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IMPROVING THE ACCURACY OF INDOOR POSITIONING SYSTEM 

ABSTRACT 

Indoor positioning applications needs high accuracy and precision to overcome the 

existing obstacles and relatively small areas. There are several methods which could be 

used to locate an object or people in an indoor location. Specifically, Ultra-wide band 

(UWB) sensor technology is a promising technology in indoor environments because of 

its high accuracy, resistance of interference and better penetrating. 

This thesis is focused on improving the accuracy of UWB sensor based indoor positioning 

system. To achieve that, optimization and machine learning algorithms are implemented. 

The impact of Kalman Filter (KF) on the accuracy is introduced in the implementation of 

the algorithms.  

The average localization error is reduced by approximately 54.53% (from 16.34 cm to 

7.43 cm), when combining the big bang - big crunch algorithm (BB-BC) with Kalman 

Filter. Finally, a Hybrid (BB-BC KF K-Means) algorithm is improved and implemented 

separately, and the best results are obtained from this Hybrid algorithm. Thus, it has been 

obtained that the average localization error is reduced significantly by approximately 

64.26% (from 16.34 cm to 5.84 cm). 

 

Keywords: Indoor positioning, Ultra-wide band, Big bang-big crunch algorithm, Genetic 

algorithm, K-Means algorithm, Fuzzy C-Means algorithm, Mean Shift algorithm, 

Clustering, Average silhouette method, Kalman Filter. 

 

 

 

 

 

 

 

 



ii 

 

İÇ KONUM BELİRLEME SİSTEMİNİN DOĞRULUĞUNUN İYİLEŞTİRİLMESİ 

ÖZET  

İç mekan konum belirleme uygulamaları, nispeten daha küçük alanlarda kullanılmak ve 

mevcut engellerle başa çıkmak için dış mekan konum belirleme yöntemlerinden daha 

yüksek doğruluk ve hassasiyet gerektirir. İç mekandaki bir nesnenin veya insanın 

konumlarını belirlemek için kullanılabilecek çeşitli yöntemler bulunmaktadır. Özellikle, 

Ultra geniş bant (UWB) sensör teknolojisi, yüksek doğruluğu, bozuculara olan direnci ve 

iç mekan uygulamalarında geniş bant sinyallerinin her taraftan algınabilmesi özelliği 

sayesinde iç mekan konum belirlemede gelecek vaad eden bir teknolojidir.  

Bu tez çalışması, UWB sensör tabanlı iç mekan konum belirleme sisteminin doğruluğunu 

arttırmaya odaklanmıştır. Bunu başarmak için, optimizasyon ve makine öğrenmesi 

algoritmaları kullanılmıştır. Kalman Filtresi (KF)’nin konum belirleme doğruluğu 

üzerindeki etkisi algoritmaların uygulanması esnasında görülmüş ve açıklanmıştır. 

Büyük patlama - büyük çöküş algoritması (BB-BC), Kalman filtresiyle birleştirildiğinde, 

ortalama konum belirleme hatasının yaklaşık %54,53 oranındığı görülmüştür (16,34 

cm'den 7,43 cm'ye düşer). Son olarak, bir Hibrit (BB-BC KF K-Ortalamalar) algoritma 

ayrı olarak geliştirilmiş ve uygulanmıştır, en iyi sonuçlar bu Hibrit algoritmadan elde 

edilmiştir. Bu sayede, ortalama lokalizasyon hatasının yaklaşık %64,26 oranında (16,34 

cm'den 5,84 cm'ye) önemli ölçüde azaldığı belirlenmiştir.  

 

Anahtar kelimeler: İç mekân konum belirleme, Ultra geniş bant, Büyük patlama - büyük 

çöküş algoritması, Genetik algoritma, K-Ortalamalar algoritması, Bulanık C-Ortalamalar 

algoritması, Ağırlıklı Ortalama Öteleme Algoritması, Kümeleme, Ortalama silhouette 

yöntemi, Kalman Filtresi. 
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1. INTRODUCTION 

1.1 Indoor Positioning 

Indoor positioning determines the location of objects, people, and other equipment in an 

indoor area.  Indoor positioning has been the subject of widely growing interest in the last 

few years because of the demand for more accurate and reliable location-based services 

(LBS) (Cai et al., 2017). 

Position of a device or user in a given environment is considered an important part of 

contextual information. And the extensive spread of sensors has produced growing wealth 

of such information. Location by itself, has generated great attention due to its potential 

to support a variety of applications (Brena et al., 2017). 

Position estimation solutions are based on multi-lateration and triangulation methods 

using ultrasound, light, or radio signals, and they manage to provide locational 

information. Triangulation uses the geometric properties of triangles to estimate the target 

position. It includes two derivations: lateration and angulation. The lateration derivations 

estimates the location of an object by measuring its distances from multiple reference 

points. Instead of measuring the distance directly using Received Signal Strengths (RSS), 

the Time of Arrival (TOA) or Time Difference of Arrival (TDOA) is usually measured, 

and the distance is derived by computing the attenuation of the emitted signal strength or 

by multiplying the travel time and radio signal velocity. Roundtrip Time of Flight (RTOF) 

is a method that can be used to perform range estimation function in some systems. 

Whereas, in Angulation the object is located by computing the angles that is relative to a 

number of reference points. There are also other techniques and methods, which provide 

relative positioning such as, inertial methods. However, they accumulate errors in require 

periodic recalibration and in time. So, to locate an indoor object; tags, labels, or tokens 

can be used (Liu et al., 2007). Positioning systems have different architectures 

configurations, accuracies, and reliabilities. 
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Some of the indoor positioning system are Global Positioning system (GPS) AT&T 

Cambridge Ultrasonic Bats, Active Badges, active Bats, Wi-Fi, Radio Frequency 

Identification (RFID) technology, Bluetooth low energy (BLE) and Ultra-wide band 

(UWB) (Koyuncu and Yang, 2010). 

In outdoor environments, location detection has been very successfully using GPS 

technology. The GPS technology has made huge impact on our lives by supporting a wide 

range of applications in mapping, guidance and other beneficial applications. 

Nonetheless, in indoor environments, the use of the GPS or other equivalent satellite-

based location systems is restricted or limited, because of the lack of attenuation and line 

of sight of GPS signals while they cross through walls (Brena et al., 2017). 

High sensitivity GPS can provide positioning in some indoor locations. Although the 

signals are heavily reflected and attenuated by building materials. It was observed that 

highly sensitive GPS receivers can track people through three layers of brick wall, but 

positioning accuracy were very low. The accuracy of some 50 meters inside a place with 

commercial setting is useless with respect to a job of locating specific products on the 

shelf. Thereby, the demand for specialized technologies and methods for indoor location 

systems has become widely accepted (Gu et al., 2009). 

1.2 Indoor Positioning Applications 

The following applications shows the necessity for indoor positioning and location- based 

technology in our daily life. However, more applications will be found from the future 

generation of indoor positioning and even more use cases to utilize its capabilities, in 

which at the moment are not possible (Mautz, 2012). 

1.2.1 Location Based Services (LBS)  

LBS are required in both outdoors and indoors. An example of indoor use is acquiring 

topical or safety on cinemas, events or concerts. Also, LBS applications provide 

navigation to stores in a shopping mall or office in large building. In general, the location‐

based advertisements, local search services and location‐based billing have a high 

commercial value. Another use of LBS is to provide guidance for the guests to the 
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exposition booths. The bus stations or train applications that include the directing to the 

bus stop or platform. 

 

1.2.2 Private homes 

The applications in houses include LBS at home, item detections, and physical game 

gesture. For example, the Ambient Assistant Living (AAL) systems provide help for old 

people in their house. The core function of this systems is positioning which enabled by 

an indoor positioning functionality. 

Other Applications at houses are detection of emergencies, Patient monitoring such as 

monitoring vital signs (Zetik et al. 2010). It also personalized and service entertainment 

systems, for example, smart audio systems  

1.2.3 Context detection and awareness 

Mobile devices offer wide range of helpful functions, in which it is appealing to have an 

automated adaptation of the user device depending on the change of the user’s context. 

Indoor positioning system technologies can utilize smart personal mobile devices, and 

non-smart non-personal mobile devices (beacons and object tags), for purposes of 

tracking and locating people and objects. 

The greatest interest is given to technologies that incorporate smart mobile devices 

because users with these devices are the largest class for indoor positioning systems. For 

example, a smart event guide that provide information about the subject that it’s been 

held in nearby auditoriums. 

1.2.4 Medical service 

In medical facilities the position determining of medical personnel in emergency 

situations become very important. Other applications in medical facilities also include 

tracking of patient and medical equipment. Other example is fall detection of the patients, 

providing an accurate positioning is essential for robotic assistance while operating 

surgeries.  



4 

 

1.2.5 Logistics and Optimization 

To achieve optimization specially in complex systems, it’s highly necessary to obtain 

valuable information regarding the position of the staff members and assets. Thus, when 

it come to complex and large storage areas, it is very important that the needed products 

are located without any delay. 

1.2.6 Police forces and firefighters’ services 

Indoor positioning provides benefits for the rescue services, law enforcement, and 

provide fire services. For example, the position determining of firemen in building that 

are on fire. Whereas, the police benefits from variety of applications, for example, 

immediate detection of burglary or theft, locating of stolen products for incident 

investigations and develop of smart alarm systems that can detect if someone or an asset 

left unauthorized area. 

