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PHARMACOPHORE-BASED SCREENING AND DOCKING FOR 

THE DISCOVERY OF NOVEL ANTAGONISTS OF BETA-2 
ADRENERGIC RECEPTOR 

 

Abstract 
 

ß2AR, which is the member of rhodopsin-like GPCR, is the target system for the 

discovery of novel antagonists using structure-based pharmacophore modeling and 

docking methods. Initially, a shared pharmacophore model is obtained using the 

structure of five known inactive ß2AR complex (PDB ids: 2HR1, 3D4S, 3NY8, 

3NY9 and 3NYA). In order to test the discriminatory power of pharmacophore 

model, a small database consisting of 117 known molecules (53 antagonists against 

64 agonists) was screened using LigandScout software tool. The screening yielded 

44 antagonists (72% true positives) against 17 agonists (18% false positives), which 

was found satisfactory. Then, under the same screening conditions, the second 

database that is the clean drug-like subset of ZINC database was screened. Out of 

9,928,465 molecules, 729,413 compounds fulfilled the pharmacophore requirements. 

All these molecules were docked to one of the inactive crystal structure (PDB id: 

2RH1) using GOLD and AutoDock software tools along with the four scoring 

functions, CHEMPLP, DSX Score, GoldScore, and ChemScore. The docked pose 

with the highest score of each molecule was further analyzed based on some key 

residues for antagonist binding. Docking calculations yielded 3 antagonist molecules 

form our decoy set and 360 compounds from ZINC database as they have been 

found in the highest score range determined from all four scoring functions. Final 

test was based on ADMET properties provided by Discovery Studio. ADMET 

analysis yielded one molecule from decoy set and 62 molecules from ZINC database 

that were proposed as plausible antagonists for ß2AR. 
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FARMAKOFOR VE DOCKING’E DAYALI TARAMA 
YÖNTEMİNİN ß2AR ANTAGONİSTLERİN KEŞFİNDE 

KULLANILMASI 
 

Özet 

 
ß2AR, rodopsin benzeri GPCR üyesi olup, yapı-tabanlı farmakofor modelleme ve 

docking yöntemleri kullanılarak yeni antagonistlerinin keşfi için hedef sistemidir. İlk 

olarak bilinen beş inaktif ß2AR kompleksi (PDB kodu: 2RH1, 3D4S, 3NY8, 3NY9 

ve 3NYA) kullanılarak ortak bir farmakofor modeli elde edilmiştir. Bu farmakofor 

modelinin ayırt edici özelliğini test edebilmek için bilinen 117 molekülden (53 

antagoniste karşılık 64 agonist) oluşan küçük bir veritabanı LigandScout programıyla 

taranmıştır. Tarama sonucu 44 antagoniste (%72 doğru pozitif) karşılık 17 agonist 

(%18 yanlış pozitif) tatmin edici bulunmuştur. Daha sonra, aynı koşullar altında 

ZINC veritabanının bir alt veritabanı olan temiz ilaç benzeri veritabanı taranmıştır. 

9,928,465 molekülden 729,413 tanesi istenilen farmakofor özelliklerini karşılamıştır. 

Bütün bu moleküller GOLD ve AUTODOCK programları kullanılarak dört ayrı 

scoring fonksiyonu (CHEMPLP, DSX Score, GoldScore ve ChemScore) ile inaktif 

kristal yapılarından birine (PDB kodu: 2RH1) dock edilmiştir. Bu dock edilen 

pozlardan en yüksek skora sahip olanlar antagonistlerin bağlanması için gerekli olan 

bazı anahtar rezidüler baz alınarak analiz edilmiştir. Docking hesaplamaları 

sonucunda test setten 3 antagonistin ve ZINC veritabanından ise 360 bileşiğin dört 

scoring fonksiyonunda da en yüksek skora sahip olduğu sonucuna varılmıştır. Son 

olarak Discovery Studio tarafından sağlanan ADMET özellikleri test edilmiştir. 

ADMET analizi sonucunda küçük setten bir molekül ve ZINC veritabanından ise 62 

molekül ß2AR için uygun antagonistler olarak belirlenmiştir. 
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Chapter 1 
  

Introduction 
  

Human β2-adrenergic receptors (β2-AR) belong to the largest subfamily of G protein-

coupled receptors in the human genome, which is the rhodopsin family. Also known 

as seven transmembrane domain receptors (7TM receptors), they are embedded in 

the cell membrane and have a crucial role in signal transduction from extracellular 

side to intracellular side in many different physiological pathways [1]. GPCRs deal 

with our physiological responses to hormones, neurotransmitters and environmental 

stimulants and they initiate many signaling pathways [2]. Thus, many diseases such 

as hypertension, depression, asthma, cardiac dysfunction, and inflammation, are 

related to the functioning of GPCRs [3], which is among the four gene families 

targeted by more than 50% of drugs on market [4-6]. 

 

 

In 2007, Rasmussen and coworkers discovered the first X-ray crystal structure of the 

human β2-AR (PDB id: 2RH1) [7], which opened a new gate for computer-aided 

drug discovery. Novel β2-AR inhibitors have been introduced using structure-based 

and ligand-based computational algorithms [8-11]. Kolb et al.[9] screened a library 

of approximately 1 million compounds via docking using the X-ray structure (PDB 

id : 2RH1) and introduce twenty-five hits which were tested in a radioligand binding 

assay. Six confirmed hits were identified with Ki values ranging between 9nM and 
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3.2 µM. Docking-based virtual screening experiments conducted by Topiol et al. 

[10] produced new chemical classes of hits besides rediscovering the well-known 

hydroxylamine chemotype. 

 

 

De Graaf and Rognan [12] modified the rotameric states of (Ser212) S5.43 and 

(Ser215) S5.46 within the binding site of the first X-ray structure, which represents 

the inactive state of β2-AR and created an “early activated” model, which was found 

to be more successful in distinguishing partial/full agonists from decoy ligands in 

docking runs. This study demonstrates that there exist only small but critical 

differences between agonist- and antagonist-bound structures. Three X-ray crystal 

structures of β2-AR complexed with three antagonists revealed by Wacker et al.[13] 

also demonstrate minor local structural differences that exist in the binding pocket of 

these complexes. 

 

 

The docking-based virtual screening study performed by Vilar et al. [14] using X-ray 

structure of β2-AR (PDB id: 2RH1) revealed that antagonists (blockers) were 

preferred over agonists. This was a promising result since the structure of the 

receptor used as a target was the apo form of the structure complexed with a partial 

inverse agonist carazolol and thus represents an inactive state. In addition, using an 

ensemble of alternative conformations of the receptor in order to account protein 

flexibility, they were able to increase the number of hits within the top 0.5% of the 

screened database. 
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In addition to structure-based approaches, a ligand-based drug screening study by 

Tasler et al. [15] revealed a selective and potent human β2-AR antagonist. The 

screening was based on a pharmacophore alignment on known β3-adrenoceptor 

ligands, which generated a set of β-adrenoceptor ligands. Their binding affinities 

were measured in various binding assays. Upon further optimization of these ligands, 

a selective and potent human β2-AR antagonist with a Ki value of 0.3 nM was 

introduced. 

 

 

In this thesis, we conducted a pharmacophore-based virtual screening experiment in 

order to reveal potential human β2-AR antagonists. The novelty of this work is the 

pharmacophore model, which has been generated using five different X-ray crystal 

structures of β2-AR complexed with five different antagonists. As of today, no 

virtual screening study based on structural information of the receptor has been 

reported. The screened database was the “clean drug-like” subset of ZINC database 

[16]. In addition 64 known agonists and 53 known antagonists obtained from GLIDA 

database [17] was used in order to test the discriminatory power of the 

pharmacophore model. A series of docking experiments have been conducted for the 

compounds that satistified the pharmacophore requirements using the apo form of 

the X-ray complex structure (PDB id: 2RH1). Compounds with highest binding 

affinities have been extracted and finally evaluated based on their predicted ADMET 

properties.
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Chapter 2 
 

Beta-2-Adrenergic Receptor 
 

2.1 Three-Dimensional Structure of Beta-2 Adrenergic Receptors 

 

Beta-2 adrenergic receptor (ß2AR) is the member of G protein-coupled receptors 

(GPCRs), which is the largest protein family in the human genome. GPCRs were 

classified according to their physiological and structural features, position of the binding 

pocket and the sequence length of the receptors. This so-called GRAFS classification 

system combines all GPCRs into five main families [18]: Glutamate-like (Family C), 

Rhodopsin-like (Family A), Adhesion-like (Family B), Frizzled/Taste2 (Family O) and 

Secretin-like (Family B). Bovine rhodopsin was the first GPCR of which the X-ray 

crystal structure was determined. ß2ARs belong to rhodopsin-like family because of the 

structural similarity [19].  

 

 

ß2AR has seven transmembrane (TM) domains, which is the main characteristics of the 

structure (Figure 2.1a). These seven TM domains are connected to each other with three 

extracellular loops and three intracellular loops. GPCRs are membrane-embedded 

proteins. Amino terminus is located in extracellular milieu and carboxyl terminus is 

located in cytosol (Figure 2.1b). 
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Figure 2.1. Shematic representation of GPCRs. (a) 3D modeling of ß2AR in cartoon 

representation. Red shows the 7TMs, greens are extracellular and intracellular loops and the 
inverse agonist Carazolol in blue with stick representation. The figure was prepared with Pymol. 

(b) 2D representation of ß2AR embedded in the membrane [2.16]. 
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2.2 Functional Role of Beta-2-Adrenergic Receptors 

 

ß2ARs are responsible for signal transduction between the cell and the environment. 

They become active by hormones and neurotransmitters [20]. Figure 2.2 

demonstrates the activation mechanism of ß2AR [21].  Upon activation of the 

receptor by a bound agonist diffusing from extracellular side, ß2AR interacts with a 

G protein nearby. G-protein consists of three subunits: α, β and γ. Followed by 

contact, guanosine diphosphate (GDP) inside the α-subunit is replaced by guanosine 

thriphosphate (GTP). The affinity of α-subunit is dramatically reduced for ß2AR, 

thus dissociates and couples with adenylate cyclase (A-C in Figure 2.2). Adenylyl 

cyclase causes an increase in cyclic adenosine monophosphate (cAMP) level, which 

catalyzes the activation of protein kinase A (PKA). PKA induces phosphorylation 

(Pi) of ß2AR and uncoupling of Gs. The phosphorylated ß2AR bound to β and γ 

subunits of G protein, couples to Gi proteins. β and γ subunits act as a scaffold for 

intracellular proteins such as ß-arrestin, Src, SOS and RAS, which leads to the 

activation of mitogen-activated protein kinase (MAPK) pathway. 

