69 and 3.70 that is also obtained from 3.69 

is required solution set of our FES and represented as the combinations of independents 

coefficients {ℎ01, ℎ10, ℎ20}. Figure 3.7 is showing the LPLU realization of degree four. 

 

 
 

Figure 3.7 LPLU Section of Degree Four. 

 

The above unique solution is satisfying the FES and all the general properties related 

to low-pass ladders structures with UEs. Here, the negative and positive signs are a 

representation for capacitor and inductor respectively, but their values are always 

positive can be proved similarly to the previous section of LPLU of degree two. 

 

• Suppose 𝑔(𝑝, 0) = 𝑔𝐷, 𝑓(𝑝, 0) = 𝑓𝐷 and ℎ(𝑝, 0) = ℎ𝐷, also 𝑔(0, 𝜆)  = 𝑔𝐿, 

𝑓(0, 𝜆)  = 𝑓𝐿 and ℎ(0, 𝜆)  = ℎ𝐿 are notations for the representation of the 
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boundary polynomials corresponding to the case 𝑝 = 0 and 𝜆 = 0. Form 3.66 

and 3.67, we obtained following, 

 

• Case I (𝒑 = 𝟎): 

 

Since, the value of 𝑛𝜆 = 2 so the results of 𝑓𝐷 , ℎ𝐷 and ℎ𝐷 will be as, 

 

 

𝑓𝐷 = 1 − 𝜆2 ,   𝑔𝐷 = 1 + 𝑔01𝜆 + 𝑔02𝜆
2 ,   ℎ𝐷 = ℎ01𝜆 + ℎ02𝜆

2, 

where         𝑔01 = (2(1 + 𝑔02) + ℎ01
2 )

1
2 ,   𝑔02 = (1 + ℎ01

2 )1/2  
(3.71) 

 

By following the factorization of transfer matrix method (Aksen, 1994) the 

decomposition of the polynomials gives, 

 

 

𝑓𝐷1
= (1 − 𝜆2)1/2  ,   𝑔𝐷1

= 1 + 𝐺1
′𝜆 ,    ℎ𝐷1

= 𝐻1
′𝜆 ,     

 where          𝐺1
′ =

𝑔10

2
+

ℎ10ℎ20

2(1 + 𝑔20)
,    𝐻1

′ =
ℎ10

2
+

𝑔10ℎ20

2(1 + 𝑔20)
 

𝑓𝐷2
= (1 − 𝜆2)1/2  ,   𝑔𝐷2

= 1 + 𝐺2
′𝜆 ,    ℎ𝐷2

= 𝐻2
′𝜆 ,    

 where          𝐺2
′ =

𝑔10

2
−

ℎ10ℎ20

2(1 + 𝑔20)
,    𝐻2

′ =
ℎ10

2
−

𝑔10ℎ20

2(1 + 𝑔20)
 

(3.72) 

 

here, the decomposition is applied in such a way that following expression are 

satisfied, 

 𝐺1
′2 = 𝐻1

′2 + 1 and 𝐺2
′ 2 = 𝐻2

′2 + 1  

 

By using these constraints with the polynomial from 3.72, the characteristic 

impedance 𝑍1 and 𝑍2 can be given as, 

 𝑍𝑘 = 𝐺𝑘
′ + 𝐻𝑘

′ = 1/(𝐺𝑘
′ + 𝐻𝑘

′ ) > 0,   𝑘 = 1,2 (3.73) 
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• Case II (𝝀 = 𝟎): 

 

As the value of  𝑛𝑝 = 2 so the case is exactly same as discussed in degree three 

with 𝜆 = 0 so, 

 

 

           𝑓𝐿 = 1,     𝑔𝐿 = 1 + 𝑔10𝑝 + 𝑔20𝑝
2 ,     ℎ𝐿 = ℎ01𝑝 + ℎ20𝑝

2 , 

where    𝑔10 = (ℎ10
2 + 2𝑔20)

1/2,     ℎ20 = 𝜂1𝑔20     and   𝜂1 = ±1 
(3.74) 

 

It is clear from the impression that the structure is a second order lumped 

ladder. By applying matrix factorization technique (Aksen, 1994), the 

polynomial description of each element present in the ladder can be obtained 

easily. To do so, suppose the setting 𝑓𝐿 = 𝑓𝐿1
= 𝑓𝐿2

= 1 and bring the 

following decompositions of 𝑔𝐿 and ℎ𝐿. 

 

 

𝑓𝐿1
= 1,   𝑔𝐿1

= 1 + 𝐺1𝑝 ,    ℎ𝐿1
= 𝜂1𝐺1𝑝 ,     

 where             𝐺1 =
𝑔20

𝑔10 − 𝜂1ℎ10
 

𝑓𝐿2
= 1,   𝑔𝐿2

= 1 + 𝐺2𝑝 ,    ℎ𝐿2
= −𝜂1𝐺2𝑝 , 

where            𝐺2 = 𝑔10 − 𝐺1 

(3.75) 

 

for 𝜂1 = 1 the inductor in first section is 𝐿 = 2𝐺1 and the capacitor in second 

section is 𝐶 = 2𝐺2 and vice versa for 𝜂1 = −1, and once again it is clear that 

the values of 𝐶 and 𝐿 are positive. 

 

cascade connections are made by using the sections [L1] [D1] [L2] [D2] and [D1] 

[L1] [D2] [L2] are describing the polynomials in 3.68. It is obvious that these to 

configurations are depending on the unimodular sign constant 𝜂.  

 

 

 



 

 

 

 

55 

 

 

 

 

• LPLU of Degree Five: 

 

Now Consider a two-variable polynomial with degree four so 𝑛𝑝 = 3, 𝑛𝜆 = 2 and the 

polynomial 𝑓, 𝑔 and ℎ can be given by using similar method that is used earlier, as 

 

 

𝑓 = 1 − 𝜆2, 𝑔 = 𝑔0 + 𝑔1𝑝 + 𝑔2𝑝
2 + 𝑔3𝑝

3,   ℎ =  ℎ0 + ℎ1𝑝 + ℎ2𝑝
2 + ℎ3𝑝

3 , 

where          𝑔𝑘 = 𝑔𝑘0 + 𝑔𝑘1𝜆 + 𝑔𝑘2𝜆
2 ,    ℎ𝑘 = ℎ𝑘0 + ℎ𝑘1𝜆 + ℎ𝑘2𝜆

2 ,     

and             𝑘 = 0,1,2 

(3.76) 

 

By solving the relationship explained in 3.44 and 3.45, following expressions for 𝑔01 

and 𝑔10 can be obtained Here an assumption is made again that 𝑔00 = 1 and ℎ00 = 0 

and ℎ0𝑘 and ℎ𝑘0 is taken as independent coefficients so, 3.52 helps to determine 𝑔0𝑘 

and 𝑔𝑘0 as 

 

 

𝑔01 = (2(1 + 𝑔02) + ℎ01
2 )

1

2,        𝑔02 = (1 + ℎ02
2 )

1

2  

𝑔10 = (2𝑔02 + ℎ02
2 )

1

2,                    𝑔20 = (ℎ02
2 + 2𝑔10𝑔30 − 2ℎ10ℎ30)

1

2 

𝑔30 = |ℎ30| 

(3.77) 

 

and remaining coefficients of polynomial 𝑔 and ℎ can be produced by using FES those 

are produced by 3.39 to 3.42. now consider the coefficients properties associated to 

LPLU structure in FES, a simplified set of equation can be written, that enables to find 

the unique solution for unknows 𝑔𝑘𝑙 and 𝑘𝑘𝑙 and 𝑘, 𝑙 ≠ 0. In this case the restriction 

𝑔22 = ℎ22 = 𝑔32 = ℎ32 = 𝑔31 = ℎ31 = 0, leads us to following, 

 

 

𝑔01𝑔10 − 𝑔11 = ℎ01ℎ10 

𝑔12
2 = ℎ12

2  

𝑔12𝑔21 = ℎ12ℎ21 

𝑔21𝑔30 = ℎ21ℎ30 

(3.78) 
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 2𝑔21𝑔30 + 𝑔21
2 = 2ℎ21ℎ30 + ℎ21

2  

𝑔01𝑔12 − 𝑔11𝑔02 = ℎ01ℎ12 − ℎ02ℎ11 

 𝑔11𝑔20 − 𝑔10𝑔21 − 𝑔01𝑔30 = ℎ11ℎ20 − ℎ10ℎ21 − ℎ01ℎ30 

2(𝑔10𝑔12 + 𝑔01𝑔21 − 𝑔20𝑔02) − 𝑔11
2 = 2(ℎ10ℎ12 + ℎ01ℎ21 − ℎ20ℎ02) − ℎ11

2  

 

From first four equations the value of 𝑔12, 𝑔21 and 𝑔11 can be obtained very simply 

i.e. 𝑔21 = 𝜂ℎ21,  where 𝜂 =
𝑔30

ℎ30
= ±1. From remaining equations and with some 

substitution from prior study following can be extracted and given as, 

 

 

ℎ11 =
𝜑

𝜃
ℎ02 +

𝜃

𝜑
ℎ20 

𝑔12 =
1

𝜃
(𝑔02𝑔11 − ℎ11ℎ02) 

𝑔21 =
1

𝜑
(𝑔20𝑔11 − ℎ11ℎ20 − 𝑔01𝑔30 + ℎ01ℎ30) 

(3.79) 

 

where 𝜃 = 𝑔01 − 𝜂ℎ01 and  𝜑 = 𝑔10 − 𝜂ℎ10, and it can be noticed that 𝜂 = ±
𝑔30

ℎ30
, is 

having a unique definition and the values of the polynomials 𝑔 and ℎ obtained by this 

way, both topological characterizations are given in Figure 3.8 and the difference 

between these two configurations is the sign of free parameter ℎ30. By making 

alternating connections of elements, it can be proved easily. These connections are 

taken from the lumped and distributed two-port characterized by the polynomial 

corresponding to the case 𝑝 = 0 and 𝜆 = 0. 