 

1.3 Indoor and Outdoor Positioning Systems characteristics 

Many characteristics makes the indoor positioning systems differ from the outdoor 

positioning systems. The indoor environments consider to be more complex due to the 

multiple objects (for example, walls, equipment and people) which reflect signals and 

produce multi-path and delay problems. Although, because of the presence of objects, 

indoor environments depend on Non-Line-of-Sight (NLoS) propagation in which the 

signals cannot move directly in straight way from the transmitter end to the receiver end, 

that will cause delays in the receiver end. The presence of objects produces signal 

scattering and high attenuation. Figure 1.1 shows the difference between Line-of-Sight 

(LOS) and NLOS (Alarifi et al., 2016). 

Indoor positioning experiences a signal stability, as the signal power fluctuate easily 

because of the presence of interference sources such as mobile devices, Zigbee devices, 

Bluetooth devices, cordless phones, wireless devices, fluorescent lights, and microwave 

ovens. Also, the indoor environments suffer from structural movements in a way that 

structures may be there location changed from one area to another. As a result, this might 

calibrate and tune the positioning system to overcome with any recent changes in the 
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structure. Also, indoor environments tend to be less dynamic due to objects movement at 

a slower speed within them (Mautz, 2012). 

 

Figure 1.1 Line-of-Sight and Non-Line-of-Sight. 

The outdoor positioning area has been dominated by Global Navigation Satellite System 

(GNSS).  In their basic version, these systems provide precision in the order of meters. 

There have been other methods developed to increase the positioning precision. Most of 

them are based on using a reference station, or a network of stations, in order to improve 

the systems performance and overcome their limitations. With some of these methods, 

sub meter accuracy can be achieved while using a GNSS system. Outdoor positioning can 

be also achieved by using the ubiquitous mobile network base stations. In this case, the 

precision lies in the order of several meters, and depends on the number of surrounding 
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base stations. The outdoor positioning is dominated by the use of GNSS, even though 

there are already integrated circuits which combine GNSS and cellular positioning. The 

indoor positioning domain is a bit more chaotic than the outdoor Positioning. In which, 

there is no prevailing standard for indoor positioning and several technologies have been 

used to provide position data. One of the technologies that have been utilized the most is 

IEEE 802.11 (Wi-Fi) (Sedlacek et al., 2016). 

1.4 Indoor Positioning Technologies 

The first indoor positioning technology that developed by AT&T Cambridge were Active 

badges. Each employee wears a device in this system that able to transmit an infrared 

signal. Then, all the outcome data from the infrared sensors are collected by central 

database and with help of RF tags which are worn each employee, the positions of all 

users are identified. As disadvantage of this technology, it can only be utilized for short-

range communications because the infrared technique needs a LOS between both end the 

transmitter end and the receiver end (Want et al., 1992). 

Active Bats, which is an ultrasonic technology named were developed also by AT&T 

Cambridge. This technology can provide an accuracy that is higher then what found in 

active badges. The user in this technology wears badges that transmit ultrasonic pulses 

for the transmitter end. Then, it uses a triangulation method and measures the Time-of-

Flight (ToF) of this pulse from the transmitter end to point in the ceiling. Using such 

technique, we can calculate the distance between bats to each receiver. However, the 

implementation of this system is difficult because of the large number of transmitters 

devices that need to be installed and also the adjustment they require (Ward et al., 1997).  

Radio-Frequency Identification (RFID) is a means of storing and also retrieving data over 

electromagnetic transmission to an RF compatible integrated circuit. The RFID reader 

can read the data emitted from RFID tags. The RFID readers use protocol and RF to 

transmit and also receive the data. RFID tags can be either active or passive. The 

advantage of RFID technology over ultrasonic positioning systems is the lower cost (Ni 

et al. 2004). Figure 1.2 shows a typical passive RFID system, while Figure 1.3 shows 

active RFID system. 

The ZigBee offers security, networking, and services regarding the application support. 
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It is a low rate and short distance wireless personal area network. The ZigBee node is 

small with low cost and complexity. It includes microcontroller and also a multichannel 

two-way radio. The Zigbee is developed for applications that don’t require high data 

throughput and high-power consumption. Two physical devices used in ZigBee nodes; 

(1) Full Function Device (FFD); (2) Deduced Function Device (RFD) (Mautz, 2012).  

 

 

Figure 1.2 Passive RFID system. 

 

Figure 1.3 Active RFID system. 
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Wi-Fi can be considered to be very popular technology that can be used for wireless 

communication. Wi-Fi is very popular in enterprise locations and public hotspots during 

the last few years. Wi-Fi operates on Industrial, Scientific and Medical (ISM) band 

including 2.4 GHz and a range of (50 m to 100 m). IEEE 802.11 become the dominant 

local wireless networking standard. Therefore, it’s desirable to use the already existing 

WLAN infrastructure for indoor positioning by adding a location server (Jekabsons et al., 

2011). Figure 1.4 shows indoor Wi-Fi based localization, which utilize received signal 

strength in indoor Wi-Fi environment.  

 

Figure 1.4 Indoor Wi-Fi based localization. 

In the recent years there were increase of interest to use Bluetooth low energy (BLE) 

beacons for tracking and locating objects. The BLE beacon-based positioning methods 

include two types: fingerprinting-based and range-based. BLE beacons range is about (15 

m), which is significantly wider by comparing it with RFID sensor. Utilizing RSSI is 

recommended to help in positioning. Since, the distance between both the sender end and 

receiver end decreases, the RSSI value decreases. Then, the user’s position can be solved 

by trilateration according to the distances estimated accordingly (Zuo et al., 2018). Figure 

1.5 shows Bluetooth low energy (BLE) beacon. 
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Figure 1.5 Server-based Indoor Positioning using BLE. 

Several systems have utilized global system of mobile/code division multiple access 

mobile cellular network to estimate the position of outdoor mobile users. In term of 

accuracy, using cell-ID is quite low in range between (50 m to 200 m), according to the 

cell size. However, the accuracy is higher in densely covered areas. Indoor localization 

using mobile cellular network is workable if the building is covered by base stations or 

on base station with strong RSS received by indoor mobile users (Alarifi et al., 2011). 

In cellular-based positioning the Global System for Mobile Communications (GSM) are 

obtainable in most countries that able to outperform the coverage of WLAN, but with 

lower localization accuracy. The GSM network operates in bands that is licensed and 

block any interference at a similar frequency. Fingerprinting is a method of GSM indoor 

localization that is based on the power level (RSS) (Mautz, 2012). The cellular based 

positioning system is shown in Figure 1.6.  
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Figure 1.6 Cellular-based Positioning. 

Ultra-wide band (UWB) signals have very large bandwidth, which is more than 500 MHz. 

UWB transmitters allow better power efficiency, because the consumption of power is 

low in comparison with other indoor positioning technologies. UWB provide excellent 

multipath resolution, since the indoor wireless system must overcome with sever 

multipath situations. Such a wide band width offers many advantages for communications 

and radar applications. In both cases, a large bandwidth improves reliability, since the 

signal contains different frequency components, so it will increase the probability that at 

least some of them can go around or through obstacles (Gezici et al., 2005). 
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UWB is considered to be very auspicious technologies. UWB technology it does not 

require LOS and also it does not affect by the presence external noise because of to its 

properties, which are the high bandwidth and signal modulation. UWB became 

commercially available in 1990. UWB based on transmitting short pulses that utilize 

techniques causing the spreading of the radio energy with low power spectral density. 

The high bandwidth of UWB provide high data throughput for communication and the 

low frequency of UWB pulses will make the signal to pass over barrier such as walls 

effectively (Ghavami et al., 2006). Figure 1.7 shows the UWB positioning system. Hence, 

the UWB enable more reliable and accurate positioning.  

 

Figure 1.7 UWB positioning system. 
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1.5 Indoor Positioning Performance Metrics 

Measuring the performance of a positioning technology only by its accuracy is not 

enough. Hence, the performance benchmarking for indoor positioning technology were 

provided as follow: accuracy, precision, complexity, scalability, robustness, and cost 

(Tekinay et al., 1998). 

1.5.1 Accuracy 

Accuracy is important requirement for any indoor positioning systems. The average 

Euclidean distance between the measured location and the real location is used as 

performance metric for evaluation purpose. 

Accuracy can be systematic effect/offset, or a potential bias of a positioning system. 

When the accuracy is higher, it refers to good system. However, sometimes there is going 

to be a compromise between accuracy and some other related characteristics. In which 

such a compromise is highly needed. 

1.5.2 Precision 

Location precision reflect the consistently of the system works, thus it is the measure of 

the robustness of positioning technology as it shows the variation in its performance over 

many experiments. Whereas, the accuracy considers the value of mean distance errors.  

1.5.3 Complexity 

The complexity of a positioning system can be referring to software, hardware, and 

operation factors. For example, if the positioning algorithm computations is running on a 

centralized server side, then, the positioning calculation can be performed quickly 

because of the sufficient power supply and the powerful processing capability. However, 

if it is processed on the mobile unit side, then, the complexity effects could be clearer.  