 

 

ß2AR acts on smooth muscle relaxation, therefore its activation through agonists are 

used as treatment of asthma. It is believed that pKA phosphorylates key regulatory 

proteins involved in the control of muscle tone. In addition, cAMP decreases the 

Ca+2 level inside the cell, leading to muscle relaxation in the pulmonary airways. 

ß2AR also increases heart rate and cardiac muscle contractility with a minor degree 

compared to ß1AR. In addition, its stimulation increases pressure inside eye, 

therefore for glaucoma patients, its inhibition with an antagonist such as timolol, is 

required. 
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Figure 2.2. Intracellular signaling pathways for ß2ARs. 
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Chapter 3 

 

Materials and Methods  

 
3.1 Generating a Pharmacophore Model 

 

The term pharmacophore was defined as, “the ensemble of steric and electronic features 

that is necessary to ensure the optimal supramolecular interactions with a specific 

biological target structure and to trigger (or to block) its biological response” by 

Wermunt et al. in 1968 [22]. Since then, it became a standard definition for 

pharmacophore concept accepted worldwide. Pharmacophores are not real molecules or 

they are not functional groups. They just represent the essential points of drug molecules 

for an optimal interaction with the target protein [23] and these interactions are 

Hydrogen-bonding, charge transfer, electrostatic and hydrophobic interactions. The 

pharmacophore model combined all these interaction in 3D space. 

 

 

In modern drug discovery, there are two types of techniques, which help to design a 

drug: ligand-based drug design (LBDD) and structure-based drug design (SBDD).  

LBDD techniques rely on a set of drug molecules that are known to bind to a certain 

target with a known activity. The pharmacophore model consists of the chemical 

features shared by all known drug molecules. On the other hand, SBDD techniques rely 

on the knowledge of a three-dimensional structure of the protein [1] and the native state 

of the bound ligand. The pharmacophore model is composed of the interacting groups of 

the ligand with surrounding residues of the target protein. 
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With the increase in the amount of experimental data about the protein’s crystal 

strcutures, SBDD has become more powerful than LBDD [24]. Many popular software 

programs that generate pharmacophore models emerged and a few of them are Phase by 

Schrödinger [25], GASP (Genetic Algorithm Superposition Program) by Jones et al. and 

Catalyst by Accelrys [26] and finally LigandScout by inte:ligand [27], which was used 

in thesis. 

 

 

LigandScout is using a structure-based approach to generate the pharmacophore model. 

It also provides a powerful visualization interface. It represents pharmacophore points 

by using special features, which are illustrated in Figure 3.1. These features determined 

based on two constraints: distance and direction. LigandScout selects two points. One 

point must be located on the protein while the other one must be located on ligand. It 

analyzes the relationship between these two points by distance constraints. Based on the 

information in LigandScout, default distance constrains are listed as in Table 3.1. On the 

other hand, to analyze the relationship between two atom groups instead of points, 

LigandScout uses direction constraints. 

 
Table 3.1. LigandScout’s default distance constraints. 

Aromatic interaction with positive ionizable 3.5 – 5.5 Å 
Aromatic interaction with ring (parallel) 2.8 – 4.5 Å 
Aromatic interaction with ring (orthogonal) 2.8 – 4.5 Å 
H-Bond interaction 2.2 – 3.8 Å 
Hydrophobic interaction 1.0 – 5.9 Å 
Iron binding location 1.3 – 3.5 Å 
Magnesium binding location 1.5 – 3.8 Å 
Negative ionizable interaction 1.5 – 5.5 Å 
Positive ionizable interaction with negative ionizable 1.5 – 5.5 Å 
Positive ionizable with aromatic ring 1.0 – 10.0 Å 
Zinc binding location 1.0 – 4.0 Å 
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As shown in Figure 3.1, hydrogen bond features are represented by both distance and 

direction constraints while hydrophobic interactions and ionizable areas are shown with 

only a distance constraint. LigandScout can distinguish between flexible hydrogen bonds 

and rigid hydrogen bonds. Rigid hydrogen bond donors occur at sp2 hybridized heavy 

atoms and they illustrated by a cone with cutoff apex (Figure 3.2.a). Flexible hydrogen 

bond donors occur at sp3 hybridized heavy atoms and they are illustrated by a torus 

(Figure 3.2.b). For a valid hydrogen bond, the angle between Hydrogen-bond atom 

vector and hydrogen vector must be below the defined constraints (default: 50.00o for 

rigid H-bond, 34.00o for flexible H-bond). To define a hydrogen bond acceptor, 

LigandScout takes neighboring atoms in considerations and calculates the weighted 

vector. This vector’s angle must be below the defined constraint (default: 85.00o). 

 

 

Hydrophobic features are depicted with distance constraints. There are two thresholds 

that change the effect of hyrophobicity: minimum threshold and surface accessibility 

threshold. Minimum threshold analyzes the hydrophobic moiety and determines the 

minimum hydrophobic threshold of groups, rings and chains. Less hydrophobic regions 

can be determined when the minimum threshold value is increased. Surface accessibility 

threshold determines the sterical accessibility due to the hydrophobic moiety. Increasing 

the surface accessibility threshold causes more restrict identification. 

 

 

LigandScout defines aromatic features according to the interaction of the ligand and it’s 

environment.  Orthogonal, parallel (π-π) and cation-π interactions are considered to 

determine the aromatic region. To determine excluded volumes, LigandScout determines 

the shape of the active site and the conformation of the protein. Excluded volumes 

increase the selectivity of the pharmacophore model. 
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LigandScout also provides two different alignment options to its users when dealing 

with more than one pharmacophore model: a “shared” pharmacophore model consists of 

the pharmacophore features shared by all models, whereas the “merged” pharmacophore 

combines all pharmacophore features encountered in any model. 

 

 
Figure 3.1. Pharmacophore representation in LigandScout. Picture taken from inteligand 

website. 
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Figure 3.2. Hydrogen bond constraints. (a) Rigid H-bonds constraint of an sp2 
hybridized amide nitrogen. (b) Flexible hydrogen bonding constraint of an sp3 

hybridized hydorxy group. Pictures are taken from manual of LigandScout. 
 

3.2 Virtual Screening 

 

Discovering a new drug is a long term and expensive process. To make this process 

faster and cheaper, molecules that do not have the desired activities must be eliminated 

in early stages. For that purpose, screening methodologies have been developed. Ligands 

with desired activities can be identified experimentally, by high-throughput screening 

(HTS) of databases including millions of compounds. However, this is a time-

consuming and expensive process. Therefore, as an alternative to HTS, virtual screening 

(VS) became a useful tool for drug discovery [28]. The aim of VS is to determine proper 

molecules with required properties by screening massive chemical databases in a short 

period of time at low costs [29]. Generally, VS techniques can be divide into two 
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groups: Pharmacophore-based virtual screening and Docking-based virtual screening, 

which are described in detail in the following two sections. 

 

3.2.1 Pharmacophore-based Virtual Screening (PBVS) 

 

Pharmacophore-based screening is useful when the three-dimensional structure of the 

target protein is not known. Moreover, if 3D structure of a target is known, both 

docking-based and pharmacophore-based virtual screening methods can be used [30]. A 

screened molecule is counted as a hit if it contains the required pharmacophore features 

of the proposed model. Pharmacophore-based screenings are around ten thousand times 

faster than docking-based screenings, thus they are usually preferred over docking as an 

initial filter to remove the molecules which do not have essential features for binding 

[31]. Docking can be used in later stages for a more detailed evaluation of the hit 

compounds.  

 

 

In this thesis, the ZINC database was screened using a pharmacophore-based virtual 

screening tool provided by LigandScout. The program accepts the proprietary LDB file 

format for molecule libraries. More than one database can be screened simultaneously 

against the selected pharmacophore. Also, it provides the users to mark their databases 

as active or inactive to the activity of molecules in the database. In addition, users can 

customize several screening settings [29]. For instance, LignadScout has two types of 

scoring functions options. One of them is Pharmacophpre-Fit (PF) scoring function. It 

considers just pharmacophoric features and their RMSD values. The other one is 

Relative Pharmacophore Fit (RPF) scoring function. RPF scores the amount of the 

matching pharmacophoric features and normalized the aligned pharmacophores to [0..1]. 

Moreover, maximum number of features that can be omitted during the screening 

process, can be specified. If maximum number of omitted features is defined as zero 

than all pharmacophoric features should be matched to be a valid hit. Check exclusion 

volume option enables the consideration of exclusion volumes during the screening 

process. 



	
   14	
  

3.2.2 Docking-based Virtual Screening (DBVS) 

 

Nowadays, docking-based virtual screening techniques are widely used in drug 

discovery and many important drugs on the market are discovered in silico [29]. DBVS 

generates all possible poses of the small molecule to find out the nest configuration to 

from a protein-ligand complex [32]. Hence, two characteristics of the docking tool are 

critical: configuration search algorithm and scoring function (SF). The search algorithm 

predicts all possible binding modes of the ligand in the receptor’s binding pocket. SF 

ranks them according to the score vale and accepts the conformation with the highest 

score as the most plausible binding mode [33]. At the end of screening, all docked ligand 

molecules are sorted based on their score values, and the ligand molecules at the top of 

the list are selected as hit molecules. The top of the list can be defined either as a small 

percentage of the whole database or using a threshold score value. 

 

3.3 Docking methodology and Scoring Functions 

 

Currently, many software tools exist for docking. Every tool has its own pose generation 

methods and scoring functions [28]. Both AutoDock and GOLD software tool used in 

thesis, use genetic algorithm to search the conformational score. In genetic algorithm, 

the ligand is represented by a set of torsion angles of rotatable bonds resembling to the 

set of genes in a chromosome. As shown in Figure 3.3, genetic algorithm starts by 

creation of a population, composed of randomly generated ligand conformations, the so-

called “parents” [33]. Then, these parent conformations reproduce new conformations 

by transmitting genetic information between each other by crossover and mutation, e.g. 

by exchanging randomly their torsion angles as shown in Figure 3.3. As a result, 

children ligand poses are generated. Next, the energies of these new conformations were 

evaluated. The ones with the lowest energies (or highest scores) were selected as 

members of the next generation. This iteration continues until the best conformation 

with the highest score is obtained. 
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Figure 3.3 Schematic representation of the genetic algorithm. 