 

 
 

Figure 3.8 LPLU Section of Degree Five. 
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Suppose 𝑔(𝑝, 0) = 𝑔𝐷, 𝑓(𝑝, 0) = 𝑓𝐷 and ℎ(𝑝, 0) = ℎ𝐷, also 𝑔(0, 𝜆)  = 𝑔𝐿, 𝑓(0, 𝜆)  =

𝑓𝐿 and ℎ(0, 𝜆)  = ℎ𝐿 are notations for the representation of the boundary polynomials 

corresponding to the case 𝑝 = 0 and 𝜆 = 0. Form 3.76 and 3.77, we obtained following, 

 

• Case I (𝒑 = 𝟎): 

 

Since, the value of 𝑛𝜆 = 2 so the results of 𝑓𝐷 , ℎ𝐷 and ℎ𝐷 will be as, 

 

 

𝑓𝐷 = 1 − 𝜆2 ,   𝑔𝐷 = 1 + 𝑔01𝜆 + 𝑔02𝜆
2 ,   ℎ𝐷 = ℎ01𝜆 + ℎ02𝜆

2, 

where         𝑔01 = (2(1 + 𝑔02) + ℎ01
2 )

1
2 ,   𝑔02 = (1 + ℎ01

2 )1/2  
(3.80) 

 

By following the factorization of transfer matrix method (Aksen, 1994) the 

decomposition of the polynomials gives, 

 

 

𝑓𝐷1
= (1 − 𝜆2)1/2  ,   𝑔𝐷1

= 1 + 𝐺1
′𝜆 ,    ℎ𝐷1

= 𝐻1
′𝜆 ,     

 where          𝐺1
′ =

𝑔10

2
+

ℎ10ℎ20

2(1 + 𝑔20)
,    𝐻1

′ =
ℎ10

2
+

𝑔10ℎ20

2(1 + 𝑔20)
 

𝑓𝐷2
= (1 − 𝜆2)1/2  ,   𝑔𝐷2

= 1 + 𝐺2
′𝜆 ,    ℎ𝐷2

= 𝐻2
′𝜆 ,    

 where          𝐺2
′ =

𝑔10

2
−

ℎ10ℎ20

2(1 + 𝑔20)
,    𝐻2

′ =
ℎ10

2
−

𝑔10ℎ20

2(1 + 𝑔20)
 

(3.81) 

 

 

here, the decomposition is applied in such a way that following expression are 

satisfied, 

 𝐺1
′2 = 𝐻1

′2 + 1 and 𝐺2
′ 2 = 𝐻2

′2 + 1  

 

By using these constraints with the polynomial from 3.72, the characteristic 

impedance 𝑍1 and 𝑍2 can be given as, 

 

 𝑍𝑘 = 𝐺𝑘
′ + 𝐻𝑘

′ = 1/(𝐺𝑘
′ + 𝐻𝑘

′ ) > 0,   𝑘 = 1,2 (3.82) 
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• Case II (𝝀 = 𝟎): 

 

As the value of  𝑛𝑝 = 3 so the case will be with degree three and with 𝜆 = 0 so, 

 

 

 𝑓𝐿 = 1,                        𝑔𝐿 = 1 + 𝑔10𝑝 + 𝑔20𝑝
2 + 𝑔30𝑝

3 , 

ℎ𝐿 = ℎ01𝑝 + ℎ20𝑝
2 + ℎ30𝑝

3 , 

where 

  𝑔10
2 = ℎ10

2 + 2𝑔20,   𝑔20
2 = ℎ20

2 + 2𝑔10𝑔30 − 2𝑔10𝑔30    

and                            𝑔30 = |ℎ30| 

(3.83) 

 

It is clear and readily confirmed from the impression 𝑔𝐿 is strictly Hurwitz and 

contains positive coefficients.  By applying matrix factorization technique 

(Aksen, 1994), the polynomial description of each element present in the ladder 

can be obtained easily. The sign convention between 𝑔𝐿 and ℎ𝐿 can be written 

by the expression 𝜂 =
𝑔30

ℎ30
= ±1. To implement this, suppose the setting 𝑓𝐿 =

𝑓𝐿1
= 𝑓𝐿2

= 1 and bring the following decompositions of 𝑔𝐿 and ℎ𝐿. 

 

 

𝑓𝐿1
= 1,   𝑔𝐿1

= 1 + 𝐺1𝑝 ,    ℎ𝐿1
=  𝜂𝐺1𝑝 ,    

𝑓𝐿2
= 1,   𝑔𝐿2

= 1 + 𝐺2𝑝 ,    ℎ𝐿2
= −𝜂𝐺2𝑝 ,   

𝑓𝐿3
= 1,   𝑔𝐿3

= 1 + 𝐺3𝑝 ,    ℎ𝐿3
=  𝜂𝐺3𝑝 , 

where         𝐺1 =
𝑔30

𝑔20 − 𝜂ℎ20
  , 𝐺2 =

𝑔20 − 𝐺1(𝑔10 − ℎ10)

𝑔10 − 𝐺1 + 𝜂(ℎ10 − 𝜂𝐺1)
  , 

and               𝐺3 = 𝑔10 − 𝐺1 − 𝐺2 

(3.84) 

 

for 𝜂 = 1 the inductor in first section is 𝐿 = 2𝐺𝑘 and the capacitor in second 

section is 𝐶 = 2𝐺𝑘 and vice versa for 𝜂 = −1, and once again it is clear that 

the values of 𝐶 and 𝐿 are positive. 
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cascade connections are made by using the sections [L1] [D1] [L2] [D2] [L3] 

and [D1] [L1] [D2] [L2] [D3] are describing the polynomials in 3.68. It is obvious 

that these to configurations are depending on the unimodular sign constant 𝜂.  

 

 

3.2.2.2 Construction of High Order Ladders  

 

In the previous section, fundamental equation set of basic ladder structures up to degree five 

are solved to find the explicit results of canonic polynomial directly. With increase in the degree 

of the ladder structure the problem complex and solving FES become very difficult. 

 

Now consider the case where 𝑛𝑝 +  𝑛𝜆 ≥ 5, precisely, 𝑛𝑝 = 𝑚 + 1, 𝑛𝜆 = 𝑚 and with the help 

of matrices representation in 3.49 the number of nonzero coefficients in 𝑔 will be 

𝑚(𝑚 + 1) 2⁄ + 2(𝑚 + 1) also in ℎ. From previous discussion it can be seen that 2(𝑚 + 1) 

coefficients in ℎ can be chosen independently, also defines 2(𝑚 + 1) coefficients in 𝑔 

properly. Paraunitary condition will decrease the number of equations to 𝑁𝑒 = 𝑚(𝑚 + 1) with 

number of unknowns 𝑁𝑢 = 𝑚(𝑚 + 1). On the other hand, under consideration ladder with 

recursive topology requires 𝑚 coefficients of ℎ are related to 𝑚 coefficients 𝑔 reach with in a 

sign change. In this situation the number of unknown will be reduced to 𝑁𝑢 = 𝑚2 and FES will 

be overdetermined, and the solution will not be the unique solution for case 𝑚 > 2. It is obvious 

to find unique solution,  𝑁𝑢 + 𝑁𝑒 = 𝑚 additional constraints are required on the coefficients. 

There is a possibility to find a numerical solution by using numerical tools, but it will also be 

very hard because to guarantee the realizability of obtained network function, it is necessary to 

assure the Hurwitzness of 𝑔 during the entire process of numerical analysis. So, other means 

of constructing higher order polynomial must be considered.  

 

A direct approach to construct high degree polynomial can be consider that is to cascade the 

elementary LPLU segments, one which are already have explicit representation. Explicit 

representation of LPLU up to degree five have been already discussed and in each case two are 

more configurations are presented. By using two these low order and cascade them we may 

have a higher order LPLU with distinguished realization by this method the degree of freedom 

for resulting structure can be enhanced. It seems natural that by using several fundamental 
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segments in arbitrary or prescribed pattern to make high order low-pass structures. By this 

method the structures shown in Figure 3.9 can be made, where second order configuration of 

lumped or distributed segments are cascaded. Uncontrolled or degenerated case is expressed 

like a case where two inductors are connected shown in  Figure 3.9(c) this would rise the 

problem of reduction in degree of the polynomial. This problem can be tackled by using the 

controlled cascading of elementary elements. 