 

 



13 

 

1.5.4 Robustness 

The high robustness of a positioning technique means that it could function in normal 

way even if some signals are not available. Signal from transmitter unit in some cased is 

blocked, thus the signal can’t be acquired from some of the measuring units, that is the 

signal from other measuring units is the only information that can be used order to 

estimate the location.  

1.5.5 Scalability 

When the positioning scope gets large, the scalability of system will ensure the normal 

positioning function. In term of positioning performance, it decreased when the distance 

between the transmitter end and receiver increases.  

1.5.6 Cost 

In term of the cost of positioning system, it relies on several factors, such as time, money 

space, energy, and weight. The time factor is referring to both the installation and also the 

maintenance. Mobile units may have weight constraints and strict space. 

1.6 Indoor Positioning System Classification 

Indoor positioning technologies can be classified into two categories; first, building 

dependent and second, building independent. When it come to building dependent indoor 

positioning, it will indicate the technologies rely on the building in which they operate in. 

They utilize the existing technology in that building. Furthermore, it can be divided into 

two classes when it comes to building dependent: indoor positioning system that utilize 

the buildings and indoor positioning system that require dedicated infrastructure. 

Whereas, the building independent doesn’t require an existing infrastructure in order to 

operate. Figure 1.8 shows the classification of indoor positioning system technologies 

(Alarifi et al., 2016). 
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1.7 Comparison of Indoor Positioning Technologies 

Table 1.1 characterizes the sensor technologies according to its accuracy, coverage, the 

measuring principle, and its application. 

Table 1.1 Comparison of indoor positioning technologies. 

Indoor 

Technology 
Accuracy 

Measuring 

Principle 
Application 

Infrared 1 cm to 5 m thermal imaging, 

active beacons 

people detection, 

tracking 

WLAN / WiFi 20 m to 50 m fingerprinting pedestrian navigation, 

LBS 

RFID 1 dm – 50 m Fingerprinting, 

Proximity 

detection  

pedestrian navigation 

Ultra‐wide band 1 cm – 50 m time of arrival, 

body reflection  

robotics, automation 

GNSS 10 m (global) assistant GPS, 

parallel correlation  

location based services 

Pseudolites 10 cm – 1000 

dm 

carrier phase 

ranging 

GNSS challenged pit 

mines 
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Figure 1.8 Indoor positioning system classification. 

1.8 UWB Positioning Algorithms 

UWB positioning can be categorized into Received Signal Strength (RSS) based systems, 

Time of Arrival (ToA), Angle of Arrival (AoA), Time Difference of Arrival (TDOA) and 

Hybrid-based Algorithms (Alarifi et al., 2016). 

 

1.8.1 RSS-based algorithms 

When using RSS-based algorithms, the object that been identified measures the signal 

power for received signals from numerous transmitters, to estimate the distance between 

both the transmitters end and receivers end, by using signal strength. Now the receiver 

end is able to identify its location relative to the transmitter end nodes.  

The accuracy of Resaved signal strength for NLOS environment is relatively low, this 

mean that the RSS is not a suitable identification method for indoor positioning systems 

despite its advantages. Such as, the mobile tags act as receivers only, hence, it depends 

on the power of received signals from several transmitters in order to define their location. 

In this case, the RSS-based method will have lower communication traffic which 

eventually will help in improving the positioning accuracy (Wang, 2010). 
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1.8.2 AOA-based algorithms 

The estimation of received signal angles, from two sources or more, is been compared 

with carrier phase in multiple antennas or the signal amplitude. The position is determined 

from the crossing of the angle line in each signal source. These algorithms are sensitive 

to number of elements, which can cause errors in their determining of object position. 

(Al-Jazzar et al., 2011). To increase its accuracy, the AOA is compatible to be used with 

other algorithms (Reddy and Sujatha, 2011). Figure 1.9 show the AOA-based method. 

 

Figure 1.9 Angle of Arrival (AOA)-based method. 
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1.8.3 TOA-based algorithms 

TOA Algorithms are based on the crossing of circles for number of transmitters. In which, 

the diameter of circles is the distance between both the transmitter end and receiver end. 

This distance is acquired by the calculation of the one-way propagation time between 

them (Reddy and Sujatha, 2011). Figure 1.10 shows ToA-based method. 

 

Figure 1.10 Time of Arrival (ToA)-based method. 
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1.8.4 TDOA-based algorithms 

It measures the time difference of arrival of a signal that is been sent by target and then 

received by more than two receivers. In this scenario, the position of the transmitter end 

will be found. The scenario can be altered so a single receiver end can determine the 

object position by measuring the delta in arrival times of two transmitted signals. Usually, 

one transmitter end requires the multiple receivers end to work together to determine the 

position of the transmitter and share the data. This requires high bandwidth when 

compared with other algorithms (Alarifi et al., 2016). Figure 1.11 shows TDOA-based 

method. 

 

Figure 1.11 TDOA-based method. 
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1.8.5 Hybrid-based algorithms 

Multiple localization techniques are utilized in a way that complement each other, or 

when multiple positioning techniques aim at multiple parts of the site that adequate with 

their capabilities. In this manner, the accuracy will increase as well as cost and complexity 

(Jiang et al., 2010).  

1.9 Related Work 

The performance of RSS algorithms is investigated for positioning using UWB 

technology and also explore the effect of small scale fading on the system accuracy (Gigl 

et al., 2007).  

Bekkali et al. (2007) present an algorithm for detrmining the location of the tag by using 

the multi-lateration with RFID map-based technique and enhance the position estimation 

of the tag by using Kalman Filter. 

The advantages and drawbacks of the TDoA method were analyzed. In which different 

simulations were presented to show the position errors of TDoA method according to 

time synchronization errors and anchor and clock errors (Syed Ahmed and Yonghong 

Zeng, 2017). 

A method was proposed by Mahfouz et al. (2014) to combine machine learning with 

Kalman Filter to estimate instantaneous positions of a moving object. The application of 

this method can obtain the accurate estimation of position and the accelerations.   

An indoor positioning system using BLE beacons was developed. The Big Bang – Big 

Crunch (BB-BC) method were applied to the experimental indoor positioning system 

with aim to average locational error. As a result, accuracy increased from 26.62% to 

75.69% (Arsan, 2018, J). 

Using Ultra-wide Band (UWB) sensors, an indoor positioning system was developed, and 

the purpose was to increase the accuracy level of the standard equipment. The BB-BC 

optimization algorithm was implemented to achieve that, by reducing the average location 

error. As a result, the average error was reduced by 27.51 % (Arsan, 2018, D). 

Sunantasaengtong and Chivapreecha (2014) proposed algorithm to apply K-Means 

clustering and Genetic Algorithm (GA) as engine to prepare offline information. As a 
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result, the accuracy was increased and decrease the computational cost of fingerprint 

technique for indoor positioning. 

Hao Zhou and Nguyen Ngoc Van (2014) address the problem of GPS poor accuracy in 

indoor environments, they presented radio frequency (RF) based system in order to locate 

users inside buildings. However, this approach is sensitive to body movements and 

multipath. This means it will cost much computation time, hence, the Fuzzy C-Means 

(FCM) clustering algorithm were proposed to lower the computation time. As a result of 

such implementation, the computation time were reduced, and the accuracy were 

improved.  

The indoor wireless position algorithm based on Wi-Fi K-Means was proposed by Zhong 

et al. (2016). The improved formula is utilized to consider the effect of attribute values, 

and the difference between different objects which can be computed accurately.  

Suroso et al. (2011) proposes a technique using Fuzzy C-Means (FCM) clustering 

algorithm, this technique is in Radio Frequency (RF) fingerprint-base indoor positioning. 

Using such a technique offer positioning system that is capable to provide benefit in low 

power consumption and in time efficient.  

Alata et al. (2008) used a subtractive clustering method to find the optimal number of 

clusters for the fuzzy C-Means algorithm. They optimize the parameters of the subtractive 

clustering algorithm by using iteration-based search approach in order to find weighting 

exponent to the fuzzy C-Means algorithm. The iteration-based search is used to find the 

optimal single-output Sugeno-type Fuzzy Inference System (FIS) model by optimizing 

the parameters of the subtractive clustering method that in return provide the a minimized 

least square error, that is between the real dataset and also the Sugeno fuzzy model. 

Yesilbudak (2016) present similarity analysis, by utilizing K-Mean algorithm and 

Squared Euclidian. Silhouette coefficient value was utilized to check how well-separated 

the outcome clusters.  

Paivinen and Gronfors (2006) study the problem of selecting the right number of clusters. 

k-Means clustering methods were used, whereas the number of clusters was determined 

with the largest average silhouette width. As a result, they were able to automatically find 

the optimal number of clusters from the given dataset without needing to use any user-

defined parameters. 
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Tuncer (2017) present the Intelligent Centroid Localization (ICL) Method. This method 

is conversion of Centroid Localization (CL). The goal is to determine the position of a 

sensor position. The RSSI values are used as an input to the fuzzy system and the values 

of fuzzy system's produced membership functions tuned by performing Genetic 

Algorithm (GA) to minimize the average location error. In returned, the location error 

reduced by 65% and 57% and when it was compared with Approximate Point In Triangle 

(APIT) algorithm and Centroid Localization method. 