 

Soring functions are the important part of a docking tool because the binding poses that 

are generated from DBVS must be evaluated to recognize the correct pose which would 

resemble the native binding conformation. There are three principles of scoring [28]: (i) 

to recognize native binding mode, (ii) to estimate binding affinities correctly, and (iii) to 

recognize active compounds from poor binders. Current SF’s are divided into three 

groups as force-field based (FF), empirical and knowledge-based [34]. 

 

 

Force-field scoring functions are based on different force field parameter sets, such as 

CHARMM [35] and AMBER [36]. The interaction between a ligand and a receptor is 

most often described by sum of van der Waals (VDW), hydrogen bond and electrostatic 

terms, which are defined with 12-6 Lennard-Jones potential, 12-10 Lennard-Jones 

potential and Coulombic formulation, respectively. For example, AutoDock is based on 

the AMBER force field [37] as given in equation 1.  
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The first term of this equation is the 12-6 Lennard-Jones potential. rij is the distance 

between protein atom i and ligand atom j, Aij and Bij are the VDW parameters. The 

second term is the 12-10 Lennard-Jones potential. E(t) function provides directionality 

based on the angle t from ideal hydrogen bonding geometry. The third term is the 

Coulomb formulation for electrostatics. ε(rij) stands for distance-dependent dielectric 

constant, qi and qj are the atomic charges.  Final term is a desolvation potential. V stands 

for the volume of the atoms and S represents the solvation parameter. 

 

 

GoldScore is also a force-field based scoring function and consists of four components 

namely, protein-ligand hydrogen bond energy and van der Waals energy, ligand internal 

van der Waals energy and ligand torsional energy. GoldScore scoring function is defined 

as: 

 

ƒ =   𝑆ℎ!_!"# +   𝑆!"#_!"# +   𝑆ℎ!_!"# +   𝑆!"#_!"# 

 

where, Shb_ext is the protein-ligand hydrogen bonding score, and Shb_int is the internal 

hydrogen bonding of the ligand.  SVDW_ext  and SVDW_int are the van der Waals scores.  

 

 

Empirical scoring functions are derived using the experimentally determined binding 

affinities and structural information. They are the sum of uncorrelated terms with 

coefficients obtained from regression analysis. X-Score, GlideScore and ChemScore are 

the examples. ChemScore scoring function defined as [38]: 

(3.1) 

(3.2) 

(3.3) 
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∆𝐺!"#$"#% = ∆𝐺! + ∆𝐺ℎ!"#$ + ∆𝐺!"#$% + ∆𝐺!"#$ + ∆𝐺!"# 

 

Each component of this equation is the product of a term dependent on the magnitude of 

a particular physical contribution to free energy and regression coefficients. According 

to this information, those components can be written as: 

 

∆𝐺!"#$"#% = 𝑣! + 𝑣!𝑃ℎ!"#$ + 𝑣!𝑃!"#$% + 𝑣!𝑃!"#$ + 𝑣!𝑃!"# 

 

where, v terms represent regression coefficients and P terms are various types of 

physical contributions to binding.  

 

 

ChemScore value is obtained by adding in a clash penalty and internal torsion terms. 

Covalent and constraint scores may also be added. 

 

𝐶ℎ𝑒𝑚𝑆𝑐𝑜𝑟𝑒 = ∆𝐺!"#$"#% + 𝑃!"#$ℎ + 𝑐!"#$%"&'𝑃!"#$%"&' + (𝑐!"#$%&'(𝑃!"#$%$&'(

+ 𝑃!"#$%&'(#%) 

 

Knowledge-based scoring functions’s parameters are derived from experimentally 

determined X-ray structures of protein-ligand complexes. They are calculated using 

Boltzmann distribution law, as:  

  

𝑤 𝑟 = −𝑘!𝑇𝑙𝑛[
𝜌 𝑟
𝜌∗ 𝑟 ] 

 

where w(r) represents the all potential parameters, kB is the Boltzmann constant, T is the 

absolute temperature of the system, ρ(r) is the number density of the protein-ligand atom 

pair at distance r in the training set and ρ*(r) is the pair density in a reference state where 

the interatomic interaction are zero. DrugScore and GOLD/ASP are examples of 

knowledge-based SFs [33,39]. 

(3.4) 

(3.5) 

(3.6) 
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3.4 Receiver Operating Characteristic (ROC) Curve 

 

Pharmacophore-based virtual screening (PBVS) is a widely used method in drug 

discovery. A pharmacophore model that is generated for PBVS should be able to enrich 

as many active compounds as possible for selected database. There are several methods 

that ensure this enrichment. Receiver Operating Characteristic (ROC) curve is one of 

these methods [29]. ROC curves can be easily analyzed visually. It is used for selecting 

appropriate threshold values, which gives the maximum ratio of active molecules to 

inactive molecules. [40]. ROC curve graph is derived from sensitivity (Se) value on the 

y-axis and 1-specificity (Sp) value on the x-axis. Se is the ratio of the number of selected 

active molecules and the number of all active molecules in the database. In other words, 

Se gives the rate of true positives and is calculated as [29]: 

 

𝑆𝑒 =
𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑  𝑎𝑐𝑡𝑖𝑣𝑒𝑠
𝐴𝑙𝑙  𝑎𝑐𝑡𝑖𝑣𝑒𝑠 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁 

 

where TP is true positives, FN is false negatives. Sp is the ratio of inactive molecules not 

selected by the model and all inactive molecules in the database. It defines the capability 

of pharmacophore model to eliminate inactive molecules. Sp is defined as [29]: 

 

𝑆𝑝 =
𝐷𝑖𝑠𝑐𝑎𝑟𝑑𝑒𝑑  𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑠

𝐴𝑙𝑙  𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒𝑠 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 

 

where TN is true negatives, FP is false positives. Accordingly, 1-Sp becomes [29]: 

 

1− 𝑆𝑝 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃 

 

ROC curve represents all possible Se and 1-Sp values of a molecule obtained from 

PBVS, using different thresholds, such as a scoring function defining the goodness of a 

hit molecule. ROC curve starts from the origin. The diagonal line represents the case 

where the pharmacophore model cannot make a distinction and molecules are selected 

(3.7) 

(3.8) 

(3.9) 
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randomly. If ROC curve is located above the diagonal line, it represents a 

pharmacophore model that enriches more active compounds than inactive compounds. If 

the ROC curve is below the diagonal line, it indicates simply that the pharmacophore 

model’s ability to distinguish actives from inactives is worse than random (Figure 3.4) 

[29]. 

 

 
Figure 3.4 ROC curve model. 

 

3.5 ZINC Database 

 
Since structure-based drug design has become a powerful technique for drug discovery, 

the need for suitable databases has increased. These databases have to be easily 

accessible and they must be comprised of proper data. Lots of databases were generated 

to supply these needs, such as ChemNavigator [41], Ligand.Info [42], The ChemBank 

project [43]. However, these databases do not meet the exact requirements. For instance, 

the ChemBank contains only 2D molecules. Availability of 3D structures of each 

molecule that are going to be screened is very important for structure based virtual 

screening [16]. 
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In 2005, John Irwin and Brain Shoichet introduces ZINC database [16], which includes 

3D structure of each molecule. Also, some physical properties such as molecular weight, 

predicted logP, number of hydrogen bond donors, number of hydrogen acceptors, 

number of rotatable bonds, net charge, number of rigid fragments, number of chiral 

centers, number of chiral double bonds and a polar desolvation energy value. ZINC is a 

freely accessible database. Multiple file formats are available such as SMILE, mol2, 3D 

SDF and DOCK feasible format. Users can download the entire ZINC database or they 

can download a set of molecules that satisfy certain physical properties listed above, 

based on user’s research interest. Moreover, they can upload their own molecules to 

ZINC database as well. 

 

3.6 Rescoring 

 

Docking programs generate a score value for every pose according to their scoring 

functions and rank them accordingly. Yet, these scores may not be strong enough to 

make good predictions in all cases. This is the main reason for the use of rescoring 

functions. These functions simply rescore all the poses obtained from a docking program 

and reevaluated them. These scoring functions try to enhance predictive power of 

docking tools [44]. In this thesis, DSX (Drug Score eXtended), which is a knowledge-

based scoring function, is used for rescoring the poses obtained from AutoDock. The 

pair potentials are derived from protein-ligand complexes as stored in the PDB 

DataBank. 
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Chapter 4 

 
Results and Discussions 

 
4.1 Generation of the Pharmacophore model 

 

Five crystal structures of ß2-AR in the inactive state were used for the generation of a 

pharmacophore model via LigandScout software tool [27]. Their PDB entries are 2RH1 

(inverse agonist: carazolol), 3D4S (inverse agonist: timolol), 3NY8 (inverse agonist: 

ICI118,551), 3NY9 (inverse agonist: JSZ), and 3NYA (antagonist: Alprenolol). 

LigandScout determines the pharmacophoric features according to some distance 

constraints between the macromolecule and its ligand. These constraints were listed in 

Table 3.1 in previous chapter. 

 

 

First, a pharmacophore model was created for each complex structure as shown in 

Figure 4.1, and listed in Table 4.1. 2RH1 has a total of nine pharmacophoric features: 

three hydrogen bond (H-bond) donors, two H-bond acceptors, three hydrophobic 

regions, and one positive ionizable area (Figure 4.1a). 3D4S consists of three H-bond 

donors, three H-bond acceptors, three hydrophobic areas, and one positive ionizable area 

(Figure 4.1b). 3NY8 includes one H-bond donor, two H-bond acceptors, four 

hydrophobic interactions, and one positive ionizable area (Figure 4.1c). 3NY9 has three 

H-bond donors, two H-bond acceptors, four hydrophobic interactions, and one positive 

ionizable area (Figure 4.1d). 3NYA consists of ten pharmacophoric regions: three H-

bond donors, three H-bond acceptors, three hydrophobic interactions and one positive 

ionizable area (Figure 4.1e). 
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Next, a shared pharmacophore model was obtained after aligning all five models via 

LigandScout. The shared pharmacophore model consists of five pharmacophoric 

features that are common to all five pharmacophore models (Figure 4.2). As listed in 

Table 4.1, these features include one H-bond donor, one H-bond acceptor, two 

hydrophobic interactions, and one positive ionizable area. Figure 4.2 shows the model 

with and without excluded volumes. 