 

 

 
 

Figure 3.9 Higher Order LPLUs as Cascades of Elementary LPLU Section. 
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4 PROPOSED APPROACH TO FIND ANALYTICAL SOLUTION 

FOR LPLU OF DEGREE FIVE  
 

In this chapter, we will focus to find the analytical solutions for LPLU of degree five some real 

and realizable values. We will generate a two-variable polynomial with degree five by using 

the steps studied in the previous chapter and furthermore two cases will be discussed further 

exist within LPLU of five.  

4.1 Problem Statement: 

The problem encountered, is how to use the algorithm known as  “Standard Decomposition 

Technique (SDT)” to find the analytical solutions for “Fundamental equation set (FES)” 

obtained by using Belevitch canonic polynomial  “ 𝑔(𝑝, 𝜆), ℎ(𝑝, 𝜆) and 𝑓(𝑝, 𝜆)” for mixed 

lumped and distributed lossless two-port cascaded networks in two variables and use the 

extracted solutions in synthesis of realizable networks. The problem can also be classified into 

two cases, first is with three lumped and two distributed (𝑛𝑝 = 3, 𝑛𝜆 = 2 ) and the second will 

be with three distributed and two lumped important (𝑛𝑝 = 3, 𝑛𝜆 = 2 ) .  

4.2 Explicit Solution for LPLU of Degree Five: 

4.2.1 Case-I (Three Lumped and Two Distributed (𝒏𝒑 = 𝟑, 𝒏𝝀 = 𝟐 )) 

Now consider a two-variable polynomial with degree five so 𝑛𝑝 = 3, 𝑛𝜆 = 2 and the 

polynomial 𝑓, 𝑔 and ℎ can be given, by using earlier discussion as 

 

 

𝑓(𝑝, 𝜆) = 1 − 𝜆2, 

𝑔(𝑝, 𝜆) = 𝑔00 + 𝑔01𝜆 + 𝑔02𝜆
2 + 𝑔10𝑝 + 𝑔11𝜆𝑝 + 𝑔12𝜆

2𝑝 + 

𝑔20𝑝
2 + 𝑔21𝑝

2𝜆 + 𝑔30𝑝
3   

ℎ(𝑝, 𝜆) =  ℎ00 + ℎ01𝜆 + ℎ02𝜆
2 + ℎ10𝑝 + ℎ11𝜆𝑝 + ℎ12𝜆

2𝑝 + 

ℎ20𝑝
2 + ℎ21𝑝

2𝜆 + ℎ30𝑝
3   

 

(4.1) 

it is also known that, 
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 𝑔(𝑝, 𝜆)𝑔(−𝑝,−𝜆) = 𝑓(𝑝, 𝜆)𝑓(−𝑝, −𝜆) + ℎ(𝑝, 𝜆)ℎ(−𝑝,−𝜆) (4.2) 

  

assume 𝑔00 = 1 and ℎ00 = 0  and then by making substitution of 4.1 in 4.2 and comparing the 

coefficients the required fundamental equation set (FES) can be obtained cans in this case it 

will be,  

 

ℎ12
2 − 𝑔12

2 = 0 

𝑔02
2 − ℎ02

2 − 1 = 0 

2ℎ12ℎ21 − 2𝑔12𝑔21 = 0 

2ℎ01ℎ12 − 2ℎ02ℎ11 + 2𝑔02𝑔11 − 2𝑔01𝑔12 = 0 

𝑔11
2 − ℎ11

2 − 2𝑔01𝑔21 + 2𝑔02𝑔20 − 2𝑔10𝑔12 + 2ℎ01ℎ21 − 

2ℎ02ℎ20 + 2ℎ12ℎ10 = 0 

−𝑔01
2 + ℎ01

2 + 2𝑔02 + 2 = 0 

2ℎ30ℎ21 − 2𝑔30𝑔21 = 0 

2𝑔11𝑔20 − 2𝑔10𝑔21 − 2𝑔30𝑔01 + 2ℎ30ℎ01 + 2ℎ10ℎ21 − 2ℎ11ℎ20 = 0 

2𝑔11 − 2𝑔10𝑔01 + 2ℎ10ℎ01 = 0 

ℎ30
2 − 𝑔30

2 = 0 

𝑔20
2 − ℎ20

2 − 2𝑔30𝑔10 + 2ℎ30ℎ10 = 0 

−𝑔10
2 + ℎ10

2 + 2𝑔20 = 0 

(4. 3) 

(4. 4) 

(4. 5) 

(4. 6) 

 

(4. 7) 

(4. 8) 

(4. 9) 

(4. 10) 

(4. 11) 

(4. 12) 

(4. 13) 

(4. 14) 

 

by solving expression 4.4 and expression 4.9, we can obtain the values of 𝑔01 and 𝑔02 as given  

 

 𝑔01 = (2(1 + 𝑔02) + ℎ01
2 )

1
2,        𝑔02 = (1 + ℎ02

2 )
1
2  (4.15) 

 

Similarly, by solving expression 4.14 and 4.13 we can obtain the values of 𝑔10 and 𝑔20 as 

given  

 

 𝑔10 = (2𝑔02 + ℎ02
2 )

1

2,                    𝑔20 = (ℎ02
2 + 2𝑔10𝑔30 − 2ℎ10ℎ30)

1

2  (4.16) 

  

by solving expression 4.12 gives, 

 𝑔30 = |ℎ30| (4.17) 
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by solving expression 4.11 can give, 

 𝑔11 = 𝑔10𝑔01 − ℎ10ℎ01 (4.18) 

 

and remaining coefficients of polynomial 𝑔 and ℎ can be produced by using remaining 

expression from 4.3 to 4.7 presented as of  FES with the restriction 𝑔22 = ℎ22 = 𝑔32 = ℎ32 =

𝑔31 = ℎ31 = 0, the value of 𝑔12, 𝑔21, ℎ12, ℎ21 and ℎ11 can be obtained in a very simple way 

by choosing the expressions from FES wisely. From remaining equations and with some 

substitution from prior study following can be extracted and given as, 

 

 

ℎ11 =
𝜑

𝜃
ℎ02 +

𝜃

𝜑
ℎ20 

𝑔12 =
1

𝜃
(𝑔02𝑔11 − ℎ11ℎ02) 

𝑔21 =
1

𝜑
(𝑔20𝑔11 − ℎ11ℎ20 − 𝑔01𝑔30 + ℎ01ℎ30) 

ℎ21 = 𝜂𝑔21 

ℎ12 = 𝑔12𝑔21/ℎ21 

(4.19) 

 

where 𝜃 = 𝑔01 − 𝜂ℎ01 and  𝜑 = 𝑔10 − 𝜂ℎ10, and it can be noticed that 𝜂 = ±1 is having a 

unique definition and the values of the polynomials 𝑔 and ℎ obtained by this method.  

 

Now by placing the values of independent variables {ℎ01 = 1.7310,  ℎ02 = −1.6281, ℎ10 =

0.1042, ℎ20 = 0.1827, ℎ03 = −0.9960} the coefficient matrices 𝐀𝐠and 𝐀𝐡 can be obtained 

easily and the results are given as follows. Matlab code is used to implement these steps to find 

the solution and this code is presented at the end of the novel. 

 

 

𝐀𝐠 = [

1  2.96950  1.91070
2.03960  5.87620  2.27010
2.07460
0.99600

 3.53170
0

0
0

] , 

𝐀𝐡 = [

0 1.7310 −1.6281
0.1042 −0.3420 −2.2701
0.1827

−0.9960
−3.5317

0
0
0

] 

(4.20) 
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The coefficient matrices 𝐀𝐠and 𝐀𝐡 are representing an explicit solution for case-I with three 

lumped and two distributed (𝑛𝑝 = 3, 𝑛𝜆 = 2 ).  The physical realization corresponding to 

the obtained solution in expression 4.20 can also be interpreted and given in Figure 4.1 

(ŞENGÜL, JANUARY 2008) (AYDOĞAR, n.d.). 

 

 
 

Figure 4.1 Physical Realization of LPLU Section of Degree Five (𝒏𝒑 = 𝟑, 𝒏𝝀 = 𝟐 ). 