1.10 Structure of the Thesis 

This introduction is going to be followed by an overview of the proposed methods that 

were implemented in this work in Chapter 2. Which include the optimization algorithms, 

machine learning algorithms, Kalman Filter and additional tool to define the number of 

clusters in the clustering algorithms. The experimental setup that were applied to collect 

the dataset as well as the implementation and evaluation of the optimization methods are 

in Chapter 3. Whereas the implementation and evaluation of machine learning algorithms 

and the Hybrid Big bang-big crunch K-Means algorithms are in Chapter 4. 

Chapter 5 closes this thesis with conclusions drawn from the work that presented 

throughout the thesis, and suggestions for future work to develop the current implemented 

work. 
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2. PROPOSED METHODS 

2.1 Optimization Methods 

The optimization problem is finding a set of parameters which minimizes an objective 

function, it can also consider as fitness function in the evolutionary algorithms (Erol and 

Eksin, 2006). 

2.1.1 Big bang-big crunch algorithm 

BB-BC is essentially consisting of two stages: a big bang (BB) stage and a big crunch 

(BC) stage. In BB stage, candidate solutions will be distributed uniformly over the search 

space with respect to the limit of the search space. The BC stage can be visualized as 

transformation from disordered state of energy to ordered state of energy (Erol and Eksin, 

2006). The big crunch phase can be visualized as transformation from disordered state of 

energy to ordered state of energy. The BC has multiple inputs and one output, namely, 

center of ‘mass’. The BC is a concurrence operator and the word ‘mass’ indicate the 

inverse of the objective function value. The center of mass is calculated as follow (Biradar 

and Hote, 2016): 

�⃗�𝑐 =

∑
�⃗�𝑖

𝑓𝑖
 

𝑁
𝑖=1

∑
1
𝑓𝑖

 
𝑁
𝑖=1

 

where xi, fi, N is a point within an n-dimensional search space, the objective function value 

of this point, the population size, respectively. After the BC stage, the optimization 

algorithm creates new members to be used in BB stage in the next iteration. This process 

can be achieved by jumping to the first step and generate an initial population. 

         (2.1) 
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For an optimization algorithm to be classified as global, it must converge to an optimal 

point; However, it must include certain points that have a decreasing probability within 

its search population. So, the large amount of the solutions that is been produced must be 

around the optimal point, however, the few points that is remaining are distributed within 

the search space after a fixed number of steps. As the number of iterations increases, the 

ratio of solution points around the optimal value to points away from optimal value must 

decrease. The center of mass can be utilized by spreading new off springs around it. 

After that, the center of mass will be recomputed. These contraction steps are keep 

performed until a specified stopping rule. The new candidates around the center of mass 

are calculated as follow (Labbi and Attous, 2010). The new candidates around the center 

of mass are calculated as follow (Erol and Eksin, 2006): 

𝑥𝑛𝑒𝑤 = 𝑥𝑐 +
𝐿 𝑟 

𝑘
 

where 𝑥𝑐, r, L, k is center of mass, normal random number, the upper bounds on the values 

of the optimization problem variables, the iteration step, respectively. As iterations go to 

infinity, the deviation term will reach zero, hence there will be always off-springs located 

far from the center of mass with probability that is decreasing but will never equal to zero. 

This will assure the global convergence of the algorithm. Figure 2.1 shows the flow chart 

of BB-BC algorithm. The BB-BC algorithm can is summarized in Figure 2.2. 

 

 

Figure 2.1 BB-BC algorithm flow chart. 

         (2.2) 
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Figure 2.2 BB-BC algorithm pseudo code. 

2.1.2 Genetic algorithm 

GA is a heuristic algorithm which can be applied in a straightforward manner. GA is 

implemented in a wide spread of problems. Due to their population approach, GA have 

been extended to solve search and optimization problems efficiently, that including multi-

objective and multimodal (EL- Sawy et al., 2014). 

GA based on genetics and biological evolution. In GA, the design variables are 

represented as genes on a chromosome. It features a group of candidate individuals, that 

is called population on the response surface. 

Because of its genetic operators and environmental selection, mutation and 

recombination, chromosomes that have an optimal fitness are obtained (Deb, 1991). 

In the 1960s, genetic algorithm was invented by "John Holland" and it was later 

developed by Holland and colleagues and his students at Michigan University. GA 

comprises by these four important steps (Michalewicz, 1996): 

(i) The initial candidate population of chromosomes are formed by two way, in 

random way or by perturbing an input chromosome. The way the initialization 

step is done is not critical if the initial population extent a wide range of design 

variable settings. Hence, if there is a knowledge about the system being that is 

been optimized, then, this information can be adopted in the initial population. In 

 
Step 1: Initialize:      

r: Normal random number, 
N: Population size, 
UB: Upper Boundary, 
iter= 1, 
Max iteration: Maximum number of iterations. 

Step 2: Generate population Xi of size N with respect to the defined limits.  
Step 3: For each candidate evaluate the fitness function. 
Step 4: Calculate the center of mass C, using Eq. (2.1). 
Step 5: Generate new solutions around the center of mass using Eq. (2.2).  

Step 6: iter ← iter+1 
Step 7: Return to step number 3, until stopping criteria is been met, which is 
(iter=max iteration). 
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the binary representation, every chromosome is a string zeros or ones. The length 

of the string depends on the required accuracy. 

(ii) Evaluation were the fitness is computed in this step. The fitness function aims to 

numerically encode the performance of the chromosome. In real world 

applications, the selection of the fitness function is considered a critical step. 

(iii) Then, the chromosomes with the highest scores when it come to the fitness, are 

placed once or more times into a mating pool subset. This placement is in semi-

random manner. The low fitness chromosomes are removed from the population. 

(iv) Exploration, which include the crossover and mutation operators. Two 

chromosomes are selected randomly from the mating pool subset to be mated. The 

probability that these parents are mated is initialized to high value usually, and 

also its user-controlled option. If the parent chromosomes can mate, then, a 

crossover operator is utilized to exchange the genes between the two parents to 

output two offspring. If they cannot mate, then, the parents are copied into the 

next generation unchanged.  

Figure 2.3 shows a flowchart of GA working (Sunantasaengtong and Chivapreecha, 

2014). GA algorithm is summarized in Figure 2.4.  

 

Figure 2.3 Genetic Algorithm flow chart. 
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Figure 2.4 Genetic Algorithm pseudocode. 

2.2 Machine Learning Algorithms  

In this work, centroid-based clustering model was used, since it’s the most appropriate 

for the UWB data set. Three Clustering algorithms are proposed, K-Means, Fuzzy C-

Means (FCM), and Mean Shift algorithms. 

2.2.1 K-Means algorithm 

K-Means clustering algorithm is considering to be one of the important clustering 

methods. K-Means algorithm randomly select k initial number of centroids (centers), 

where k is the total number clusters that is defined by the user. Then each point is assigned 

to a closest cluster center. According to points in the cluster the centroid gets Updated. 

The process continues till points stop changing their clusters. (Shedthi et al., 2017) 

formally, the aim of the algorithm is to partition the n entities into k sets Si where, i =1, 

2… k , so that the within-cluster sum of squares (WCSS) is minimized, defined as : 

∑  ∑ ‖𝑋𝑖
𝑗

− 𝑐𝑗‖
2

𝑛

𝑖=1

𝑘

𝑗=1

 (2.3) 

Input: 
nP: Population Size, 
nVar: Number of Variables, 
Initial Population rang, 
mG: Max Generation. 

Output: The best individual in all generation. 
Step1: generate initial population of size nP. 
 while (Number of generations is less than mG). 

Step 2: evaluate the initial population according to the fitness 
function. 
Step 3: select the individual according to their fitness(selection). 
Step 4: Do Crossover with Pc probability. 
Step 5: Do Mutation with Pm probability. 
Step 6: Update population (population=selected individual after 
Step 4 and 5). 

End while 
Step 7: Return the best individual.  
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Where, the term  ‖𝑥𝑖
𝑗

− 𝐶𝑗‖
2
 provides the distance between cluster's centroid and an entity 

point. K-Means algorithm flow chart is shown in Figure 2.5. The algorithm is composed 

of the following steps (Shedthi et al., 2017): 

(i) Selecting the number of clusters i.e. K. 

(ii) Choosing Randomly N cluster centroids. 

(iii) Calculated the distance between data points and cluster centroids. 

(iv) Similar data points which is close to centroid, then move that cluster. 

(v) Acquire new cluster centers by averaging the observations in each cluster. 

(vi) Steps (iii) to (v) are repeated until cluster centroids do not change or reach the 

maximum number of iterations. 

(Namratha and Prajwala, 2012) the main advantages of K-Means algorithm are: (1) the 

simplicity; (2) K-Means is computationally faster than hierarchical clustering, which 

allows it to run on large datasets; (3) if large number of clusters is specified, it can find 

pure sub clusters. Whereas the disadvantages of K-Means algorithm are: (1) it’s difficult 

to identify the initial clusters; (2) since the number of clusters is fixed at the beginning, 

the prediction of value of K is difficult; (3) the final cluster pattern is dependent on the 

initial patterns; (4) It does not produce the same result with each run, since the outcome 

clusters depend on the initial random assignments (Singh et al., 2011). 