 

Table 4.1 Number of pharmacophore features in five inactive crystal structures and the 
shared pharmacophore model. 

 Hydrogen 
Bond Donor 

Hydrogen 
Bond Acceptor 

Hydrophobic 
Interactions 

Positive 
Ionizable Area Total 

2RH1 3 2 3 1 9 
3D4S 3 3 3 1 10 
3NY8 1 2 4 1 8 
3NY9 3 2 4 1 10 
3NYA 3 3 3 1 10 
Shared 1 1 2 1 5 
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Figure 4.1 Pharmacophore models of five X-ray crystal structures of human-ß2AR 

with PDB ids (a) 2RH1, (b) 3D4S, (c) 3NY8, (d) 3NY9, (e) 3NYA (a-e). 
Pharmacophore models generated via LigandScout. Yellow and blue spheres 

represent hydrophobic areas, and positive ionizable areas, respectively. Green and 
red arrows represent H-bond donors and H-bond acceptors, respectively. 
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Figure 4.2. Pharmacophore features of the shared pharmacophore model (a) with and 

(b) without excluded volume. See the caption of Figure 4.1 for more explanation 
about illustration. 

 

4.2 ZINC Database 

 

ZINC Database includes 19,607,982 purchasable molecules as of January 2013. 

According to some physical properties, these molecules were categorized into three 

subsets: Lead-Like, Fragment-Like and Drug-Like. The Lead-like subset includes 

molecules with molecular weight between 250 and 350 daltons, logP value less than 

or equal to 3.5, and the number of rotatable bonds less than or equal to 7. The 

Fragment-Like subset consists of molecules having molecular weight 250 or less, 

calculated logP less than or equal to 3.5 and number of rotatable bonds less than or 

equal to 5. The Clean Drug-Like subset, selected for screening process of our study 

in this thesis, consists of 9,928,465 molecules and complies with the Lipinski’s Rule 

of five. In addition, other desirable physical properties for drug likeliness such as 

partition coefficient (xlogP) and number of rotatable bonds are also observed in these 

molecules, as listed in Table 4.2. 
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Table 4.2. Physical Properties of Clean Drug-Like subset of ZINC Database. 
Molecular Weight (g/mol) 150 ≤ mwt ≤ 500 
xlogP xlogP ≤ 5 
Number of Rotatable Bonds Rb ≤ 7 
Polar Surface Area (Å2) tPSA < 150 
Number of H-bond Donors Hbd ≤ 5 
Number of H-bond Acceptors Hba ≤ 10 
 

4.3 Set of Compounds with Known Activities 

 

A decoy set was created to validate the reliability of the shared pharmacophore 

model using GLIDA GPCR-Ligand Database [45]. There exist many databases 

related to GPCRs, such as GPCRDB [46], IUPHAR [47], which comprise data about 

biological aspects of proteins [17]. However, GLIDA is different from other 

databases, in the fact that it includes novel and GPCR oriented molecules. It focuses 

on the importance of ligands as drug leads. GLIDA provides three kinds of data: 

biological information about GPCRs, the chemical information about their ligands, 

and, the binding information of specific GPCR ligands. All that data about these 

GPCRs was obtained from three species: human, rat and mouse since these species 

have an effective role in drug discovery process. In addition, GLIDA provides a 

user-friendly interface [48], over which users can search a molecule according to a 

ligand or a GPCR protein. It demonstrates the ligand structures and lists the 

correlation maps that show the relation between the structure of the protein and the 

property of the ligand. Moreover, users can acquire information on the activity types 

of the ligand. 

 

 

GLIDA provides a total 317 agonists and 259 antagonists for human ß2-adrenergic 

receptor. During the creation of our decoy set, the structural diversity was taken into 

account. Thus, compounds that have similar structures were eliminated. The final 

decoy set consisted of a total 117 distinct molecules of which 53 were antagonists 

and of which 64 were agonists. Corina [49] program was used to transform these 

molecules into 3D mol2 format. These molecules were depicted in Appendix A and 

Appendix B. 
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4.4 Pharmacophore-Based Screening of the decoy set and the Clean Drug-Like 
Subset of ZINC Database 
 

In order to validate how well the shared pharmacophore model discriminates the 

antagonists from agonists or non-inhibitors, the decoy set was first screened using 

the shared pharmacophore model using LigandScout software tool. LigandScout 

presents two different scoring functions: Pharmacophore Fit and Relative 

Pharmacophore Fit. Furthermore, the maximum number of omitted features, which 

signifies the maximum number of query features that can be left out during screening 

can be adjusted. Finally, the exclusion volume can be left checked or unchecked. 

Exclusion volume represents the sterically occupied regions by the receptor. All of 

these variables affect the result of a virtual screening. To determine an optimum 

solution, several runs have been applied to the decoy set using various combinations 

of these variables. 

 

 

Initially, a screening was performed using the default values that are given at the 

third entry of Table 4.3 (Scoring function = Relative Pharmacophore Fit, Maximum 

Number of Omitted Features = 2, Check exclusion volume = On). Accordingly, 

molecules were counted as hits, if they had at least three pharmacophoric features out 

of five and if they fit properly in the area that was defined by exclusion volumes. As 

a result of this screening, 82 hits were found. 45 of them were antagonists (active), 

and 37 of them were agonists (inactive). After that, screening was repeated three 

times using maximum number of omitted features as 0,1, and 3 and the results were 

listed in Table 4.3. As expected, increasing the number of omitted features increased 

the number of hits as well, since less number of pharmacophoric features are 

required to become a hit. On the other hand, the number of false positives (agonists) 

has increased as well. ROC (Receiver Operating Characteristic) curves for each 

screening were determined using LigandScout and illustrated in Figure 4.3. 
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Table 4.3 Screening results using different values for the maximum number of 
omitted features. 

RUN # Scoring 
Function 

Max. 
Number of 

Omitted 
Features 

Check 
Exclusion 
Volumes 

Number of 
Antagonists/ 

Total 
Antagonists1 

Number of 
Agonists / 

Total 
Agonists2 

Total Hits / 
Total 

Compounds3 

1 RPF4 0 On 19 / 53 1 / 64 20 / 117 
2 RPF 1 On 37 / 53 12 / 64 49 / 117 
3 RPF 2 On 45 / 53 37 / 64 82 / 117 
4 RPF 3 On 45 / 53 38 / 64 83 / 117 
5 PF5 0 On 19 / 53 1 / 64 20 / 117 
6 PF 1 On 37 / 53 12 / 64 49 / 117 
7 PF 2 On 45 / 53 37 / 64 82 / 117 
8 PF 3 On 45 / 53 38 / 64 83 / 117 

1 Total number of antagonists in the decoy set was 53. 
2 Total number of agonists in the decoy set was 64. 
3 Total compounds in the decoy set was 117. 
4 Relative Pharmacophore Fit 
5 Pharmacophore Fit 
 

Next, the scoring function was changed to Pharmacophore Fit to see the effect on the 

screening results. Check exclusion volume option was “on” during this run as well. 

The number of omitted features option was changed similarly. Results were listed in 

Table 4.3. Same results were obtained with the same ROC curves, which means the 

scoring function did not have any effect on the screening. 

 

 

Next, screenings were performed to understand the effect of exclusion volumes. 

Check exclusion volumes option was set to “off”. First, Relative Pharmacophore fit 

scoring function was chosen and the maximum omitted features were increased from 

zero to three (Table 4.4). Then, the scoring function was changed to Pharmacophore 

Fit scoring and the number of omitted features was changed. Similar to previous 

results, the scoring function had no effect on the results. However, the number of hits 

changed with the maximum number of omitted features, as seen previously with 

excluded volumes. The corresponding ROC curves are illustrated in Figure 4.4 for 

run numbers 9 through 12. 
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Figure 4.3 ROC curves of the screening results using different values for the 

maximum number of omitted features. (a) RUN#1. AUC1,5,10,100%: 1.00; 1.00; 1.00; 
0.67 and EF1,5,10,100%: 2.2; 2.2; 2.2; 2.1. (b) RUN#2. AUC1,5,10,100%: 1.00; 1.00; 1.00; 
0.81 and  EF1,5,10,100%: 2.2; 2.2; 2.2; 1.7. (c) RUN#3. AUC1,5,10,100%: 1.00; 1.00; 1.00; 
0.83 and EF1,5,10,100%: 2.2; 2.2; 2.2; 1.2. (d) RUN#4. AUC1,5,10,100%: 1.00; 1.00; 1.00; 

0.83 and EF1,5,10,100%: 2.2; 2.2; 2.2; 1.2. 
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Table 4.4 Screening results when check exclusion volumes option was “off”. 

RUN # Scoring 
Function 

Max. 
Number of 

Omitted 
Features 

Check 
Exclusion 
Volumes 

Number of 
Antagonists/ 

Total 
Antagonists1 

Number of 
Agonists / 

Total 
Agonists2 

Total Hits / 
Total 

Compounds3 

9 RPF4 0 Off 24 /53 3 / 64 27 / 117 
10 RPF 1 Off 47 / 53 39 / 64 86 / 117 
11 RPF 2 Off 51 / 53 63 / 64 114 / 117 
12 RPF 3 Off 51 / 53 63 / 64 114 / 117 
13 PF5 0 Off 24 / 53 3 / 64 27 / 117 
14 PF 1 Off 47 / 53 39 / 64 86 / 117 
15 PF 2 Off 51 / 53 63 / 64 114 / 117 
16 PF 3 Off 51 / 53 63 / 64 114 / 117 

1 Total number of antagonists in the decoy set was 53. 
2 Total number of agonists in the decoy set was 64. 
3 Total compounds in the decoy set was 117. 
4 Relative Pharmacophore Fit 
5 Pharmacophore Fit 

 

As expected, more hits were obtained when check exclusion volumes option was off. 

However, the number of agonists (false positives) as hit molecules, has increased as 

well. Accordingly, more accurate hits were acquired when check exclusion volumes 

option was on. 