4.2.2 Case-II (Three Distributed and Two Lumped (𝒏𝝀 = 𝟑, 𝒏𝒑 = 𝟐 )) 

Now Consider a two-variable polynomial with degree five in such a way that the values of  

𝑛𝜆 = 3, 𝑛𝑝 = 2  and the polynomial 𝑓, 𝑔 and ℎ can be given similarly as above, 

 

𝑓(𝑝, 𝜆) = (1 − 𝜆2)3/2, 

𝑔(𝑝, 𝜆) = 𝑔00 + 𝑔01𝜆 + 𝑔02𝜆
2 + 𝑔03𝜆

3 + 𝑔10𝑝 + 𝑔11𝜆𝑝 + 𝑔12𝜆
2𝑝 + 

𝑔13𝜆
3𝑝 + 𝑔20𝑝

2 + 𝑔21𝑝
2𝑙 + 𝑔22𝑝

2𝜆 + 𝑔23𝑝
2𝜆3   

ℎ(𝑝, 𝜆) =  ℎ00 + ℎ01𝜆 + ℎ02𝜆
2 + ℎ03𝜆

3 + ℎ10𝑝 + ℎ11𝜆𝑝 + ℎ12𝜆
2𝑝 + 

𝑔13𝜆
3𝑝 + ℎ20𝑝

2 + ℎ21𝑝
2𝑙 + ℎ22𝑝

2𝜆 + ℎ23𝑝
2𝜆3  

 

(4.21) 

it is also known that, 

 

 𝑔(𝑝, 𝜆)𝑔(−𝑝,−𝜆) = 𝑓(𝑝, 𝜆)𝑓(−𝑝, −𝜆) + ℎ(𝑝, 𝜆)ℎ(−𝑝,−𝜆) (4.22) 
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assume 𝑔00 = 1 and ℎ00 = 0  and then by making substitution of 4.21 in 4.22 and by 

comparing the coefficients of resultant after the substitution, the required fundamental equation 

set (FES) can be obtained and in this case it will be shown in  , 

 

 ℎ23
2 − 𝑔23

2 = 0 

𝑔13
2 − ℎ13

2 − 2𝑔03𝑔23 − 2ℎ03ℎ23 = 0 

𝑔03
2 + ℎ03

2 + 1 = 0 

2𝑔13𝑔22 − 2𝑔12𝑔23 + 2ℎ12ℎ23 − 2ℎ13ℎ22 = 0 

2𝑔13𝑔02 − 2𝑔12𝑔03 + 2ℎ12ℎ03 + 2ℎ13ℎ02 = 0 

𝑔22
2 − ℎ22

2 − 2𝑔21𝑔23 + 2ℎ21ℎ23 = 0 

ℎ12
2 − 𝑔12

2 − 2𝑔01𝑔23 + 2𝑔02𝑔22 − 2𝑔03𝑔21 + 2𝑔11𝑔13 +  

  2ℎ01ℎ23 − 2ℎ02ℎ22 + 2ℎ03ℎ21 − 2ℎ11ℎ13 = 0 

𝑔02
2 − ℎ02

2 − 2𝑔03𝑔01 + 2ℎ03ℎ01 − 3 = 0 

   2𝑔11𝑔22 − 2𝑔10𝑔23 − 2𝑔12𝑔21 + 2𝑔20𝑔13 + 2ℎ10ℎ23 −  

                       2ℎ11ℎ22 + 2ℎ12ℎ21 − 2ℎ20ℎ13 = 0 

          2𝑔13 − 2𝑔01𝑔12 + 2𝑔02𝑔11 − 2𝑔03𝑔10 + 2ℎ01ℎ12 +  

                                            2ℎ02ℎ11 − 2ℎ03ℎ10 = 0  

                − 𝑔21
2 + ℎ21

2 + 2𝑔20𝑔22 − 2ℎ20ℎ22 = 0 

        ℎ11
2 − 𝑔11

2 + 2𝑔22 − 2𝑔01𝑔21 − 2𝑔02𝑔20 + 2𝑔10𝑔12 +  

                        2ℎ01ℎ21 − 2ℎ02ℎ20 + 2ℎ10ℎ12 = 0  

                                     −𝑔01
2 + ℎ01

2 + 2𝑔02 + 3 = 0 

    2𝑔11𝑔20 − 2𝑔10𝑔21 + 2ℎ10ℎ21 − 2ℎ11ℎ20 = 0 

                               2𝑔11 − 2𝑔10𝑔01 + 2ℎ10ℎ01 = 0 

                                                              𝑔20
2 − ℎ20

2 = 0 

                                             −𝑔10
2 + ℎ10

2 + 2𝑔20 = 0 

(4. 23) 

(4. 24) 

(4. 25) 

(4. 26) 

(4. 27) 

(4. 28) 

 

(4. 29) 

(4. 30) 

 

(4. 31) 

 

(4. 32) 

(4. 33) 

 

(4. 34) 

(4. 35) 

(4. 36) 

(4. 37) 

(4. 38) 

(4. 39) 

 

by solving expression 4.25 gives 𝑔03, 

 𝑔03 = |(1 + ℎ03)
1/2| (4.40) 

 

solution of the expression 4.38 for 𝑔20 is, 

 𝑔20 = |ℎ20| (4.41) 
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solution of the expression 4.39 for 𝑔10 is, 

 

 𝑔10 = |(ℎ10
2 + 2𝑔20)

1/2| (4.42) 

 

by solving expression 4.30 and 4.35 of FES. we can obtain the values of 𝑔01 and 𝑔02 as given  

 

 𝑔01 = |(ℎ01
2 + 2𝑔02 + 3)

1

2| ,        𝑔02 = |(ℎ02
2 + 2𝑔03𝑔01 − 2ℎ03ℎ01 + 3)

1

2|   (4.43) 

 

Clearly, it can be noticed that expression 4.43 consists of two unknowns with two equation and 

with simple algebra or any symbolic solver of any suitable computer program can solve it to 

obtain the desired result, we have used Matlab built in function solve() to find the solutions of 

our problems analytically. 

 

Now by solving expression 4.37 gives 𝑔11, 

 

 𝑔11 = |𝑔10𝑔01 − ℎ10ℎ01| (4.44) 

 

until now,6 unknowns have successfully obtained and remain part is tricky, so some equations 

are simplified and substituted in others to make ease to achieve the desired results. Now 

substitute the obtained values in equation 4.24 and 4.28 the result will be two very simple 

equations as follow, 

 

 𝑔13 = |ℎ13|,         and    𝑔22 = |ℎ22| (4.45) 

 

Now remaining unknowns are 𝑔12, 𝑔21,  ℎ11, ℎ12,  ℎ13,  ℎ21 and ℎ22 and can be obtained by 

simplifying and reducing FES to workable set of equation for this purpose, substitute the values 

of 4.40 to 4.45 expression number 4.27, 4.29, 4.31, 4.32, 4.33, 4.34, 4.36  and restriction 

𝑔32 = ℎ32 = 0, we will get following,   
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𝐴ℎ13 − 𝐵𝑔12 + 𝐶ℎ12 = 0 

ℎ12
2 − 𝑔12

2 + 𝐼𝑔22 − 𝐷𝑔21 + 𝐸ℎ13 + 𝐹ℎ21 + 𝐺ℎ22 − 2ℎ11ℎ13 = 0 

𝐻ℎ13 + 𝐼ℎ22 − 2𝑔12𝑔21 − 2ℎ11ℎ22 + 2ℎ12ℎ21 = 0 

𝐽ℎ11 − 𝐾𝑔12 + 𝑀ℎ12 + 𝑁ℎ13 + constant = 0 

− 𝑔21
2 + ℎ21

2 + 𝐻ℎ22 = 0 

−ℎ11
2 − 𝑂𝑔12 − 𝑃𝑔21 + 2ℎ12 + 𝑄ℎ21 + 2ℎ22 + constant = 0 

    𝐻ℎ11/2 − 𝑅𝑔21 + 2ℎ21 + constant = 0  

(4.46) 

 

In 4.46 the coefficients A to R and constant are used to keep the expressions in simple and 

understandable and the values of the coefficients and constants are strictly depending upon the 

obtained numerical values of unknowns from 4.40 to 4.45. It can be seen clearly that we have 

seven unknowns and seven number of equation so the explicit solution of these expression in 

4.46 is readily possible. Still it requires a huge algebraic manipulation to reach the final results, 

to avoid all that process of calculation MATLAB’s analytical solver by the name of solve() can 

be used to get the required results. A successful detailed Matlab code is provided to solve this 

problem at the end of the dissertation.  

 

Results can be checked by placing the real values of independent variables {ℎ01 = 5.5416 

,  ℎ02 = −1.6667, ℎ03 = 0.2917, ℎ10 = −2.0000, ℎ20 = 22.5} and more than one explicit 

solution are obtained for the coefficient matrices 𝐀𝐠and 𝐀𝐡 and the results are fully satisfying 

the FES are given as follows. Number of solution are varying for every new input values.   

 

In this case we have obtained four number of solutions and given as follows, 

 

• Solution-I: 

 

 

𝐀𝐠 = [
1 6.4583 4.0000   1.0417

7.0000 56.2911 109.8036 15.2310
22.5000 225.7115 33.9288       0      

] , 

𝐀𝐡 = [
0 5.5416 −1.6667   0.2917

−2.0000 −33.9535 96.2321 15.2310
22.5000 225.7115 33.9288       0      

] 

(4.20) 
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• Solution-II: 

 

 

𝐀𝐠 = [
1 6.4583 4.0000   1.0417

7.0000 56.2911 39.6664 7.8751
22.5000 0 127.4971       0      

] , 

𝐀𝐡 = [
0 5.5416 −1.6667   0.2917

−2.0000 56.2911 −11.3333 7.8751
22.5000 0 127.4971       0      

] 

(4.21) 

 

 

• Solution-III: 

 

 

𝐀𝐠 = [
1 6.4583 4.0000   1.0417

7.0000 56.2911 107.6663 37.0887
22.5000 235.4613 462.8180       0      

] , 

𝐀𝐡 = [
0 5.5416 −1.6667      0.2917

−2.0000 −27.4012 87.8142  −37.0887
22.5000 117.4240 −462.818           0      

] 

(4.22) 

 

 

• Solution-IV: 

 

 

𝐀𝐠 = [
1 6.4583 4.0000   1.0417

7.0000 56.2911 158.9884 54.6088
22.5000 100.0465 44.1968       0      

] , 

𝐀𝐡 = [
0 5.5416 −1.6667      0.2917

−2.0000 18.2621 130.6256  −54.6088
22.5000 77.6633 −44.1968           0      

] 

(4.23) 

 

 

The coefficient matrices 𝐀𝐠and 𝐀𝐡 are representing explicit solution for case-II with two 

lumped and three distributed (𝑛𝑝 = 2, 𝑛𝜆 = 3 ). The physical realization corresponding to 

the obtained solution in expression 4.20 can also be interpreted and given in Figure 4.2 

(ŞENGÜL, JANUARY 2008) (AYDOĞAR, n.d.). 