 

Figure 2.5 K-Means Algorithm flow chart. 
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2.2.2 Fuzzy C-Mean algorithm 

Fuzzy C-Means (FCM) is algorithm for data clustering. Based on fuzzy set theory that 

allows one piece of data belongs to two or more clusters. Where fuzzy means “unclear” 

or “not defined” and “C” denotes clustering. The main advantages of this algorithm are 

its robust behavior, ability of uncertainty data modeling, applicability to multi-channel 

data, and its straight forward implementation (Suroso et al., 2011). It is based on 

minimization of the following objective function (Alata et al., 2008): 

∑  

𝑁

𝑖=1

∑ 𝑢𝑖𝑗
𝑚

𝐶

𝑗=1

‖𝑥𝑖 − 𝐶𝑗‖ 2 

 

Where m refers to real number greater than 1; uij refer to the degree of membership of xi 

in the cluster j; xi is the ith of d-dimensional measured data; cj is the d-dimension center 

of the cluster and ||*|| is norm expressing the similarity between any measured data and 

the center. Fuzzy partitioning is process through an iterative optimization of the objective 

function shown above, with the update of membership uij and the cj cluster centers by: 

𝑢𝑖𝑗 =
1

∑  (
‖𝑥𝑖 − 𝑐𝑗‖
‖𝑥𝑖 − 𝑐𝑘‖)  

2
𝑚−1𝐶

𝑘=1

 

    

𝑐 =
∑ 𝑢𝑖𝑗

𝑚 . 𝑥𝑖
𝑁
𝑖=1

∑ 𝑢𝑖𝑗
𝑚𝑁

𝑖=1

   

This iteration will stop when  

𝑚𝑎𝑥𝑖𝑗{|𝑢𝑖𝑗
𝑘+1 − 𝑢𝑖𝑗

𝑘 |} <  𝜀 

Where ε is a termination criterion between 0 and 1 and k are the iteration steps. This 

procedure converges to a local minimum or a saddle point of Jm. Fuzzy C-Means Flow 

chart is given in Figure 2.6. The algorithm is composed of the following steps: 

(i) Initialize U = [ uij] matrix, U (0). 

(ii) At k-step: calculate the centers vectors C(k)=[cj] with U(k) using Eq. (2.6). 

(iii) Update U(k), U(k+1) in Eq. (2.5). 

(iv) If || U(k+1) - U(k)||< ε then STOP; otherwise return to step (ii). 

(2.4) 

(2.5) 

(2.6) 

(2.7) 
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The main advantages of FCM algorithms are (Suganya and Shanthi, 2012): 

(i) Converges.  

(ii) Unsupervised. 

The Disadvantages of FCM algorithm are: 

(i) The computational time is long. 

(ii) Very sensitivity to noise and One expects low (or even no) membership degree 

for outliers (noisy points). 

(iii) Sensitivity to the initial guess (speed, local minima). 

 

 

Figure 2.6 Fuzzy C-Means Algorithm flow chart. 
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2.2.3 Mean Shift algorithm 

Mean shift algorithm is based on the general idea that locally averaging data results 

inmoving to higher density, and therefore more typical, regions (Carreira-Perpiñán, 

2015). Mean shift is a nonparametric estimator of density gradient. The local maximum 

can be gotten by the iterative method. The algorithm now has been widely used, such as 

clustering analysis, image segmentation, object tracking, discontinuity preserving 

smoothing, filtering, edge detection, and information fusion. Mean shift algorithm used 

kernel function to calculate the step of the mean shift and estimate point gradient 

orientation (Guo et al., 2007). Mean shift algorithm is very attractive because it based on 

nonparametric Kernel Density Estimates (KDE). In which, the user doesn’t need to define 

the number of clusters. The only parameter the user needs to specify is the scale of the 

clustering (band width) but not the number of clusters itself. In Mean shift clustering, the 

input of the algorithm are the data points and the bandwidth or scale. Call {𝑥𝑛}𝑛=1
𝑁  ⊂  ℝ𝐷 

the data points to be clustered. The kernel density estimate is defined as follow (Carreira-

Perpiñán, 2015): 

𝑝(𝑥) =
1

𝑁
∑ 𝐾 (‖

𝑥−𝑥𝑛

𝜎
‖

2

)𝑁
𝑛=1     𝑥 ∈ ℝ𝐷  

With bandwidth σ > 0 and kernel K(t), K(t) = e−t/2 for the Gaussian kernel. There are 

several ways to estimate the bandwidth of a KDE, for example, making the bandwidth 

proportional to the average distance of each point to its kth nearest neighbor. 

In term of choosing of kernel, in practice, the Gaussian kernel produces better results than 

the Epanechnikov kernel, that generates KDEs that are only piecewise differentiable and 

can contain spurious modes. The results of mean shift were carried over to kernels where 

each test point has its own weight and its own bandwidth. Gaussian kernels were utilized, 

since it’s easier to analyze and give rise to simpler formulas. Gaussian kernel steps are 

summarized in Figure 2.7. 

The advantages of Mean shift algorithms are listed as follow (Carreira-Perpiñán, 2015):  

(i) It doesn’t make model assumptions,  

(ii) It can model complex clusters having nonconvex shape. 

(iii) Only one parameter is needed to set which is the bandwidth.  

(2.8) 
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(iv) The clustering it produce is uniquely determined by the bandwidth, thus, there is 

no need to run this algorithm with different initializations. 

(v) Identify the outliers. 

The main Disadvantages Mean shift clustering algorithm are (Carreira-Perpiñán, 2015): 

(i) KDEs tend to break down when performing on high dimensions dataset, in which 

the number of clusters changes abruptly from one for large σ to many, with only 

a minute decrease in σ. The most successful applications of Mean Shift are in low-

dimensional problems. 

(ii) In some applications for example, medical image segmentation or figure-ground 

the user may want a specific number of clusters, but in Mean shift, the user has 

no control over the number of clusters. Thus, in order to obtain specified number 

of clusters, the user must search over σ. This is computationally costly and not 

defined well. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Gaussian Mean Shift algorithm. 

2.3 Kalman Filter 

 Kalman Filter algorithm uses a series of data  that is observed over time, that may contain 

noise, with the aim to estimates unknown variables with better accuracy (Li et al., 2015). 

It was firstly proposed by (Kalman, 1960), then Kalman Filter become a standard 

approach to achieve optimal estimation. Kalman Filter is considered as one of the famous 

for n ∈ {1, … . . , 𝑁} 

      x ← xn 

     repeat 

∀𝑛: 𝑝(𝑛|x) ←
exp (−

1
2 ‖

(x − x𝑛)
𝜎 ‖  2)

∑ 𝑒𝑥𝑝 (−
1
2 ‖

(x − xn`)
𝜎 ‖  2)𝑁

𝑛`=1

 

                x ← ∑ 𝑝(𝑛|x)xn

𝑁

𝑛=1

 

        until stop 

         𝑧𝑛 ← x 

end 

connected-components ({𝑧𝑛} 𝑛=1
𝑁 , 𝜀) 
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Bayesian filter theories (Woods and Radewan, 1977). The Status equation and 

observation equation is a linear representation of wk, uk−1, xk−1 and xk, vk, respectively. 

Status equation and observation equation represent a dynamic model by the reliable 

estimation corrected by measurements (Salmond, 2011). The status equation of Kalman 

Filter is represented as follow (Li et al., 2015):  

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1 +  𝑤𝑘  

Whereas the observation equation is represented as follow: 

𝑧𝑘 = 𝐻𝑥𝑘 +  𝑣𝑘 

where in the above equations: A, xk, H, wk, zk, vk, uk−1 is the transition matrix, status vector, 

the matrix of observation, noise vector of the system, observation vector, noise vector of 

the observation , system control vector, respectively.The  wk and vk are supposed to satisfy 

the positive definite, uncorrelated and symmetric, zero mean Gaussian white noise vector; 

k is a subscript; wk and vk are satisfied: 

𝐸(𝑤) = 0, 𝑐𝑜𝑣(𝑤) = 𝐸(𝑤𝑤𝑇) = 𝑄 

𝐸(𝑣) = 0, 𝑐0𝑣(𝑣) = 𝐸(𝑣𝑣𝑇) = 𝑅, 𝐸(𝑤𝑣𝑇) = 0 

𝑥𝑘
^− ∊ 𝑅𝑛 is the prior status estimation which is derived from status transition equation at 

the moment of k-1, where �̂�𝑘 is the posterior status estimation that combines the 

measurements at the moment of k. The deviations are in following Eq. (2.13) and Eq. 

(2.14): 

𝑒𝑘
− = 𝑥𝑘 − 𝑥𝑘

^− 

𝑒𝑘 = 𝑥𝑘 − �̂�𝑘 

The priori and posterior estimation deviation covariance equations are defined in Eq. 

(2.15) and Eq. (2.16) : 

𝑃𝑘
− = 𝐸 [𝑒𝑘

−𝑒𝑘
−𝑇] 

𝑃𝑘 = 𝐸 [𝑒𝑘𝑒𝑘
𝑇] 

 The following prediction and update equations are obtained from the Kalman Filter 

theory. Prediction equations are defined as follows: 

�̂�𝑘
− = 𝐴�̂�𝑘−1 + 𝐵𝑢𝑘−1 

(2.10) 

(2.11) 

(2.12) 

(2.14) 

(2.13) 

(2.16) 

(2.15) 

(2.18) 

(2.17) 

         (2.9) 
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𝑃𝑘
− = 𝐴𝑃𝑘−1𝐴𝑇 + 𝑄 

Update equations are defined as follows: 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝐻𝑃𝑘

−𝐻𝑇 + 𝑅 )−1 

�̂�𝑘−1 = �̂�𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐻�̂�𝑘

−) 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘
− 

Where Kk, �̂�𝑘, Pk, I are the Kalman gain matrix, optimum filter value, the matrix of filter 

deviation, unit matrix, respectively. Figure 2.8 shows the Kalman Filter in pseudocode, 

and Figure 2.9 shows the flow chart of Kalman Filter. 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 Kalman Filter algorithm in pseudocode. 