 
 

LigandScout allows the user to select any excluded volume and discard it. To 

increase the discriminatory power of the pharmacophore model, two outmost 

excluded volumes were deleted as shown in Figure 4.5. New screenings were 

performed with Relative Pharmacophore Fit scoring function and this new 

“modified” model (Table 4.5). The main goal of this trial was to obtain more active 

molecules (antagonist) than inactive ones (agonists). 
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Figure 4.4 ROC curves of the screening results when check exclusion volume option 

was “off”. (a) RUN#9. AUC1,5,10,100%: 1.00; 1.00; 1.00; 0.71 and EF1,5,10,100%: 2.2; 
2.2; 2.2; 2.0. (b) RUN#10. AUC1,5,10,100%: 1.00; 1.00; 1.00; 0.81 and EF1,5,10,100%: 2.2; 
2.2; 2.2; 1.2. (c) RUN#11. AUC1,5,10,100%: 1.00; 1.00; 1.00; 0.80 and EF1,5,10,100%: 2.2; 

2.2; 2.2; 1.0.  (d) RUN#12. AUC1,5,10,100%: 1.00; 1.00; 1.00; 0.80 and EF1,5,10,100%: 
2.2; 2.2; 2.2; 1.0. 
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Figure 4.5 Two exclusion volumes, which were circled in red color, were deleted. 

Picture was taken from LigandScout. 
 

Table 4.5 Screening results of “modified” pharmacophore model using different 
values for the maximum number of omitted features. 

RUN # Scoring 
Function 

Max. 
Number of 

Omitted 
Features 

Check 
Exclusion 
Volumes 

Number of 
Antagonists/ 

Total 
Antagonists1 

Number of 
Agonists / 

Total 
Agonists2 

Total Hits / 
Total 

Compounds3 

1 RPF4 0 On 19 / 53 1 / 64 20 / 117 
2 RPF 1 On 37 / 53 12 / 64 49 / 117 
3 RPF 2 On 45 / 53 37 / 64 82 / 117 
4 RPF 3 On 46 / 53 38 / 64 83 / 117 

1 Total number of antagonists in the decoy set was 53. 
2 Total number of agonists in the decoy set was 64. 
3 Total compounds in the decoy set was 117. 
4 Relative Pharmacophore Fit 
5 Pharmacophore Fit 
 

According to the results in Table 4.5, deleting two exclusion volumes did not affect 

the screening process. Equal number of hits was obtained from both original 

pharmacophore model and the modified one. After careful evaluations of ROC 

curves, ROC curves with the highest AUC (Area Under the ROC Curve) values of 

0.83 were obtained using the Relative Pharmacophore Fit score when check 

exclusion volume option was on and the maximum number of omitted features was 

either 2 or 3 (RUN#3 and #4 in Table 4.3). As the third run provides less inactive 

compounds (37 agonists) than the fourth run (38 agonists) with the same number of 

active compounds (45 antagonists), the set of parameters in RUN #3 (Relative 

Pharmacophore Fit scoring function, # of omitted features: 2, check exclusion 
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volume: on) has been selected for further screening of the ZINC database. They were 

also the default parameters of LigandScout software tool. 

 

 

Prior to screening ZINC database, a threshold value, which corresponds to a so-

called “model exhaustion” or “cut-off” point on the selected model’s ROC curve, 

must be specified. Hit molecules that have a Relative Pharmacophore Fit score value 

less than this threshold will be eliminated. This value is determined from the point on 

the ROC curve where there exists a considerable amount of true positives 

(antagonists) with respect to false positives (agonists) among the hit molecules. As 

shown in Figure 4.6 the exhaustion point (red dot on the curve) was determined as 

(0.27,0.83), which represents the percentage of true positives as 83 (44 antagonists) 

and the ratio of false positives as 27 (17 agonists). The lowest score value of these 61 

(44 + 17) molecules was determined as 0.64, which was taken as the threshold value 

for the screening of ZINC database. 

 

 

Using the shared pharmacophore model with default parameters of LigandScout 

mentioned above a total of 9.928.495 molecules of the Clean Drug-Like subset of 

ZINC was screened and hit molecules were eliminated if their Relative 

Pharmacophore Fit score value was under 0.64. Finally, a total of 729.413 molecules 

with a score value above 0.64 remained and was further evaluated with several 

docking experiments, alongside the decoy set of 61 molecules. These results are 

discussed in the next part  
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Figure 4.6 ROC Curve for Run #1. Red dot illustrates the model exhaustion point, 

which corresponds to 83% true positives and 27% false positives. 
 

4.5 Docking and Binding Evaluations 

 

To further evaluate the hit molecules, 61 molecules (44 antagonists and 17 agonists) 

from decoy set and 729.413 compounds from clean drug-like subset of ZINC 

database were docked to the inactive crystal structure (PDB id: 2RH1) using GOLD 

and AutoDock software tools. The crystal structure with PDB id 2RH1 was selected 

due to its high resolution, which is 2.40 Å. On the other hand, resolutions of 

structures with PDB ids 3D4S, 3NY8, 3NY9 and 3NYA are reported as 2.80 Å, 2.84 

Å, 2.84 Å, and 3.16 Å, respectively. 

 

The first docking was performed using GOLD with CHEMPLP scoring function. 

Default features were used (radius: 10 Å, ga run: 10, ga search: SLOW). The docked 

poses with the highest scores were analyzed based on some key residues for 

antagonist binding grouped into two groups as illustrated in (Figure 4.7). First group 
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includes Ser203, Ser204 and Ser207 while second group consists of Asp113, Val114 

and Asn312. According to the binding test, the docked pose of each compound with 

the highest score has to be interacting with at least one residue from each group. 

Otherwise, it is eliminated. A total of 58 molecules (41 antagonists and 17 agonists) 

from the decoy set have passed the binding test (designed as binding test #1 in Figure 

4.8). On the other hand, 610.490 compounds out of 729.413 compounds from ZINC 

database have passed the binding test. Next, a threshold of 85 for ChemPLP score 

value was selected for further elimination. 23.568 ZINC compounds, 17 antagonists 

and 3 agonists have been selected as they had score values above 85. These results 

correspond to an enrichment factor of 11.9 for 3.2% database coverage calculated 

using the equation below: 

 

𝐸𝑅 =
!"
!

(!!)
 

 

where TP is the number of true positives (antagonists), which is 17, n is the total  

number of compounds with a score value above 85 and is equal to 23.588 (=23.568 

ZINC compounds + 17 antagonists + 3 agonists), A is the number of active 

compounds (antagonists) which is 44, and N is the total number of  compounds 

screened which is 729.474 (=729.413 + 44 antagonists + 17 agonists). 3.2% simply 

corresponds to the n/N x 100. 

 

(4.1) 
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Figure 4.7 Extracellular view of key residues for binding test #1. Blue illustrates the 
first group (Ser204, Ser203 and Ser 207). Red illustrates the second group (Asn312, 

Asp113 and Val114). Pink illustrates the partial inverse agonist Carazolol. 
 

The selected 23.568 molecules were redocked to the inactive crystal structure (PDB 

id: 2RH1) with AutoDock and GOLD. For every molecule, a total of 20 poses were 

generated from AutoDock and rescored with DSX scoring function. The best pose 

(with the highest score) was further evaluated based on its binding mode (designed 

as binding test #2 in Figure 4.8). In addition, each molecule was docked with GOLD 

using GoldScore and ChemScore as the scoring function. Similarly, the best pose of 

every molecule from each docking run was further evaluated based on its interacting 

residues (binding test #2). According to the second binding test, the most essential 

key residues for antagonist binding were determined and divided into two groups: 

Ser203, Asp113, Asn312, Tyr316 were found in the first group while Tyr286 and 

Asn293 formed the second group (Figure 4.9). Molecules have to interact with all the 

residues from first group and with at least one of the residues from the second group 

in order to pass the binding test #2. Otherwise, they were eliminated. 
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Figure 4.8 Flowchart of the screening process of the Clean Drug-Like ZINC database 

and the decoy set. 
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Figure 4.9 Extracellular view of key residues for binding test #2. Red represents the 
first group, blue represents the second group, and pink represents the partial inverse 

agonist Carazolol. 
 

Based on these criteria, docking all 23.588 molecules with AutoDock and rescoring 

with DSX yielded 13 molecules (12 antagonists, 1 agonist) from decoy set and 9.712 

compounds from ZINC database that have passed the binding test #2. Similarly, 

docking with GOLD using GoldScore led to 11 antagonists and 3 agonists from 

decoy set and 11.313 compounds while docking with GOLD using Chemscore led to 

13 antagonists and 2 agonists from decoy set and 9.942 compounds from ZINC 

database. 

 

 

For further elimination, threshold values were determined for each scoring function 

used previously. Among those that have passed the binding test #2, molecules that 

have a score value above the threshold values have been selected for the next 

evaluation step. The threshold values were set to 150, 77 and 42 for DSX, GoldScore 

and ChemScore, respectively. Based on these threshold values, 8 antagonists from 

decoy set and 3.886 compounds from ZINC database had a DSX score value above 

150. On the other hand, 9 antagonists and 1 agonist from decoy set and 2.686 

compounds from ZINC database satisfied the threshold value for GoldScore and 
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finally, 7 antagonists and 2 agonists from decoy set and 3.262 compound from ZINC 

have been selected as they had a ChemScore over 42. 

 

 

All these selected molecules were simply merged and a molecule was counted as a 

hit if it was found in all three groups, i.e., if it satisfied all the three threshold values. 

Consequently, 360 compounds from ZINC and 3 antagonist molecules from the 

decoy set satisfied the threshold values and were further evaluated based on their 

ADMET (Absorption, Distribution, Metabolism, Extraction and Toxicity) properties, 

using Discovery Studio tool by Accelrys [50]. 

 

4.6 ADMET Filtering 

 

ADMET (Absorption, Distribution, Metabolism, Elimination, Toxicity) analysis is a 

crucial step in drug design. Molecules cannot be counted as drug candidates if they 

do not fulfill the requirement of ADMET properties. In this thesis, Discovery Studio 

tool from Accelrys was used for ADMET predictions. ADMET module of Discovery 

Studio makes predictions based solely on the chemical structure of the molecule. 

Human intestinal absorption (HIA) and blood brain barrier penetration are the two 

properties estimated by the program and used for our filtering. 