 

 



 

 

 

 

69 

 

 

 

 

 
 

Figure 4.2 Example N0.1 Physical Realization of LPLU Section of Degree Five 

(𝒏𝒑 = 𝟐, 𝒏𝝀 = 𝟑 ). 

 

Another example can confirm the results, now consider these input values  {ℎ01 = 7.4166 

,  ℎ02 = −0.8333, ℎ03 = 11.9792, ℎ10 = 1.0000, ℎ20 = −7.5} and more than one explicit 

solution are obtained this time as well for the coefficient matrices 𝐀𝐠and 𝐀𝐡 and the results are 

fully satisfying the FES are given as follows. Confirming that the number of solution are 

varying for every new input values.   

 

In this case we have obtained six number of solutions and given as follows, 

 

• Solution-I: 

 

 

𝐀𝐠 = [
1 8.2338   4.8949   12.0209

4.0000 25.5186 94.1598 3.1768
7.5000 44.5908 5.3628     0      

] , 

𝐀𝐡 = [
0   7.4166 −0.8333   11.9792

1.0000 −7.4367 92.9682 3.1768
−7.5000 42.7488 5.3628       0      

] 

(4.24) 

 

•  Solution-II: 

 

 

𝐀𝐠 = [
1 8.2338   4.8949   12.0209

4.0000 25.5186 81.1862  10.9962
7.5000 69.7702 55.2233       0      

] , 

𝐀𝐡 = [
0 7.4166 −0.8333   11.9792

1.0000 4.1365 76.2105   10.9962
−7.5000 56.6673 55.2233       0      

] 

(4.25) 
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• Solution-III: 

 

 

𝐀𝐠 = [
1  8.2338  4.8949   12.0209

4.0000 25.5186 16.2462 36.1043
7.5000 0 30.4615       0      

] , 

𝐀𝐡 = [
0 7.4166 −0.8333      11.9792

1.0000 −25.5186 −11.3333 −36.1043
−7.5000 0 −30.4615          0      

] 

(4.26) 

 

• Solution-IV: 

 

 

𝐀𝐠 = [
1 8.2338 4.8949   12.0209

4.0000 25.5186 102.5075 4.0572
7.5000 59.1909 2.5476       0      

] , 

𝐀𝐡 = [
0 7.4166  −0.8333   11.9792

1.0000 −1.8423 101.4884 −4.0572
−7.5000 59.1909 −2.5476       0      

] 

(4.27) 

 

• Solution-V: 

 

 

𝐀𝐠 = [
1 8.2338 4.8949   12.0209

4.0000 25.5186 16.6642 37.6843
7.5000 4.9032 30.9140       0      

] , 

𝐀𝐡 = [
0   7.4166 −0.8333      11.9792

1.0000   −22.2498 3.9452     −37.6843
−7.5000 −4.9032 −30.9140          0      

] 

(4.28) 

 

 

• Solution-VI: 

 

 

𝐀𝐠 = [
1 8.2338 4.8949   12.0209

4.0000 25.5186 16.2463 36.1042
7.5000 0 30.4619       0      

] , 

𝐀𝐡 = [
0 7.4166 −0.8333   11.9792

1.0000 −25.5186     4.0617 −36.1042
−7.5000 0 −30.4619       0      

] 

(4.29) 
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The coefficient matrices 𝐀𝐠and 𝐀𝐡 are representing explicit solutions for case-II with two 

lumped and three distributed (𝑛𝑝 = 2, 𝑛𝜆 = 3 ). The physical realization corresponding to 

the obtained solution in expression 4.24 can also be interpreted and given in Figure 4.3  

(ŞENGÜL, JANUARY 2008) (AYDOĞAR, n.d.). 

 

 

 
 

Figure 4.3 Example No.2 Physical Realization of LPLU Section of Degree Five 

(𝒏𝒑 = 𝟐, 𝒏𝝀 = 𝟑 ). 
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5 CONCLUSION AND REMARKS 
 

In this chapter the previous discussion about the construction of mixed lumped and distributed 

elements will be discussed and conclusive summery will be given about the “Standard 

Decomposition Technique (SDT)” use to solve fundamental equation set for general cascaded 

structures of two-port networks. An algorithm based on SDT to designed mixed lossless two-

port cascaded network is given and the chapter is ending with remarks section.  

5.1 Standard Decomposition Technique to Solve Fundamental Equation 

Set Representing a General Lossless Mixed Two-port Network 

Cascade 

It is clear from the earlier discussions, to construct a mixed lumped and distributed two-port 

cascaded structure, it is critical to estimate two-variable polynomial those are satisfying the 

“Fundamental Equation Set” representation of the cascade. It is also fact that the solutions to 

the FES are not unique, so the problem is to determine the solutions those able to develop 

realizable structures. To encounter this problem in better way, a method named “Standard 

Decomposition Technique (SDT)” is proposed to solve the FES. Before moving towards the 

proposed algorithm following are some important point from previous study, 

• There are 𝑛𝑝 + 1 independent equations having 𝑛𝑝 + 1  coefficients of 𝐀𝐠 and 𝐀𝐡 

matrices each. To describe a lossless mixed two-port network 𝑛𝑝 + 1 coefficients of 

the matrix 𝐀𝐡, are chosen as independent variables. The coefficient of polynomial 𝑓 

are also know and fixed by the designer, because of the selection of transmission 

zeros, in both domains 𝑝 and 𝜆. Hence, the choice of entire 𝑓(𝑝, 𝜆) is made in 

advance as 𝑓(𝑝, 𝜆) = 𝑓1(𝑝)𝑓2(𝜆). So, by using 𝑛𝑝 + 1 equations from FES can be 

used to obtain 𝑔0𝑘 (𝑘 = 0 𝑡𝑜 𝑛𝑝) coefficients by converting 𝑛𝑝 + 1 equations into  

an even polynomial identity in 𝑝 domain, given as follows, 
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 𝐺(−𝑝2) = 𝑔(𝑝, 0)𝑔(−𝑝, 0) = ℎ(𝑝, 0)ℎ(−𝑝, 0) + 𝑓1(𝑝)𝑓1(−𝑝) (5.1) 

 

where 𝑔(𝑝, 0) polynomial is strictly Hurwitz and can easily be produced by doing 

explicit factorization of the even polynomial given in 5.1 and 𝑔(𝑝, 0) is formed by 

using left half plane roots of 𝐺(−𝑝2). 

• Similarly, 𝑛𝜆 + 1 independent equations having 𝑛𝜆 + 1  coefficients of 𝐀𝐠 and 𝐀𝐡 

matrices each, can be used to extract 𝑔0𝑘 (𝑘 = 0 𝑡𝑜 𝑛𝜆) coefficients from FES by 

converting 𝑛𝜆 + 1 equations into an even polynomial identity in complex variable 𝜆, 

given as follows, 

 

 𝑔(0, 𝜆)𝑔(0,−𝜆) = ℎ(0, 𝜆)ℎ(0,−𝜆) + 𝑓2(𝜆)𝑓2(−𝜆) (5.2) 

 

in this expression 𝑔(0, 𝜆) is strictly Hurwitz, 𝑔0𝑘 (𝑘 = 0 𝑡𝑜 𝑛𝜆) are determined 

directly by ℎ0𝑘 and 𝑓2(𝜆). 

 

Thus, the polynomial sets {𝑔(𝑝, 0), ℎ(𝑝, 0) and 𝑓1(𝑝)} and {𝑔(0, 𝜆), ℎ(0, 𝜆) and 𝑓2(𝜆)} form 

two independent lumped and distributed network prototypes respectively. These prototypes can 

be broken into subsections and these subsections can be connected to each other to form a 

desired cascade with lumped and distributed elements. As a result of above cascading 

procedure, connectivity matrices 𝐀𝐠𝒌
 and 𝐀𝐡𝒌

 are formed. Consequently, the obtained solution 

to FES is based on SDT and the complete algorithm is discussed in next section.  

5.2 Standard Decomposition Algorithm to Build a General Lossless Mixed 

Two-port Network Cascade 

A complete “Scattering Matrix” 𝑆(𝑝, 𝜆) representing mixed lumped and distributed lossless 

two-port cascade is generated by the algorithm by using first row and first column of matrix 

𝐀𝐡. Therefor the algorithm is initialized by providing the values of  ℎ0𝑘 and ℎ𝑙0 as input and 

𝑓(𝑝, 𝜆) is also stated by the designer in such a fashion 𝑓(0,0) ≠ 0. Furthermore, the complexity 

of the network designed topology is also preselected by the designer, it means the total number 

of lumped 𝑛𝑝 and distributed 𝑛𝜆 elements are chosen in advance. Following are the steps to 

implement the algorithm. 
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• Inputs: 

𝑛𝜆 = Number of all distributed elements used in design. 

𝑛𝑝 = Number of all lumped elements used in design. 