2.4 The Average Silhouette Method 

The average silhouette is a way for defining the optimal number of clusters. It measures 

the quality of a clustering. That is, it determines how well each object lies within its 

cluster. The silhouette ranges from −1 to +1, where a high value indicates a good 

clustering. The closer silhouette coefficient to 1, the higher the observation belongs to its 

cluster (Yesilbudak, 2016) .If ai is the average dissimilarity between the ith data point and 

all other points in the cluster, and bi(k) is the average distance from the ith point to points 

in another cluster k, then the silhouette coefficient of the ith data point is (Paivinen and 

Gronfors, 2006): 

(2.19) 

(2.20) 

(2.21) 

Input: Q, R, z, x_est, p_est 

Output: 𝑠𝑡
−, 𝑃𝑡

− 

Step 1: Initialize A matrix and H matrix. 
Step 2: Predicted state vector and covariance: 

x_prd = A * x_est 

p_prd = A * p_est * A' + Q 
Step 3: Estimation: 

S = H * p_prd' * H' + R 

B = H * p_prd' 

Step 3: Compute Kalman gain factor 
klm_gain = (S \ B)' 

Step 4: Correction based on observation: 

𝑠𝑡
− = x_prd + klm_gain * (z - H * x_prd) 

𝑃𝑡
−  = p_prd - klm_gain * H * p_prd 

Step 5: return 𝑠𝑡
−, 𝑃𝑡

− 
 

 

(2.18) 
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𝑠𝑖 =  
𝑚𝑖𝑛𝑘𝑏𝑖(𝑘) − 𝑎𝑖

𝑚𝑎𝑥(𝑎𝑖, 𝑚𝑖𝑛𝑘 𝑏𝑖(𝑘))
 

The average silhouette method can be computed as follow:  

(i) Compute clustering algorithm (e.g., K-Means clustering or Fuzzy C-Means) for 

different values of k. 

(ii) For each k, calculate the average silhouette of observations. 

(iii) The location of the maximum is considered as the appropriate number of clusters. 

 

 

Figure 2.9 Flow chart of Kalman Filter. 

(2.22) 
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3. EXPERIMENTAL SETUP, WORK AND EVALUATION OF THE 

OPTIMIZATION ALGORITHMS 

3.1 Experimental Setup 

In this work, the dataset that was collected from an active learning classroom (ALC). The 

classroom contains a moveable tables, chairs, and desks, so it will provide multiple 

choices for seating. The class is limited to 28 students, and the area is designed to provide 

maximum control to the users. Total of 12 student’s setup is used when the dataset is 

collected as shown in Figure 3.1. The design features are expected to support users’ use 

of all locations in the classroom while performing different activities. 

 

    Figure 3.1 Active learning classroom, measuring 7.35 m x 5.41 m, installation of the 

four anchors expressed as A0, A1, A2 and A3, the test points expressed as ×. 
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While the active learning class, measuring 7.35 m x 5.41 m, is designed as a test bed for 

collecting data, a ceiling system, which is attached to the ceiling and held anchors on 

exactly corners of the testbed at 2.85 m constant height, is established. As shown in Figure 

3.2, a ceiling system is established to provide better LOS and direct path between both 

the tags and the anchors. 

 

 

Figure 3.2 Ceiling installation of the anchors. 

 

As shown in Figure 3.3, Decawave MDEK 1001 UWB development kit is utilized to 

conduct this experiment, by including 4 anchors in the established ceiling system and a 

test tag for the test user.  

 

 

Figure 3.3 A sensor kit of Decawave MDEK1001 development kit 

which can be assigned as an anchor or a tag. 
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Total of 180 locations of the test user were marked, the test user was given a UWB sensor 

tag to wear around his neck and then the location data of the test user were collected. The 

test user stayed in the testbed for 3 minutes for each location providing 150 samples for 

each marked location. Total time of data collection is 9 hours excluding the time for set 

up and change of observation cycles. Total of 27,000 location measurements were 

collected (Arsan and Kepez, 2017). 

The dataset was partitioned randomly into training set and test set. In which the training 

set include 70% of the samples (105 samples) and test set has 30% of the samples (45 

samples). The average location error for the training set is 16.3378 cm, whereas the 

average location error for the test set is 16.3442 cm. 

3.2 Experimental work and Evaluation of the Big Bang-Big Crunch Algorithm 

The population size of BB-BC algorithm is set to 100 and the number of generations is 

also set to 500, which is also refer to maximum number of iterations. The experiments 

were performed on Intel Core i7 dual core with 4 threads, using MATLAB R2018a. In 

population-based approaches, it is known that the fitness function value is calculated for 

every candidate solution in each population, thus, it has a great impact on the algorithm’s 

speed. The fitness function used in BB-BC algorithm as follow: 

∑ ((𝑥𝑖𝑚 − 𝑥𝑖𝑜𝑓𝑓𝑠𝑒𝑡 − 𝑥𝑖𝑟) 2
𝑁

𝑖=1
+ (𝑦

𝑖𝑚
− 𝑦

𝑖𝑜𝑓𝑓𝑠𝑒𝑡
− 𝑦

𝑖𝑟
) 2) 

Where xir, yir represent the real location values, xioffset, yioffset represent the required offset 

values, whereas xim and yim represent the measured UWB values in both x and y 

dimensions. Figure 3.4 show the flow chart of proposed system for BB-BC algorithm. 

3.2.1 BB-BC algorithm standalone simulation  

In the first simulation, the raw training set and test set were used as input to the proposed 

system as shown in Figure 3.4. The goal was to obtain (xoffset, yoffset) from the training set 

for each test point of the 180 test points and apply these values to the test set. The xoffset 

and yoffset values are coordinate dependent. In order to identify which (xoffset, yoffset) values 

(3.1) 
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belong to which test point in the test set, the average for each test point (xAvg, yAvg) in both 

the training set and the test set were calculated. Then, the average of test point (XAvg, YAvg) 

in the test set that has nearest distance to the test point (XAvg, YAvg) in the training set, uses 

the corresponding (xoffset, yoffset). 

The offset obtained from the training set for the 180 test points are shown in Table 3.1. 

Figure 3.5 shows the improvement to the measured UWB test points (180 test points) for 

the test set. As a result, the average location error was reduced by 48.16 % (from 16.34 

cm to 8.47 cm) for the test set. 

 

 

Figure 3.4 Proposed system for BB-BC algorithm.  
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Table 3.1 BB-BC offset values. 

P. XOffset YOffset P. XOffset YOffset P. XOffset YOffset 

1 0.11534297 0.010691031 61 -0.139527798 0.272273972 121 0.120746649 0.086233055 

2 0.011153233 0.001772856 62 0.061191721 -0.001110148 122 0.027088403 0.174906851 

3 0.033775413 0.093884262 63 -0.072289955 -0.047935546 123 0.032346032 0.097945255 

4 0.144149114 0.059178585 64 0.029885692 -0.107334795 124 0.058845891 -0.008461347 

5 0.013981438 0.014213967 65 -0.228620752 -0.004151056 125 -0.073543642 0.133662001 

6 0.025948707 0.023924808 66 -0.099349568 -0.101285281 126 -0.166364929 0.268415751 

7 0.259778149 0.138007764 67 0.039579576 0.052863899 127 0.003986926 0.234548896 

8 0.102347405 0.026860465 68 0.053694768 0.172095205 128 0.054993217 0.196720408 

9 0.0932238 0.006225316 69 0.045984869 0.07215579 129 0.077061033 0.131563141 

10 0.042170076 -0.470636028 70 0.067271314 0.085952028 130 0.077100746 0.100399409 

11 0.078260469 -0.097363387 71 0.043085274 0.234667959 131 0.123378515 0.187617083 

12 0.031380195 -0.252758446 72 0.050485832 0.073681031 132 0.048352486 0.155082641 

13 0.356756709 -0.283321151 73 -0.092181744 0.396648217 133 0.16883339 0.396740095 

14 0.000223164 -0.014900107 74 0.169675341 0.076607523 134 0.168720508 0.070474398 

15 0.006596666 -0.12677083 75 -0.017532096 0.162956859 135 0.21630277 0.080254677 

16 0.005680077 0.126100947 76 0.010432579 0.000292791 136 0.009522132 0.066771649 

17 0.035955262 0.109745996 77 0.046699266 0.161710622 137 0.008319361 0.076502414 

18 0.066909749 0.096249148 78 -0.17681075 0.067118373 138 0.012236464 0.201577989 

19 0.181632427 -0.003151484 79 0.053216976 0.019098514 139 0.149440527 0.069453217 

20 0.166353152 0.134384152 80 -0.145110179 -0.026194614 140 0.033438042 0.132771313 