 

 

3 antagonist molecules from decoy set and 360 compounds from ZINC database 

were analyzed based on these features. Figure 4.10 and 4.11 depicts the plot of polar 

surface area (ADMET_PSA_2D) versus the partition coefficient between n-octanol 

and water (ADMET _AlogP98) for 3 antagonists from the decoy set and 360 

compounds from ZINC, respectively. Since Carvedilol (compound #1, antagonist 

from the decoy set) falls within all four ellipses in Figure 4.10, it fully satisfies the 

requirements of intestinal absorption and blood brain penetration. On the other hand, 

L023760 (compound #2) and L004107 (compound #3) do not fall into any ellipses, 

thus they were eliminated automatically. At the end of the ADMET filtering of decoy 

set, only one molecule was remained. 
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Figure 4.10 ADMET Plot of the decoy set. Carvedilol. L023760 and L004107 are 

represented with numbers 1, 2, and 3, respectively. 
 

Figure 4.11 shows the ADMET plot of 360 molecules from ZINC database. All 360 

molecules satisfied at least one of the required conditions that are blood brain 

penetration and intestinal absorption, but 62 of them were found inside all four 

ellipses, thus satisfied all two requirements. Accordingly, these molecules were 

proposed as possible drug candidates. 
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4.7 A Closer Look At The Hit Compounds 

 

As mentioned in the previous section, 62 molecules of ZINC database were proposed 

as possible drug candidates. Figure 4.12 illustrates these molecules’ best poses from 

AutoDock (rescored with DSX), ChemScore and GoldScore to validate that they 

bind properly in the binding pocket as the partial inverse agonist Cazarolol in the 

active crystal structure (PDB id: 2RH1). 

 

 
Figure 4.12 Docking poses of 62 molecules. (A) AutoDock- DSX poses. (B) 

GoldScore poses. (C) ShemScore poses. Carazolol demonstrated in red and stick 
representation. 

 

After detailed examination of the chemical structures of these 62 molecules, 7 of 

them were found to be isomers of one of the remaining 55 molecules. Therefore, 55 

molecules and its 7 isomers were listed in separately in Appendix C and Appendix 
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D, respectively. 55 molecules were further classified according to their fixed part or 

the so-called “scaffolds”. Table 4.6 demonstrates four scaffolds that have been 

determined so far. 25 out of 55 molecules hold the first scaffold structure, while 10 

compounds have scaffold #2, 6 of them have scaffold #3 and other 8 of them scaffold 

#4. The remaining 6 compounds have unique structures. For each scaffold in Table 

4.6, an example hit compound that holds the corresponding scaffold was illustrated. 

When the scaffolds of the known antagonists are considered, it was found that there 

was a great similarity between carazolol (See Figure 4.13) except instead of NH, 

there is a cyclic ring in scaffold #3 and #4. 

 

 
Figure 4.13 2D representation of partial inverse agonist carazolol. 

 

Moreover, Tasler et al. [15] proposed a new compound with a strong binding affinity 

to human s2AR measured with an exerimental Ki value of 1.2 nM (see Figure 4.15). 

It has been shown to have the alprenolol scaffold as illustrated in Table 4.6. 

Surprisingly, it also holds the scaffold #4 listed in Table 4.6. Among 55 selected 

compounds, there exist three compounds with scaffold #4 and that alprenolol 

scaffold. They are illustrated in Figure 4.14 with database id values of 

ZINC34691722, ZINC35865918, and ZINC35866100. 

 

 

Finally, Sabio et al. [11] published a study, which proposed two novel compounds 

illustrated in Figure 4.16. These compounds showed strong binding affinities with 

experimentally measured Ki values of 0.311 ± 0.09 nM and 57.3 ± 1.6 nM, 

respectively and amazingly, they hold the scaffold #3 in Table 4.6. 
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Table 4.6 Scaffold Table 
Scaffold # Scaffold An example hit compound 

1 

 
 

2 

  

3 

  

4 

 

 

Alprenolol 
Scaffold 
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Figure 4.14 There compounds that hold scaffold #4 in Table 4.6 and alprenolol 

scaffold. (a) ZINC34691722, (b) ZINC35865918, and (c) ZINC35866100 
 

  

(a) 

(c) 

(b) 
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Figure 4.15 Compound #35 proposed in Tasler et al. study [15]. 

 
 

 
Figure 4.16 (a) Compound #3 and (b) Compound #11 in Sabio et al. study [11] 
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Chapter 5 

 
Conclusion 

 
In this thesis, a shared pharmacophore model was generated from five known inactive 

crystal structures (PDB ids: 2RH1, 3D4S, 3NY8, 3NY9, 3NYA) of human ß2AR by 

LigandScout software tool. The pharmacophore model was composed of five 

pharmacophoric features including one hydrogen bond donor, one hydrogen bond 

acceptor, two hydrophobic interactions and one positive ionizable area. The model was 

then used to screen the clean-drug like subset of ZINC database that includes 9.928.465 

compounds for the discovery of novel antagonists. 

 

 

In order to test the discriminatory power of the pharmacophore model, a decoy set that 

consists of 53 antagonists and 64 agonists were screened first. A total of 82 hits were 

obtained from decoy set. The ROC curve obtained after the screening gave a cut-off 

point where the slope of the curve starts to become lower than 1. At this so-called 

“model exhaustion” or cut-off value, the threshold value of 0.64 was determined as the 

pharmacophore fit value for which 61 molecules (44 antagonists and 17 agonists) with a 

fit value above 0.64 remained. This gives 72% true positives versus 18% false positives, 

which is found to be a satisfying discriminatory power for the model. Taken the same 

threshold value for the screening of ZINC database, a total of 729.413 compounds with a 

score value above 0.64 were left for the next round of screening. 
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The next high-throughput screening is based on docking with AutoDock and GOLD 

software tools using various scoring functions. 61 molecules from decoy set and 

729,413 compounds from ZINC database were docked to the inactive crystal 

structure (PDB id: 2RH1), first with GOLD using its ChemPLP scoring function. 

The docked poses with highest scores were evaluated based on some key residues for 

antagonist binding. As a result, 23,568 compounds from ZINC database and 20 

molecules (17 antagonists and 3 agonists) from decoy set satisfied the binding test 

requirements in addition to holding a score value higher than the threshold value 

which is set to 85. 

 

 

The remaining molecules were redocked to the same inactive crystal structure with 

three different docking tools, AutoDock (rescore with DSX), GOLD/ChemScore and 

GOLD/GoldScore. The best pose from each docking was similarly evaluated based 

on a stricter binding test followed by further elimination based on score value, which 

is set to 150, 77, 42 for DSX, GoldScore and ChemScore, respectively. All three 

docking results were merged and a total of 360 compounds from ZINC database and 

3 antagonists from decoy set satisfied the binding test requirements and all the three 

threshold values. Finally, all 360 molecules and 3 antagonists were sent to ADMET 

filtering. As a result, 61 molecules from ZINC database and 1 antagonist from decoy 

set have fulfilled the requirements for human intestinal absorption (HIA) and blood 

brain barrier penetration and thus were proposed as potential drug candidates. 

 

 

When 62 compounds were further analyzed, 7 of them were found to be isomers. The 

remaining 55 compounds were classified based on their molecular scaffold. Four 

distinct scaffolds have been detected. 49 out of 55 compounds contain one of these 

four scaffolds. The remaining 6 molecules had unique structures. In addition, 3 out of 

55 compounds hold the well-known alprenolol scaffold. Tasler et al. [15] proposed a 

novel compound, which possess the alprenolol scaffold and our proposed scaffold 

listed as #4 in Table 4.6. This compound had a strong binding affinity with Ki value 

of 1.2nM. In addition, Sabio et al. [11] proposed two novel compounds from their 

screening studies for which their experimental binding affinities were measured as 
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0.311 ± 0.09 nM and 57.3 ± 1.6 nM. All two compounds possess the scaffold #3 

given in Table 4.6. 
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APPENDIX A 

Representation of 53 antagonists taken from GLIDA database 

Compound 
Number Compound Name	
   Chemical 

Formula	
   Chemical Sketches	
   MW 
(g/mol)	
  

1 4 Hydroxy	
   C10H11IN2O4	
  

	
  

350.11	
  

2 Alprenlol	
   C15H23NO2	
  

	
  

249.173	
  

3 Atenolol_Tenoretic	
   C14H22N2O3	
  

	
  

266.163	
  

4 Betaxolol	
   C18H29NO3	
  

	
  

307.214	
  

5 Bretylium	
   C11H17NBr	
  

	
  

242.054	
  

6 Bromocriptine	
   C32H40N5O5Br	
  

	
  

653.221	
  

7 Bupranolol	
   C14H22NO2Cl	
  

	
  

271.134	
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Compound 
Number Compound Name	
   Chemical 

Formula	
   Chemical Sketches	
   MW 
(g/mol)	
  

8 Butofilolol	
   C17H26NO3F	
  

	
  

311.189	
  

9 Carvedilol	
   C24H26N2O4	
  

	
  

406.189	
  

10 CGP12177	
   C14H21N3O3	
  

	
  

279.158	
  

11 CGP20712A	
   C23H25N4O5F3	
  

	
  

494.177	
  

12 Cicloprolol	
   C18H29NO4	
  

	
  

323.209	
  

13 Fluspirilene	
   C29H31N3OF2	
  

	
  

475.243	
  

14 Inderex_Propranolol 
	
   C16H21NO2	
  

	
  

259.157	
  

15 Iodocyanopindolol 
	
   C15H18N3O2I	
  

	
  

399.044	
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Compound 
Number Compound Name	
   Chemical 

Formula	
   Chemical Sketches	
   MW 
(g/mol)	
  

16 K351 
 C15H22N2O6 

 

326.148 

17 L001727 
 C24H30N4O3Cl2 

 

492.169 

18 L001755 
 C20H23N4O6S2Cl 

 

492.169 

19 L002134 
 C14H22N4S 

 

492.169 

20 L002301 C18H27N5O2Cl2 

 

415.154 

21 L002666 C12H24N2O2S 

 
260.156 

22 L003304 C22H25NO4F2 

 
405.175 

23 L003361 C29H38N2O3 

 

415.154 

24 L003769 C29H33N5O8 

 

579.232 
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Compound 
Number Compound Name	
   Chemical 

Formula	
   Chemical Sketches	
   MW 
(g/mol)	
  

25 L003915 C17H31N3O4 
 

341.231 

26 L003916 C11H23NO3 

 
217.168 

27 L003926 C30H46N2O9 

 