ℎ0𝑘 =  First row of 𝐀𝐡 matrix where 𝑘 = 0 𝑡𝑜 𝑛𝜆. 

ℎ𝑙0 =  First column of 𝐀𝐡 matrix where 𝑙 = 1 𝑡𝑜 𝑛𝑝. 

𝑓0𝑘 = Coefficients of 𝑓1(𝑝). 

𝑓𝑘0 = Coefficients of 𝑓2(𝜆). 

 

• Step-I: 

Produce the equation 𝐺(−𝑝2) = ℎ(𝑝, 0)ℎ(−𝑝, 0) + 𝑓1(𝑝)𝑓1(−𝑝) as a polynomial 

in −𝑝2 where 𝑓1(𝑝) = 𝑓(𝑝, 0). 

• Step-II: 

Find the roots of 𝐺(−𝑝2) polynomial generated in step I and choose the “left half 

plan (LHP)” zeros to develop the canonical polynomial 𝑔(𝑝, 𝜆) as a strict Hurwitz. 

• Step-III: 

Generate a polynomial 𝑔(0, 𝜆)𝑔(0,−𝜆) = ℎ(0, 𝜆)ℎ(0,−𝜆) + 𝑓2(𝜆)𝑓2(−𝜆) 

𝑓2(𝜆) = 𝑓(0, 𝜆). 

• Step-IV: 

Now find the roots of 𝑔(0, 𝜆)𝑔(0,−𝜆) obtained in previous step. Develop the 

canonic form of polynomial 𝑔(0, 𝜆) by using the roots of 𝑔(0, 𝜆)𝑔(0,−𝜆) lies in 

LHP. 

• Step-V: 

Choose the degrees of the lumped 𝑁𝑝𝑘 and distributed 𝑁𝜆𝑘 subsections and select 

𝑓𝑘(𝑝) and 𝑓𝑘(𝜆) for the “Algebraic Decomposition”. 

• Step-VI: 

To obtain the scattering parameters of lumped sub-segments use the algebraic 

decomposition algorithm to breakdown the lumped master structures, built with the 

scattering parameters on the canonic polynomials {𝑔(𝑝, 0), ℎ(𝑝, 0) and 𝑓1(𝑝)}. 

Important thing to understand here is canonic polynomials 𝑓𝑘(𝑝) , 𝑔𝑘(𝑝) and ℎ𝑘(𝑝) 

are obtained as the result of the decomposition algorithm.  
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• Step-VII: 

Repeat the step VI for predefined 𝑓𝑘(𝜆) and 𝑁𝜆𝑘 to calculate the scattering 

parameters of distributed sub-segments formed on canonic polynomial {𝑔(0, 𝜆), 

ℎ(0, 𝜆) and 𝑓2(𝜆)}. 

• Step-VIII: 

For each subsection develop “Transfer Scattering Parameters”  𝐓𝐤(𝐩) and 𝐓𝐤(𝛌) 

and multiply them in a sequential pattern to obtain “Transfer Scattering Matrix” for 

the composite structure. By doing this, get the canonic forms of polynomials 

𝑔(𝑝, 𝜆), ℎ(𝑝, 𝜆) and 𝑓(𝑝, 𝜆), which results the connectivity matrices 𝐀𝐠𝒌
 and 𝐀𝐡𝒌

. 

 

From above discussion it is clear that in STD algorithm root finding algorithm is used twice 

and then followed by solution finding of several linear equations in a well sequential pattern as 

of described in “Algebraic Decomposition Algorithm” (Aksen, 1994) with a proper choice of 

decomposition is made by the designer. In the algorithm, the connectivity matrices 𝐀𝐠𝒌
 and 

𝐀𝐡𝒌
 are obtained by the multiplication of each single transfer matrices developed by the 

algebraic decomposition matrix in one variable and the representation used for single transfer 

matrix in one variable for k’th lumped and distributed element is  𝐓𝐋𝒌
(𝒑) and 𝑻𝑫𝒌

(𝝀) 

respectively and the entire overall transfer matrix can be given as, 

 

 𝐓(𝐩, 𝛌) = 𝐓𝐋𝟏
 𝑻𝑫𝟏

𝐓𝐋𝟐
 𝑻𝑫𝟐

……… (5.3) 

 

The general members of the connectivity matrices 𝐀𝐠𝒌
 and 𝐀𝐡𝒌

 of composite design, can be 

given by using following sequential formulas,  

 

 ℎ𝑘𝑙 = ∑ ℎ𝑘𝑛
(𝑚−1)

𝑔𝑘𝑙−𝑛

𝑙

𝑛=0

+ 𝛾(𝑚−1)(−1)𝑘−𝑛𝑔𝑘𝑛
(𝑚−1)

ℎ𝑘𝑙−𝑛
 (5.4) 

 

 𝑔𝑘𝑙 = ∑ 𝑔𝑘𝑛
(𝑚−1)

𝑔𝑘𝑙−𝑛

𝑙

𝑛=0

+ 𝛾(𝑚−1)(−1)𝑘−𝑛ℎ𝑘𝑛
(𝑚−1)

ℎ𝑘𝑙−𝑛
 (5.5) 
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where 𝑘 = 1,2, … , 𝑛𝑝 and 𝑙 = 1,2, … , 𝑛𝜆 and the subscription (𝑚 − 1) is showing previous 

stage subscription 𝑚 are last cascaded section. 𝑚 is total number of sections in cascade and 

𝛾 = ±1.  

 

5.3 Remarks 

• While using standard decomposition technique, when algebraic decomposition 

algorithm is used to find distributed and lumped subsections the transmission zeroes 

of 𝑓(𝑝, 𝜆) should be distributed in proper way. If LPLU is under construction, then 

distribution of zeroes of 𝑓(𝑝, 𝜆) is simple and straight forward. For LPLU 

consideration, each for SLS, 𝑓𝑘(𝑝) is set to 1 and for each unit element section 

𝑓𝑘(𝜆) = (1 − 𝜆2)
1

2⁄ . 

• The above STD is only 𝑓(𝑝, 𝜆) = 𝑓1(𝑝)𝑓2(𝜆) ≠ 0 for 𝑝 = 0 and 𝜆 = 0 case, that is 

expressing a low pass type structure i.e. 𝑓(0,0) ≠ 0. 

• It should also be noted that the all realizable solutions developed by using the 

algorithm, after solving FES are not unique, mean for same inputs that is first row 

and first columns of matrix 𝐀𝐡, various solution can be obtained dependent on 

connectivity information. 

• In order to develop a general solution, there is a need to define the realizability 

condition as a set of additional constraints to “Fundamental Equation Set”. If it is 

possible to generate strict scattering Hurwitz polynomial 𝑔(𝑝, 𝜆) and is also a 

denominator term, then the connectivity information is implanted completely in 𝐀𝐠𝒌
 

and 𝐀𝐡𝒌
 matrices that is why known as connectivity matrices, by this way there is 

no need to develop synthesis procedure to obtain the final realization.  However, 

synthesis of general designs up to limited complexity can be attempted by using 

trial and error method.  
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6 MATLAB CODE 
 

In this section Matlab code for above solutions is given. 

 

6.1 Case-I (Three Lumped and Two Distributed (𝒏𝒑 = 𝟑, 𝒏𝝀 = 𝟐 )) 

clear all 
close all 
clc 
input=[]; 
output=[]; 
for i=1:1000 
syms g01 g02 g10 g11 g12 g20 g21 g30 
syms h01 h02 h10 h11 h12 h20 h21 h30 
syms l p 
syms A B C D E 

  
g = symfun(1 + g01*l + g02*l^2 + g10*p + g11*l*p + g12*l^2*p + g20*p^2 + 

g21*p^2*l +g30*p^3,[p,l]); % g00 is selected as 1 
G = symfun(g(p,l) * g(-p,-l), [p,l]); 

  

  
h = symfun(0 + h01*l + h02*l^2 + h10*p + h11*l*p + h12*l^2*p + h20*p^2 + 

h21*p^2*l +h30*p^3,[p,l]); 
%h = symfun(0 + A*l + B*l^2 + C*p + h11*l*p + h12*l^2*p + D*p^2 + h21*p^2*l 

+E*p^3,[p,l]); % h00 is 0 
H = symfun(h(p,l) * h(-p,-l), [p,l]); 

  
n = 2; % The number of dist. elements 
f = symfun((1-l^2)^(n/2),l); 
F = symfun(f(l) * f(-l), l); 

  
sag = (eval(H)+eval(F)); 
sol = (eval(G)); 

  
[cLP a] = coeffs(sol-sag,[l,p]); 

  
equ=cLP.'; 

  

  
hval=randn(1,5); 
input=[input;hval]; 
h01 =hval(1,1); 
h02 =hval(1,2); 
h10 =hval(1,3); 
h20 =hval(1,4); 
h30 =hval(1,5); 



 

 

 

 

78 

 

 

 

 

[G01, G02] = solve([eval(equ(2)),eval(equ(7))],[g01, g02]); 
% g01t=eval(unique(G01(G01>0))); 
% g02t=eval(unique(G02(G02>0))); 
G01=double(G01); 
G02=double(G02); 
g01t=unique(G01(G01>0)); 
g02t=unique(G02(G02>0)); 

  