21 0.042659778 0.171867204 81 0.000171591 0.003023353 141 0.048942002 -0.006854175 

22 0.058961847 0.057956027 82 0.009396841 0.013570732 142 0.041941409 0.233981827 

23 0.052444442 0.13840581 83 0.0825571 0.029256507 143 0.061097416 0.078149291 

24 0.07571815 0.023856579 84 -0.036048786 0.19294221 144 0.088670448 0.078599777 

25 0.043679699 0.065891964 85 0.094266325 0.036783629 145 0.123729261 0.118024051 

26 0.187804053 0.046776616 86 0.225096847 0.208415174 146 0.175081242 0.296943416 

27 0.11972936 -0.091105251 87 0.216674747 0.22340662 147 0.200921163 0.155730319 

28 0.079104968 0.059200073 88 0.220999317 -0.04382997 148 0.075428795 0.148993782 

29 0.482457858 0.203845528 89 0.065456327 0.040766391 149 0.197906665 0.124759113 

30 0.269062046 0.085777628 90 0.120590237 0.074951578 150 0.262231689 0.112623284 

31 0.129735561 -0.00667473 91 0.003217512 0.02231684 151 0.018282563 0.029163401 

32 0.029478048 0.134656837 92 0.000407513 0.041113111 152 0.083975607 0.191496341 

33 0.040538682 0.002150369 93 0.09421124 0.006348759 153 0.00488178 0.149765367 

34 0.017467886 0.04551327 94 0.070943299 -0.019202475 154 0.053088322 0.190280798 

35 0.068561293 0.117111093 95 0.013241994 0.115995122 155 0.047600947 0.018212672 

36 0.027178287 0.00431424 96 0.014105574 0.112738835 156 -0.036859424 0.094403495 

37 0.048145096 -0.046118851 97 0.114189217 0.143408625 157 0.294525319 0.04006355 

38 0.202234792 0.062478151 98 0.071558145 0.095234457 158 0.106801534 0.116203942 

39 0.114548187 0.033747446 99 0.115875578 0.164704283 159 0.061716641 0.185538645 

40 0.023142137 0.129951515 100 0.082685129 0.068549636 160 0.02397817 0.160128094 

41 0.122544784 0.130915346 101 0.223900491 0.103605531 161 0.103100588 0.10843004 

42 0.15104913 0.00372624 102 0.103123895 0.021258083 162 0.23222763 0.101299154 

43 0.13400872 0.098360107 103 0.122297013 0.327171573 163 0.086305333 0.139601505 

44 0.167912296 0.016906972 104 0.007120431 0.226871772 164 0.271850434 0.091154014 

45 0.00768539 0.079753041 105 0.08771891 0.060366461 165 0.165481233 0.043669002 

46 0.026936784 0.28813043 106 0.018636846 0.22053659 166 0.136457147 0.072343543 

47 0.09095503 0.070559775 107 0.124070539 0.078187664 167 0.00421834 0.186925912 

48 0.070974163 0.079160427 108 0.005691673 0.059029838 168 0.087019717 0.063383491 

49 -0.018657545 -0.097474024 109 0.017775324 0.088848095 169 0.023338648 0.18871428 

50 0.099406882 0.050910016 110 0.134837179 0.157019838 170 0.022039795 0.184450503 

51 0.006706928 -0.011234497 111 0.064152053 0.104532165 171 0.020224854 0.155884735 

52 0.008695962 0.212476437 112 0.089159428 0.046067622 172 0.137984277 -0.015895096 

53 0.202938441 0.06513069 113 0.160355296 0.081417845 173 0.067649842 0.309365139 

54 0.065564774 0.090929739 114 0.064413709 0.018205585 174 0.156233783 0.048204229 

55 0.000726929 0.115047794 115 0.003465052 0.087313429 175 0.09125539 0.142290503 

56 0.16838268 0.125490889 116 0.199259056 0.057405928 176 0.073300241 0.172366586 

57 -0.068283701 0.293799255 117 0.048930969 0.221185088 177 0.147563607 0.285174929 

58 0.221952072 0.016388281 118 0.192297252 0.133293202 178 0.147437 0.062293595 
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59 0.151508364 0.009834489 119 0.290046354 0.064799622 179 0.138933808 0.039111129 

60 0.312387507 0.018248686 120 0.1893541 0.166586164 180 0.046140047 0.019041453 

 

 

 

Figure 3.5 The improvement after applying BB-BC. 

3.2.2 Kalman Filter then BB-BC algorithm simulation 

To acquire a better optimized result and improve the accuracy of BBBC algorithm, in the 

second simulation the raw UWB test points for the training set and test set were used as 

input to Kalman Filter (KF) first, then the Kalman Filtered output data were used as input 

to the proposed system for the BB-BC algorithm. For the training set, the real location of 

the test point was used as performance metric for the prediction of Kalman Filter, then 

the number of iterations the produce the best prediction were used in the test set. Filtering 

noisy signals is important since many sensors have an output that is too noisy to be used 

directly and utilizing Kalman Filtering let you take account for the uncertainty in the 

signal/state. The H matrix was initialized, it’s called the measurement matrix, which is a 

model of the sensors, however it is hard to determine. A popular approach is to initialize 

it as a diagonal identity matrix and tweak it to improve the final filter results. The 

covariance of the process noise Q was also initialized, and it does not get updated by the 

filter. This matrix tells the Kalman Filter how much error is in each action. R is covariance 

matrix of the measurement noise. It represents (electronic, random) noise characteristics 
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of the sensor. Now, since this value is not defined, R is set to identity matrix. Finally, A 

matrix was initialized as well, which is the state transition matrix as following:  

A= [1 0 dt 0 0 0; 

        0 1 0 dt 0 0; 

        0 0 1 0 dt 0; 

        0 0 0 1 0 dt; 

       0 0 0 0 1 0; 

        0 0 0 0 0 1] 

 

Where dt = 0.1, which define the sample time. As a result of applying Kalman Filter, the 

average location error was reduced by approximately 31.03 % (from 16.34 cm to 11.27 

cm) for the test set. Figure 3.6 shows the improvement when applying Kalman filter for 

the test set. Table 3.2 show the BB-BC obtained offset values for the Kalman Filtered 

UWB measurements. 

As a result of using the Kalman Filtered UWB test points as an input to the BB-BC 

algorithm, the average location error was reduced by approximately 51.29 % (from 16.34 

cm to 7.96 cm). Figure 3.7 shows the improvement to the Kalman Filtered UWB test 

points for the test set. 

 

 

Figure 3.6 The improvement after applying Kalman Filter. 
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Table 3.2 BB-BC offset values for the Kalman Filtered UWB. 

P. XOffset YOffset P. XOffset YOffset P. XOffset YOffset 

1 -0.004452698 -0.009401121 61 -0.171277364 0.095507099 121 0.111973805 -0.008996036 

2 0.000839167 0.001653004 62 0.034890696 0.005573469 122 0.001360074 0.008043363 

3 -0.006682247 0.086934956 63 -0.06419529 -0.058741689 123 0.004715827 0.000484926 

4 -0.019335066 0.04634062 64 0.046240722 -0.116613893 124 0.055961679 0.004710373 

5 0.000375786 0.013592907 65 -0.230744487 -0.00413322 125 -0.07359033 0.111706635 

6 0.004988152 0.022557516 66 -0.073169615 -0.083701229 126 -0.183606367 0.226629881 

7 -0.02866962 0.120433803 67 0.000227647 0.016212597 127 -0.157230828 0.253118367 

8 0.004012279 0.024373697 68 -0.040268419 0.126709753 128 -0.049419812 0.147519909 

9 0.009443672 0.005712742 69 0.018395743 0.061062175 129 0.002211581 0.004470769 

10 0.052420459 -0.470636028 70 0.005832844 0.174214335 130 0.000240857 0.010569956 

11 0.033423794 -0.097363387 71 -0.009324888 0.200538721 131 0.002669591 0.01866403 

12 0.041473827 -0.252758446 72 0.021913634 0.029972283 132 0.002391118 0.043677708 

13 0.16680138 -0.278905284 73 -0.102057993 0.372255906 133 -0.053726929 0.350513736 

14 0.020462401 -0.014900107 74 0.011145366 0.048716771 134 -0.033752347 -0.038796434 

15 0.026792012 -0.12677083 75 -0.01282896 0.146876449 135 0.011370974 -0.041144303 

16 0.00384804 0.024265975 76 0.014175579 0.010014929 136 0.012717631 0.007007545 

17 0.005742717 0.091913909 77 -0.030567989 -0.013282736 137 0.001537599 0.001732766 

18 0.026793962 0.079508068 78 -0.186271509 0.055197448 138 0.000241868 0.01119839 

19 0.017893566 -0.040392179 79 0.062854862 0.015556888 139 0.118269568 -0.04191768 

20 -0.034829739 0.087813907 80 -0.1375657 -0.00917044 140 8.65E-05 0.001448221 

21 0.022582856 0.162619713 81 0.014371669 0.022550305 141 0.037123247 0.024132376 

22 0.02887165 0.057956027 82 0.006229408 0.017156305 142 0.002147991 0.019574982 

23 0.022318645 0.132191698 83 0.000433164 0.00224732 143 0.001473452 0.001317913 

24 0.028275673 0.142869189 84 -0.005756617 0.206040197 144 0.002884834 0.001458563 