578.320 

28 L003966 C23H25NO2 

 

347.188 

29 L004107 C37H42N5O5Cl 

 

671.287 

30 L004502 C26H33N5O4 

 

479.253 

31 L004939 C26H30N5O5Cl 

 

527.193 

32 L005112 C28H32N4O5 
 

504.237 

33 L005221 C20H27N3O6 

 
405.190 
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Compound 
Number Compound Name	
   Chemical 

Formula	
   Chemical Sketches	
   MW 
(g/mol)	
  

34 L006500 C30H42N2O5S 

 

542.281 

35 L011199 C21H31N5O3 

 

401.242 

36 L013581 C32H35N4O9F3 

 

676.235 

37 L017579 C20H28N4O4 

 

388.211 

38 L019300 C16H25N3O9 

 
403.159 

39 L023024 C16H22N4O3 

 
318.169 

40 L023037 C25H31N3O5BrC
l  

567.113 

41 L023755 C15H13N2O2Cl 

 

288.066 

42 L023760 C37H42N3O7Cl 

 

675.271 
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Compound 
Number Compound Name	
   Chemical 

Formula	
   Chemical Sketches	
   MW 
(g/mol)	
  

43 Labetalol C19H24N2O3 

 

328.178 

44 Lisuride C20H26N4O 

 

338.210 

45 LK204-545 C25H32N4O6 

 

484.232 

46 Mepindolol C15H22N2O2 

 

262.168 

47 Nadolol C17H27NO4 

 

309.194 

48 Nitrofen C12H7O3Cl2 

 

282.980 

49 Oberadilol C25H30N5O3Cl 

 

483.203 

50 Pafendolol C18H31N3O3 
 

337.236 

51 Pindolol C14H20N2O2 

 

248.153 
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Compound 
Number Compound Name	
   Chemical 

Formula	
   Chemical Sketches	
   MW 
(g/mol)	
  

52 SR59230A C21H27NO2 

 

325.204 

53 Timolol C13H24N4O3S 

 

316.157 
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APPENDIX B 

Representation of 64 agonists taken from GLIDA database 

Compound 
Number Compound Name	
   Chemical 

Formula	
   Chemical Sketches	
   MW 
(g/mol)	
  

1 Albuterol C13H21NO3 

 

239.152 

2 Bambuterol C18H29N3O5 

 

367.210 

3 Desipramine C18H22N2 

 

266.178 

4 Dopexamine C22H32N2O2 

 
356.246 

5 Ephedrine C10H15NO 
 

165.115 

6 Epinephrine C9H13NO3 

 
183.090 

7 Fenoterol C17H21NO4 

 

303.147 

8 Isoprotenerol C11H17NO3 

 

211.121 

9 L001484 C22H28N2O4S 

 

416.177 
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Compound 
Number Compound Name	
   Chemical 

Formula	
   Chemical Sketches	
   MW 
(g/mol)	
  

10 L001619 C19H23NO5 
 

345.157 

11 L002148 C22H28N2O2ClF3 

 
444.179 

12 L002189 C25H37NO4S 
 

447.244 

13 L002190 C28H41N3O3Cl2 
 

537.252 

14 L002585 C28H39N3O5S 
 

529.261 

15 L004003 C18H22N4O 

 

310.179 

16 L004012 C19H21N5O 

 

335.174 

17 L004861 C25H35NO4 
 

413.256 

18 L004863 C33H51N3O6S 
 

617.349 

19 L004864 C21H34N2O3Cl2 
 

432.194 

20 L004930 C29H37NO4 
 

463.272 
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Compound 
Number Compound Name	
   Chemical 

Formula	
   Chemical Sketches	
   MW 
(g/mol)	
  

21 L005041 C21H23NO5 

 

369.157 

22 L005043 C33H39NO6 

 

545.277 

23 L007006 C24H30N2O3S 
 

426.197 

24 L007013 C18H20N2O3S 

 

344.119 

25 L009579 C28H34N2O6 

 

494.241 

26 L009610 C16H26O5S 
 

330.150 

27 L009867 C23H29N3O2SF2 

 

449.195 

28 L009870 C25H28N4O3S 

 

464.188 

29 L010630 C20H24N2O4 
 

356.173 

30 L013462 C26H37NO4 
 

427.272 

31 L013880 C23H31NO7 

 

433.210 
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Compound 
Number Compound Name	
   Chemical 

Formula	
   Chemical Sketches	
   MW 
(g/mol)	
  

32 L017717 C19H29NO5 

 
351.204 

33 L018030 C27H33NO4 
 

435.241 

34 L018574 C19H22NO5Cl 
 

379.118 

35 L018634 C10H12N2O3S 

 

240.057 

36 L020233 C17H18N3O3SBr
2F 

 

520.942 

37 L20300 C24H28N32O3 

 

392.210 

38 L20301 C24H26N2O3 

 

390.194 

39 L020302 C28H28N2O3 

 

440.210 

40 L020651 C24H27N3O2Cl2 
 

459.148 

41 L021740 C26H40N2O6S 
 

508.260 

42 L021744 C29H46N2O8S  582.297 
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Compound 
Number Compound Name	
   Chemical 

Formula	
   Chemical Sketches	
   MW 
(g/mol)	
  

43 L022137 C24H33NO5Cl 
 

485.173 

44 L022143 C37H45N3O6  627.330 

45 L022292 C19H24NO4F 

 

349.169 

46 L022352 C27H41N3O5  
487.304 

47 L022477 C27H32N2O6 
 

480.226 

48 L022740 C27H30N2O4S 

 

478.192 

49 L022749 C21H24N2O4S 

 

400.145 

50 L022822 C29H33N3O5 
 

503.242 

51 L022866 C14H23NO4 

 

269.163 

52 L022867 C15H23NO4 

 

281.162 

53 L022868 C22H31NO4 

 

373.225 
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Compound 
Number Compound Name	
   Chemical 

Formula	
   Chemical Sketches	
   MW 
(g/mol)	
  

54 L022921 C34H47N2O6S 
 

610.307 

55 L023245 C36H39N3O4 

 

577.294 

56 L023254 C20H20N2O3 

 

336.147 

57 L023257 C22H30N2O3 

 

370.225 

58 L023259 C22H24N2O4 

 

380.173 

59 L023260 C22H31N3O3 

 

385.236 

60 L023322 C38H48N4O4 

 

624.367 

61 L023497 C28H30N2O4F4 

 

534.214 

62 Norepinephrine C8H11NO3 

 

169.074 

63 Salmeterol C25H37NO4 

 

415.272 
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Compound 
Number Compound Name	
   Chemical 

Formula	
   Chemical Sketches	
   MW 
(g/mol)	
  

64 Zilpaterol C14H19N3O2 

 

261.148 
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APPENDIX C 

Representation of 55 molecules proposed as possible drug candidates. 

ZINC ID NAME Scaffold ID 2D Representation 

ZINC 
06732830 

Ethyl 5-{2-hydroxy-
3-[(4-

methoxyphenyl)ami
no]propoxy}-1,2-
dimethylindole-3-

carboxylate 

Unique 

 

ZINC 
15086276 

N-(4-methyl-3-
morpholinosulfonyl-

phenyl)-2-(1-
naphthylamino)aceta

mide 

1 

 

ZINC 
19229410 

N-({7-[(7-methoxy-
1,3-benzodioxol-5-

yl)methyl]-3-
methyl-5,6,7,8-
tetrahydro-2,7-
naphthyridin-4-
yl}methyl)-2-

(phenylthio)acetami
de 

2 

 

ZINC 
19367103 

1,4-di(4-benzyloxy-
2-

butynyl)piperazine; 
hydrochloride 

Unique 

 

ZINC 
19901106 

1-{4-[2-hydroxy-3-
(mesityloxy)propyl]-

1-piperazinyl}-3-
(mesityloxy)-2-

propanol 

3 

 

ZINC 
19904796 
(1 isomer) 

1,1´-piperazine-1,4-
diylbis[3-

(naphthalen-1-
yloxy)propan-2-ol] 

3 

 

ZINC 
20451620 

1-(9-methoxy-5,6-
dihydrobenzo[h]qui

nazolin-2-yl)-5-
methyl-N-[2-(4-

morpholinyl)ethyl]-
1H-pyrazole-4-

carboxamide 

2 
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ZINC ID NAME Scaffold ID 2D Representation 

ZINC 
22130659 

(2S)-1-[4-[(2R)-2-
hydroxy-3-(2-

naphthyloxy)propyl]
piperazin-1-yl]-3-(2-
naphthyloxy)propan

-2-ol 

3 

 

ZINC 
22289083 

(3 
isomers) 

1-{4-[2-hydorxy-3-
(1-

naphthyloxy)propyl]
-1-piperazinyl}-3-
(2-naphthyloxy)-2-

propanol 

3 

 

ZINC 
22924215 

1,1´-piperazine-1,4-
diylbis[3-

(naphthalen-1-
yloxy)propan-2-ol] 

3 

 

ZINC 
32676044 
(1 isomer) 

N-[(2S)-2-
(dimethylamino)-2-
(2-thienyl)ethyl]-4-

[(2-
naphthylsulfonylami
no)methyl]benzamid

e 

2 

 

ZINC 
33034896 

3-[(3R)-1-(4-
ethylbenzoyl)-3-
piperidyl]-N-(2-

morpholinoethyl)be
nzamide 

3 

 

ZINC 
34667246 

N-[[(2R)-4-[(2S)-3-
benzyloxy-2-

hydroxy-
propyl]morpholin-2-
yl]methyl]-4-fluoro-

N-isobutyl-
benzamide 

4 

 

ZINC 
34667284 

N-[[(2R)-4-[(2S)-3-
(4-chlorophenoxy)-

2-hydroxy-
propyl]morpholin-2-

yl]methyl]-N-
isobutyl-2-phenyl-

ace 

4 

 

ZINC 
34691493 

N-[[(2S)-4-[(2S)-3-
(4-fluorophenoxy)-

2-hydroxy-
propyl]morpholin-2-

yl]methyl]-N-
isobutyl-2-phenyl-

ace 

4 

 