  
%Value of g30 from equa(11)  
G30=solve(eval(equ(11)),g30); 
G30=double(G30); 
g30t=unique(G30(G30>0)); 
g30=g30t; 

  
% g11t=eval(unique(G11(G11>0))); 
% g11=g11t; 
% pause 
%Value of g10 and g20 from equa(12,13) by useing first value of g30  
[G10, G20] = solve([eval(equ(12)),eval(equ(13))],[g10, g20]); 
G10=double(G10); 
G20=double(G20); 
g10t=unique(G10(G10>0)); 
g20t=unique(G20(G20>0)); 

  
h12t=[];g12t=[];h21t=[];g21t=[];h11t=[];g11t=[];sol_set=[]; 
for i=1:size(g01t,1) 
    for j=1:size(g10t,1) 
        g01=g01t(i,1); 
        g10=g10t(j,1); 
        G11=solve(eval(equ(10)),g11); 
        g11t=[g11t;G11]; 
    end 
end 
g11t=double(g11t); 
g11t=unique(g11t(g11t>0)); 

  
% Calculation of h12,g12,h21,g21,h11,g11 
g00=1;g22=0;g31=0;g32=0; 
h00=0;h22=0;h31=0;h32=0; 
for i=1:size(g01t,1) 
    for j=1:size(g02t,1) 
        for k=1:size(g30t,1) 
            for l=1:size(g10t,1) 
                for m=1:size(g20t,1) 
                    for n=1:size(g11t,1) 
                        g01=g01t(i,1); 
                        g02=g02t(j,1); 
                        g30=g30t(k,1); 
                        g10=g10t(l,1); 
                        g20=g20t(m,1); 
                        g11=g11t(n,1); 
                        [H12,G12,H21,G21,H11] = 

solve([eval(equ(1)),eval(equ(3)),eval(equ(4)),eval(equ(5)),eval(equ(6)),eva

l(equ(8)),eval(equ(9))],[h12,g12,h21,g21,h11]); 
                        %pause 
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                        H12=double(H12); 
                        %h12t=[h12t;H12]; 
                        G12=double(G12); 
                        %g12t=[g12t;G12]; 
                        H21=double(H21); 
                        %h21t=[h21t;H21]; 
                        G21=double(G21); 
                        %g21t=[g21t;G21]; 
                        H11=double(H11); 
                        %h11t=[h11t;H11]; 
                        %G11=eval(G11); 
                        %g11t=[g11t;G11]; 
                        

sol_set=[sol_set;g00,g01,g02,g10,g11,G12(1),g20,G21(1),g22,g30,g31,g32,h00,

h01,h02,h10,H11(1),H12(1),h20,H21(1),h22,h30,h31,h32; 
                            

g00,g01,g02,g10,g11,G12(2),g20,G21(2),g22,g30,g31,g32,h00,h01,h02,h10,H11(2

),H12(2),h20,H21(2),h22,h30,h31,h32]; 

                             
                        

%sol_set=[sol_set;g01,g02,g30,g10,g20,g11,G12(1),G21(1),H12(1),... 
                         %   

H11(1),H21(1);g01,g02,g30,g10,g20,g11,G12(2),G21(2),H12(2),... 
                          %  H11(2),H21(2)]; 
                    end 

                 
                end 
            end 
        end 
    end 
end 
sol_set=real(sol_set) 
sol_set=unique(sol_set,'rows'); 
sol_set_ini=sol_set 

  
remove=[]; 
for i=1:size(sol_set,1) 
    for j=1:12 
        if sol_set(i,j)<0 
            remove=[remove i]; 
        end 
    end 
end 
 sol_set(remove,:)=[]; 

  
 for i=1:size(sol_set,1) 
    for j=1:size(sol_set',1)/2 
        sol_set_g(i,j)=sol_set(i,j); 
        sol_set_h(i,j)=sol_set(i,j+12); 
    end 
end 

  
for i=1:size(sol_set,1) 
Ag{i}=[sol_set_g(i,1),sol_set_g(i,2),sol_set_g(i,3);sol_set_g(i,4),sol_set_

g(i,5),sol_set_g(i,6);... 
    

sol_set_g(i,7),sol_set_g(i,8),sol_set_g(i,9);sol_set_g(i,10),sol_set_g(i,11

),sol_set_g(i,12)]; 
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Ah{i}=[sol_set_h(i,1),sol_set_h(i,2),sol_set_h(i,3);sol_set_h(i,4),sol_set_

h(i,5),sol_set_h(i,6);... 
    

sol_set_h(i,7),sol_set_h(i,8),sol_set_h(i,9);sol_set_h(i,10),sol_set_h(i,11

),sol_set_h(i,12)]; 
%     fprintf('Solution NO.%d for "g" matrix is\n',i) 
%     display(Ag{i}); 
%     fprintf('Solution NO.%d for "h" matrix is\n',i) 
%     display(Ah{i}); 
%     fprintf('and\n\n\n') 
end 
check=[]; 
for i=1:size(sol_set,1) 
    

g00=sol_set(i,1);g01=sol_set(i,2);g02=sol_set(i,3);g10=sol_set(i,4);g11=sol

_set(i,5); 
    g12=sol_set(i,6);g20=sol_set(i,7);g21=sol_set(i,8);g22=sol_set(i,9); 
    

g30=sol_set(i,10);g31=sol_set(i,11);g32=sol_set(i,12);h00=sol_set(i,13); 
    

h01=sol_set(i,14);h02=sol_set(i,15);h10=sol_set(i,16);h11=sol_set(i,17);h12

=sol_set(i,18); 
    

h20=sol_set(i,19);h21=sol_set(i,20);h22=sol_set(i,21);h30=sol_set(i,22);h31

=sol_set(i,23);h32=sol_set(i,24); 
    result=eval(equ); 
    result=round(result,5); 

     
    if sum(result)==0 
        j=1; 
        Matrix_g{j}=[g00,g01,g02;g10,g11,g12;g20,g21,g22;g30,g31,g32]; 
        Matrix_h{j}=[h00,h01,h02;h10,h11,h12;h20,h21,h22;h30,h31,h32]; 
        

alloutval=[g00,g01,g02,g10,g11,g12,g20,g21,g22,g30,g31,g32,h00,h01,h02,h10,

h11,h12,h20,h21,h22,h30,h31,h32]; 
        fprintf('Solution NO.%d for "g" matrix is\n',j) 
        display(Matrix_g{j}); 
        fprintf('Solution NO.%d for "h" matrix is\n',j) 
        display(Matrix_h{j}); 
    end 

     
    check=[check result];      
end 
output=[output;alloutval]; 
end 
newoutput=[output(:,2) output(:,3) output(:,4) output(:,5) output(:,6) ... 
            output(:,7) output(:,8) output(:,10) output(:,17) output(:,18) 

output(:,20)]; 
filename = 'testdata.xlsx'; 
xlswrite(filename,input,1); 
xlswrite(filename,newoutput,2); 
filename = 'datafile.xlsx'; 

xlswrite(filename,ssset,1);  
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6.2 Case-I (Three Lumped and Two Distributed (𝒏𝒑 = 𝟐, 𝒏𝝀 = 𝟑 )) 

clear all 
close all 
clc 
%% intial part to find the equation set%% 
syms g01 g02 g03 g10 g11 g12 g13 g20 g21 g22 g23 
syms h01 h02 h03 h10 h11 h12 h13 h20 h21 h22 h23 
syms l p 
%syms A B C D E 

  
g = symfun(1 + g01*l + g02*l^2 + g03*l^3+ g10*p + g11*l*p + g12*l^2*p + 

g13*l^3*p + g20*p^2 + g21*p^2*l + g22*p^2*l^2 + g23*p^2*l^3,[p,l]); % g00 

is selected as 1 
G = symfun(g(p,l) * g(-p,-l), [p,l]); 

  

  
h = symfun(0 + h01*l + h02*l^2 + h03*l^3+ h10*p + h11*l*p + h12*l^2*p + 

h13*l^3*p + h20*p^2 + h21*p^2*l + h22*p^2*l^2 + h23*p^2*l^3,[p,l]); 
%h = symfun(0 + A*l + B*l^2 + C*p + h11*l*p + h12*l^2*p + D*p^2 + h21*p^2*l 

+E*p^3,[p,l]); % h00 is 0 
H = symfun(h(p,l) * h(-p,-l), [p,l]); 

  
n = 3; % The number of dist. elements 
f = symfun((1-l^2)^(n/2),l); 
F = symfun(f(l) * f(-l), l); 

  
RHS = (eval(H)+eval(F)); 
LHS = (eval(G)); 

  
[cLP a] = coeffs(LHS-RHS,[l,p]); 

  
equ=cLP.'; 
%% assigning the values to the known variables 
% h01 =7.4166; 
% h02 =-0.8333; 
% h10 =1; 
% h20 =-7.5; 
% h03 =11.9792; 
h01 =5.5416; 
h02 =-1.6667; 
h10 =-2; 
h20 =22.5; 
h03 =0.2917; 
%% solving equ(3) for g03 
G03=solve(eval(equ(3)),g03); 
G03=double(G03); 
g03t=unique(G03(G03>0)); 
g03=g03t; 
%% solving equ(16) for g20 
G20=solve(eval(equ(16)),g20); 
G20=double(G20); 
g20t=unique(G20(G20>0)); 
g20=g20t; 
%% solving equ(17) for g10 
G10=solve(eval(equ(17)),g10); 
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G10=double(G10); 
g10t=unique(G10(G10>0)); 
g10=g10t; 
%% solving equ(8) and equ(13) for g01 and g02 
[G01, G02] = solve([eval(equ(8)),eval(equ(13))],[g01, g02]); 
G01=round(double(G01),5); 
G02=round(double(G02),5); 
g01t=unique(G01(G01>0)); 
g02t=unique(G02(G02>0)); 
g02=g02t; 