ZINC 
34691722 

N-cyclopentyl-N-
[[(2R)-4[(2S)-2-
hydroxy-3-(2-

methylphenoxy)prop
yl]morpholin-2-

yl]methyl]-4-
methyl-b 

4 
Alprenol 
Scaffold 
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ZINC ID NAME Scaffold ID 2D Representation 

ZINC 
34691828 

(2,6-
dimethoxyphenyl)-

[4-[[(2S)-4-[(2-
hydroxyphenyl)meth

yl]morpholin-2-
yl]methyl]piperazin-

1-yl]meth 

Unique 

 

ZINC 
34717124 

N-[(4-
fluorophenyl)methyl

]-2-[[(1R)-1-(m-
tolyl)-2-propanoyl-

3,4-dihydro-1H-
isoquinolin-7-

yl]oxy]acet 

2 

 

ZINC 
35854704 

(2S)-2-[[(1R)-2-(3-
methylbutanoyl)-1-
phenyl-3,4-dihydro-
1H-isoquinolin-7-

yl]oxy]-N-(2-
pyridylmethyl) 

2 

 

ZINC 
35865478 

N-[[(2R)-4-[(2S)-3-
benzyloxy-2-

hydroxy-
propyl]morpholin-2-

yl]methyl]-N-
isobutyl-2-phenoxy-

acetamide 

4 

 

ZINC 
35865581 

N-[[(2R)-4-[(2S)-3-
(2-furylmethoxy)-2-

hydroxy-
propyl]morpholin-2-

yl]methyl]-N-(2-
methoxyethyl)-4-

met 

4 

 

ZINC 
35865918 

N-[[(2R)-4-[(2S)-2-
hydroxy-3-(2-

methylphenoxy)prop
yl]morpholin-2-
yl]methyl]-N-

isobutyl-4-methyl-
benz 

4 
Alprenol 
Scaffold 

 

ZINC 
35866100 

[4-[[(2R)-4-[(2R)-2-
hydroxy-3-(2-

methylphenoxy)prop
yl]morpholin-2-

yl]methyl]piperazin-
1-yl]-(3-metho 

4 
Alprenol 
Scaffold 

 

ZINC 
37602474 

N-benzyl-2-[[(1S)-
2-

(cyclopropanecarbo
nyl)-1-(p-tolyl)-3,4-

dihydro-1H-
isoquinolin-7-

yl]oxy]acetamide 

2 

 

ZINC 
38714609 

3,3-diphenyl-N-(2-
propylsulfonyl-3,4-

dihydro-1H-
isoquinolin-7-

yl)propanamide 

2 
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ZINC ID NAME Scaffold ID 2D Representation 

ZINC 
40721209 

5-[(1R)-2-[4-[[2-(2-
fluorophenyl)ethyla
mino]methyl]pheno

xy]-1-hydroxy-
ethyl]-1,3-dimethyl-

benzimidaz 

Unique 

 

ZINC 
51450845 

[4-[(2S)-3-(2-
allylphenoxy)-2-

hydroxy-
propyl]piperazin-1-
yl]-(2,5-dimethyl-3-

furyl)methanone 

3 

 

ZINC 
58167132 

6-cyclopropyl-3-
methyl-N-[1-(2-

morpholinoethyl)ind
ol-5-

yl]isoxazolol[5,4-
b]pyridine-4-
carboxamide 

2 

 

ZINC 
60105533 

2-[(4-
fluorophenyl)metho

xy]-N-[[3-(2-
morpholinoethoxy)p
henyl]methyl]benza

mide 

2 

 

ZINC 
66062891 
(1 isomer) 

3-[[2-[2-(2-
methylallyloxy)anili
no]acetyl]amino]-N-

[[(2R)-
tetrahydrofuran-2-

yl]methyl]benzamid
e 

1 

 

ZINC 
66062896 

2-[2-(2-
methylallyloxy)anili

no]-N-[3-
(morpholine-4-

carbonyl)phenyl]ace
tamide 

1 

 

ZINC 
66064410 

3-[[2-(3-
benzyloxyanilino)ac

etyl]amino]-N,N-
diethyl-benzamide 

1 

 

ZINC 
66064457 

3-[[2-(3-
benzyloxyanilino)ac
etyl]amino]-N-(3-

methoxypropyl)benz
amide 

1 
 

ZINC 
66064646 

3-[[2-(3-
allyloxyanilino)acet
yl]amino]-N-[[(2S)-
tetrahydrofuran-2-

yl]methyl]benzamid
e 

1 
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ZINC ID NAME Scaffold ID 2D Representation 

ZINC 
66065048 

2-
(2benzyloxyanilino)

-N-[3-[[(2R)-
tetrahydrofuran-2-

yl]methoxy]phenyl]
acetamide 

1 

 

ZINC 
66065105 

3-[[2-(2-
benzyloxyanilino)ac
etyl]amino]-N-ethyl-

benzamide 
1 

 

ZINC 
66065561 

N-benzyl-3-[[2-[2-
(2-

ethoxyethoxy)anilin
o]acetyl]amino]-N-
methyl-benzamide 

1 

 

ZINC 
66068768 
(1 isomer) 

N-benzyl-N-methyl-
3-[[2-[3-[[(2S)-

tetrahydrofuran-2-
yl]methoxy]anilino]
acety]amino]benzam

ide 

1 

 

ZINC 
66068775 

N-[3-(azepane-1-
carbonyl)phenyl]-2-

[3-[[(2R)-
tetrahydrofuran-2-

yl]methoxy]anilino]
acetamide 

1 

 

ZINC 
66070858 

N-[3-(azepane-1-
carbonyl)phenyl]-2-

[2-[[(2S)-
tetrahydrofuran-2-

yl]methoxy]anilino]
acetamide 

1 

 

ZINC 
66070868 

N-[3-(4-
methylpiperidine-1-
carbonyl)phenyl]-2-

[2-[[(2S)-
tetrahydrofuran-2-

yl]methoxy]anilino]
acetami 

1 

 

ZINC 
66092097 

4-[[2-(3-
ethoxyanilino)-2-

oxo-ethyl]amino]-N-
ethyl-N-phenyl-

benzamide 

1 

 

ZINC 
66093249 

3-[[2-[3-
(benzylcarbonyl)anil

ino]-2-oxo-
ethyl]amino]-N,N-

dimethyl-benzamide 

1 
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ZINC ID NAME Scaffold ID 2D Representation 

ZINC 
66093361 

3-[[2-(2-
naphthylamino)acet
yl]amino]-N-[[(2R)-
tetrahydrofuran-2-

yl]methyl]benzamid
e 

1 

 

ZINC 
66096875 

3-[[2-(3-
ethoxyanilino)-2-

oxo-ethyl]amino]-N-
[(1R)-1-

phenylethyl]benzam
ide 

1 

 

ZINC 
66106842 

N-(3-
phenethyloxphenyl)-

2-[4-piperidine-1-
carbonyl)anilino]ace

tamide 

1 

 

ZINC 
66110260 

N,N-dimethyl-3-[3-
[[2-oxo-2-[3-(3-

phentylpropoxy)anil
ino]ethyl]amino]phe

nyl] propanamide 

1 

 

ZINC 
66110539 

3-[[2-[4-[3-
(dimethylamino)-3-

oxo-
propyl]anilino]acety
l]amino]-N-propyl-

benzamide 

1 

 

ZINC 
66216270 

3-[[2-(2-
ethoxyanilino)acetyl
]amino]-N-[(1R)-1-
phenylethyl]benzam

ide 

1 

 

ZINC 
66226867 

3-[[2-(4-
benzyloxyanilino)ac
etyl]amino]-N-(2-

methoxyethyl)benza
mide 

1 

 

ZINC 
66226908 

3-[3-[[2-(4-
benzyloxyanilino)ac
etyl]amino]phenyl]-

N,N-dimethyl-
propanamide 

1 

 

ZINC 
66227757 

N[3-(4-
methylpiperidine-1-
carbonyl)phenyl]-2-

[4-[[(2S)-
tetrahydrofuran-2-

yl]methoxy]anilino]
acetami 

1 
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ZINC ID NAME Scaffold ID 2D Representation 

ZINC 
66229400 

N-[3-(morpholine-4-
carbonyl)phenyl]-2-

(4-
phenethyloxyanilino

)acetamide 

1 

 

ZINC 
66482925 

[(2S)-3-[(2S,6R)-
2,6-

dimethylmorpholin-
4-yl]-2-hydroxy-
propyl]BLAHone 

Unique 

 

ZINC 
67674643 

3-{[7-(2,6-
dimethoxyphenyl)-

9-methoxy-2,3-
dihydro-1,4-

benzoxazepin-
4(5H)-yl]methyl}-6-

methyl-4H-
chromen-4-one 

Unique 
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APPENDIX D 

Representation of the remaining 7 potential drug candidates that are 
isomers of the molecules listed in Appendix C 

 
ZINC ID NAME 2D Representation 

ZINC 
19904800 
(isomer of 

ZINC19904796) 

1,1´-piperazine-1,4-
diylbis[3-(naphthalen-1-

yloxy)propan-2-ol] 

 

ZINC 
22289086 
(isomer of 

ZINC22289083) 
 

1-{4-[2-hydroxy-3-(1-
naphthyloxy)propyl]-1-

piperazinyl}-3-(2-
naphthyloxy)-2-propanol 

 

ZINC 
22289089 
(isomer of 

ZINC22289083) 

1-{4-[2-hydroxy-3-(1-
naphthyloxy)propyl]-1-

piperazinyl}-3-(2-
naphthyloxy)-2-propanol 

 

ZINC 
22289092 
(isomer of 

ZINC22289083) 

1-{4-[2-hydroxy-3-(1-
naphthyloxy)propyl]-1-

piperazinyl}-3-(2-
naphthyloxy)-2-propanol 

 

ZINC 
32676046 
(isomer of 

ZINC32676044) 

N-[(2R)-2-
(dimethylamino)-2-(2-
thienyl)ethyl]-4-[(2-

naphthylsulfonylamino)m
ethyl]benzamide 

 

ZINC 
66063110 
(isomer of 

ZINC66062891) 

3-[[2-[3-(2-
methylallyloxy)anilino]ac

etyl]amino]-N-[[(2S)-
tetrahydrofuran-2-

yl]methyl]benzamide  
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ZINC ID NAME 2D Representation 

ZINC 
66068769 
(isomer of 

ZINC66068768) 

N-benzyl-N-methyl-3-[[2-
[3-[[(2R)-tetrahyrdofuran-

2-
yl]methoxy]anilino]acetyl

]amino]benzamide  
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