  
%% solving equ(15) for g11 
g11t=[]; 
   for i=1:size(g01t,1) 
        g01=g01t(i); 
        G11=solve(eval(equ(15)),g11); 
        G11=double(G11); 
        g11tt=unique(G11(G11>0)); 
        g11t=[g11t;g11tt]; 
   end 
   %% 
   g01=g01t(2);g11=g11t(2);g02=g02t; g23=0;h23=0; 
   [G13, G22] = solve([eval(equ(2)),eval(equ(6))],[g13, g22]); 
   sset=[]; 
   for i=1:size(G13,1) 
        g13=G13(i); g22=G22(i); 
        [G12,G21,H11,H12,H13,H21,H22] = solve([eval(equ(5)),... 
        eval(equ(7)),eval(equ(9)),eval(equ(10)),... 
        

eval(equ(11)),eval(equ(12)),eval(equ(14))],[g12,g21,h11,h12,h13,h21,h22]); 
            if i==1 
                Gt13=H13; Gt22=H22; 
            elseif i==2 
                Gt13=-H13; Gt22=H22; 
            elseif i==3 
                Gt13=H13; Gt22=-H22; 
            else i==4 
                Gt13=-H13; Gt22=-H22; 
            end 
        a=[G12,Gt13,G21,Gt22,H11,H12,H13,H21,H22]; 
        sset=[sset;a]; 
   end 
   ssset=double(sset); 
   remove=[]; 
for i=1:size(ssset,1) 
    for j=1:4 
        if real(ssset(i,j))<0   
            remove=[remove i];             
        end 
    end 
end 
remove=unique(remove,'stable'); 
ssset(remove,:)=[]; 

  
remove=[]; 
for i=1:size(ssset,1) 
    for j=1:9 
        if imag(ssset(i,j))>0   
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            remove=[remove i]; 
        end 
    end 
end 
remove=unique(remove,'stable'); 
ssset(remove,:)=[]; 

  
remove=[]; 
for i=1:size(ssset,1) 
    for j=1:9 
        if imag(ssset(i,j))<0   
            remove=[remove i]; 
        end 
    end 
end 
remove=unique(remove,'stable'); 
ssset(remove,:)=[]; 
gt00=ones(size(ssset,1),1); 
gt01=ones(size(ssset,1),1)*g01t(2); 
gt02=ones(size(ssset,1),1)*g02; 
gt03=ones(size(ssset,1),1)*g03; 
gt10=ones(size(ssset,1),1)*g10; 
gt11=ones(size(ssset,1),1)*g11t(2); 
gt20=ones(size(ssset,1),1)*g20; 
gt23=zeros(size(ssset,1),1); 
%% 
ht00=zeros(size(ssset,1),1); 
ht01=ones(size(ssset,1),1)*h01; 
ht02=ones(size(ssset,1),1)*h02; 
ht03=ones(size(ssset,1),1)*h03; 
ht10=ones(size(ssset,1),1)*h10; 
ht20=ones(size(ssset,1),1)*h20; 
ht23=zeros(size(ssset,1),1); 

  
set1=[gt00 gt01 gt02 gt03 gt10 gt11 ssset(:,1) ssset(:,2) gt20 ssset(:,3) 

ssset(:,4) gt23 ...  
        ht00 ht01 ht02 ht03 ht10 ssset(:,5) ssset(:,6) ssset(:,7) ht20 

ssset(:,8) ssset(:,9) ht23]; 
g01=g01t(1);g11=g11t(1);g02=g02t; g23=0;h23=0; 
%   [G13, G22] = solve([eval(equ(2)),eval(equ(6))],[g13, g22]); 
   sset=[]; 
   ssset=[]; 
   for i=1:size(G13,1) 
        g13=G13(i); g22=G22(i); 
        [G12,G21,H11,H12,H13,H21,H22] = solve([eval(equ(5)),... 
        eval(equ(7)),eval(equ(9)),eval(equ(10)),... 
        

eval(equ(11)),eval(equ(12)),eval(equ(14))],[g12,g21,h11,h12,h13,h21,h22]); 
            if i==1 
                Gt13=H13; Gt22=H22; 
            elseif i==2 
                Gt13=-H13; Gt22=H22; 
            elseif i==3 
                Gt13=H13; Gt22=-H22; 
            else i==4 
                Gt13=-H13; Gt22=-H22; 
            end 
        a=[G12,Gt13,G21,Gt22,H11,H12,H13,H21,H22]; 
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        sset=[sset;a]; 
   end 
   ssset=double(sset); 
   remove=[]; 
for i=1:size(ssset,1) 
    for j=1:4 
        if real(ssset(i,j))<0   
            remove=[remove i];             
        end 
    end 
end 
remove=unique(remove,'stable'); 
ssset(remove,:)=[]; 

  
remove=[]; 
for i=1:size(ssset,1) 
    for j=1:9 
        if imag(ssset(i,j))>0   
            remove=[remove i]; 
        end 
    end 
end 
remove=unique(remove,'stable'); 
ssset(remove,:)=[]; 

  
remove=[]; 
for i=1:size(ssset,1) 
    for j=1:9 
        if imag(ssset(i,j))<0   
            remove=[remove i]; 
        end 
    end 
end 
remove=unique(remove,'stable'); 
ssset(remove,:)=[]; 
gt00=ones(size(ssset,1),1); 
gt01=ones(size(ssset,1),1)*g01t(1); 
gt02=ones(size(ssset,1),1)*g02; 
gt03=ones(size(ssset,1),1)*g03; 
gt10=ones(size(ssset,1),1)*g10; 
gt11=ones(size(ssset,1),1)*g11t(1); 
gt20=ones(size(ssset,1),1)*g20; 
gt23=zeros(size(ssset,1),1); 
%% 
ht00=zeros(size(ssset,1),1); 
ht01=ones(size(ssset,1),1)*h01; 
ht02=ones(size(ssset,1),1)*h02; 
ht03=ones(size(ssset,1),1)*h03; 
ht10=ones(size(ssset,1),1)*h10; 
ht20=ones(size(ssset,1),1)*h20; 
ht23=zeros(size(ssset,1),1); 

  
set2=[gt00 gt01 gt02 gt03 gt10 gt11 ssset(:,1) ssset(:,2) gt20 ssset(:,3) 

ssset(:,4) gt23 ...  
        ht00 ht01 ht02 ht03 ht10 ssset(:,5) ssset(:,6) ssset(:,7) ht20 

ssset(:,8) ssset(:,9) ht23]; 
%%     
set=[set1;set2]; 
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sol_set=unique(set,'rows','stable'); 
j=0; 
result1=[];result2=[];all_results=[]; 
check=[];output=[]; 
for i=1:size(sol_set,1) 
    

g00=sol_set(i,1);g01=sol_set(i,2);g02=sol_set(i,3);g03=sol_set(i,4);g10=sol

_set(i,5);g11=sol_set(i,6); 
    

g12=sol_set(i,7);g13=sol_set(i,8);g20=sol_set(i,9);g21=sol_set(i,10);g22=so

l_set(i,11);g23=sol_set(i,12); 
    

h00=sol_set(i,13);h01=sol_set(i,14);h02=sol_set(i,15);h03=sol_set(i,16);h10

=sol_set(i,17);h11=sol_set(i,18); 
    

h12=sol_set(i,19);h13=sol_set(i,20);h20=sol_set(i,21);h21=sol_set(i,22);h22

=sol_set(i,23);h23=sol_set(i,24); 
    result=eval(equ); % equation eveluation 
    result1=[result1,result];%store of evaluated result 
    result=round(result,3);%rounded result 
    result2=[result2,result];%store of evaluated and rounded result 
    

result3=[g00,g01,g02,g03,g10,g11,g12,g13,g20,g21,g22,g23,h00,h01,h02,h03,h1

0,h11,h12,h13,h20,h21,h22,h23];%founded values of variables  
    all_results=[all_results;result3];% store of all founded values of 

variables  
    if sum(result)==0 
        j=j+1; 
        Matrix_g{j}=[g00,g01,g02,g03;g10,g11,g12,g13;g20,g21,g22,g23]; 
        Matrix_h{j}=[h00,h01,h02,h03;h10,h11,h12,h13;h20,h21,h22,h23]; 
        

outputt=[g00,g01,g02,g03,g10,g11,g12,g13,g20,g21,g22,g23,h00,h01,h02,h03,h1

0,h11,h12,h13,h20,h21,h22,h23]; 
        fprintf('Solution NO.%d for "g" matrix is\n',j) 
        display(Matrix_g{j}); 
        fprintf('Solution NO.%d for "h" matrix is\n',j) 
        display(Matrix_h{j}); 
        output=[output;outputt];%varifed and satisfying equations 
    end 
end 
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