25 0.000117259 0.050433818 85 0.005086666 0.007046109 145 0.000704837 0.000396903 

26 0.02787295 0.169351077 86 0.075495318 0.163856882 146 0.000259324 0.039368024 

27 0.064399723 -0.064363789 87 0.035121694 0.071494298 147 0.00020227 0.004446765 

28 0.074895298 0.063577167 88 0.051474964 -0.106255722 148 0.009502585 0.110038477 

29 0.24651728 0.154268067 89 0.006473769 0.007789005 149 0.007595827 0.000174783 

30 0.007070836 0.057056491 90 0.003602568 0.024290029 150 0.000702664 0.000119922 

31 0.112775867 -0.034190462 91 0.001541214 0.002473021 151 0.011847162 0.009562367 

32 -0.060049798 0.049468896 92 0.001551442 0.002315901 152 0.044520357 0.061474435 

33 0.000947459 0.007106905 93 0.116224259 -0.012406822 153 0.001703576 0.000444605 

34 -0.002157359 0.037613174 94 0.056998726 -0.016330696 154 0.005687507 0.004387977 

35 0.001823338 0.078379671 95 -0.203502526 0.217413216 155 0.043867063 0.034657589 

36 0.000749297 0.002626839 96 0.009123985 0.012149825 156 -0.033378341 0.090276781 

37 0.019429281 -0.038228394 97 0.008630217 0.059758427 157 0.182202768 -0.107155226 

38 0.003805108 0.011352742 98 0.000982674 0.007838648 158 0.000970993 0.000866079 

39 0.004208097 0.013572841 99 -0.019465614 0.077750915 159 0.005949223 0.003865816 

40 0.047617851 0.125164415 100 0.002729734 0.008598892 160 0.009878362 0.178533156 

41 0.063937036 0.118602132 101 0.010579026 0.0113317 161 0.001660478 0.008379103 

42 0.004671029 0.003916972 102 0.037012372 0.013807051 162 0.001926295 0.002561696 

43 0.108304289 0.107382993 103 -0.054654001 0.253790149 163 0.028519074 0.101043134 

44 0.00775339 0.007744819 104 -0.035460729 0.198651487 164 0.079836547 -0.050591518 

45 0.042955856 0.093640455 105 0.015778246 0.04361748 165 0.190927139 0.040381104 

46 -0.009293252 0.143597836 106 0.00419509 0.000414068 166 0.13095723 0.009455248 

47 0.028271411 0.030590266 107 0.079475274 -0.013245461 167 0.001313554 0.002007672 

48 0.020129235 0.025599499 108 0.000479318 0.003308769 168 0.085570773 0.04449075 

49 -0.003197772 -0.092361494 109 0.000229375 0.001623825 169 0.000175806 0.001265529 

50 0.039793532 0.003202767 110 0.001679027 0.002861347 170 0.001410503 0.001129085 

51 0.019924649 -0.006706932 111 0.001247548 0.003798385 171 0.000346617 0.011483319 

52 0.006576172 0.213688391 112 0.001432279 0.001247761 172 0.134396149 0.010988292 

53 0.003952511 0.002970903 113 0.010876828 0.003665011 173 0.001132151 0.027332893 

54 -0.068654742 0.176183259 114 0.002885001 0.002103791 174 0.136579852 0.003671197 

55 0.033866584 0.067858752 115 -0.002036484 0.055769475 175 0.053659362 0.099518549 

56 0.027312904 0.063795769 116 0.002427645 0.000202824 176 0.001279004 0.019392931 

57 -0.034722934 0.306916801 117 -0.030886929 0.186725606 177 0.002505174 0.019705998 

58 0.000618154 0.000664686 118 0.001619481 0.010209193 178 0.007429037 0.000254779 

59 0.001274997 0.002621633 119 0.000580519 9.78E-05 179 0.08446876 0.005648342 
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60 0.002082215 0.000630607 120 -0.007788741 0.072487993 180 0.011343544 0.026349545 

 

 

 

Figure 3.7 Kalman Filter then BB-BC algorithm. 

3.2.3 BB-BC algorithm then Kalman Filter simulation 

In the final simulation, the raw UWB test points for the training and test were used as 

input to BB-BC algorithm, then the Kalman Filter was applied to the output data for the 

training and test set. The results obtained from this simulation were the best result 

compared to the first and second simulations. In which the average location reduced by 

approximately 54.53 % (from 16.34 cm to 7.43 cm) for the test set. Figure 3.8 shows the 

improvement to the raw UWB test points for the test set. The comparison in computation 

time during the implementation of the mentioned simulations are presented in Table 3.3 

Figure 3.9 show the results comparison among the implemented simulations for the test 

set. 

Table 3.3 Computation time comparison of BB-BC simulations. 

Simulation Computation time in seconds 

BB-BC 560.901 

KF then BB-BC 914.345 

BB-BC then KF 923.283 
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Figure 3.8 BB-BC algorithm then Kalman Filter. 

 

 

Figure 3.9 BB-BC simulations results. 
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3.3 Experimental Work and Evaluation of the Genetic Algorithm 

The experiments were performed on Intel Core i7 dual core with 4 threads, using 

MATLAB R2018a Toolbox. The first stage in Genetic algorithm is to generate an initial 

population, the popular approach in generating the initial population, is the random 

generation of chromosomes. In which, each generation, the operators are implemented  as 

follows: (1) Parent chromosomes are selected with respect to their fitness values; (2) 

Cross-over is implemented to the parent chromosomes and the new chromosomes are 

acquired; (3) The produced chromosomes are then evaluated by calculating the fitness 

values; (4) Finally, The GA process continue to the specified maximum number of 

generations. The fitness function used in Genetic Algorithm is defined in Eq. (3.1). The 

parameters values for the GA algorithm were chosen as shown in Table 3.3. Figure 3.10 

show the flow chart of the proposed system for GA algorithm. 

 

 

Figure 3.10 The proposed system for the GA algorithm implementation. 
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Table 3.4 Genetic Algorithm selected parameters. 

Parameter Value 

Npop Population size = 100 

Generation Maximum number of generations = 500 

(Stopping criteria) 

Fitness scaling Rank 

Crossover fraction 0.8 

Reproduction (Selection) Elite count = 0.05* Npop 

Mutation rate 0.1 

3.3.1 GA standalone simulation 

In the first simulation, the Raw UWB training set were used as input to Genetic Algorithm 

in order to obtain the offset values to be used by the test set as shown in Figure 3.10.  The 

acquired offset values form the implementation of GA are presented in Table 3.4. As a 

result, the average location error was reduced by 31.76 % (from 16.34 cm to 11.15 cm) 

for the test set. Figure 3.11 shows the improvement to the raw UWB test set. 

Table 3.5 GA offset values. 

P. XOffset YOffset P. XOffset YOffset P. XOffset YOffset 

1 0.007995591 0.013554168 61 -0.160061289 0.087259949 121 0.089432705 -0.023494573 

2 0.002111152 0.023034086 62 0.017621977 -0.00460163 122 0.042009943 0.000765888 

3 -0.001693977 0.088075078 63 -0.064688488 -0.074471237 123 0.026664627 4.50E-03 

4 0.086677365 -0.045117969 64 -0.004367768 -0.112494848 124 0.025642652 -0.011860366 

5 -0.006981793 0.071668384 65 -0.263243978 -0.026730104 125 -0.063700825 0.020722294 

6 -0.052430109 0.102359224 66 -0.108551498 -0.111567405 126 -0.188428549 0.05162898 

7 0.090139422 0.165215742 67 0.012406109 0.099859081 127 -0.111987934 0.021790454 

8 0.102654079 0.036535477 68 0.016855183 0.020293017 128 0.007795127 0.014001176 

9 0.026361532 0.009448725 69 0.014750483 0.005512197 129 0.01041955 0.039101405 

10 -0.094288767 -0.381659561 70 -0.003621493 0.020707348 130 0.013937632 0.016830778 

11 0.033409558 0.012570532 71 -0.001914178 0.03530327 131 0.020797987 0.037641154 

12 -0.011287725 -0.14539248 72 -0.122720414 0.041093195 132 -0.085588931 0.03563343 

13 0.13179761 -0.160707735 73 -0.228278713 0.242092688 133 0.073133656 0.124473226 

14 -0.096755544 0.015903266 74 -0.037962652 -0.03793449 134 0.022243784 0.011541301 

15 -0.064236844 -0.01620629 75 -0.061099766 0.113248438 135 0.012983621 0.015993433 

16 0.011030451 0.075164129 76 -0.108095112 -0.108416185 136 -0.091200416 0.002452636 

17 0.01372425 -0.000370396 77 0.022764051 0.028175667 137 0.02110593 0.035657112 

18 0.013119995 0.010961089 78 -0.192490581 -0.011661365 138 0.016669831 0.022364795 

19 0.043819921 -0.023962129 79 0.030968138 -0.018462149 139 0.028234267 -0.004062821 

20 0.014846879 0.01296309 80 -0.161758753 -0.033155721 140 0.00435565 0.021784721 

21 0.009618815 0.110343979 81 -0.155166384 -0.168166245 141 0.013539925 -0.03278835 

22 0.012946312 0.01157686 82 -0.030706766 -0.003130598 142 0.007907831 0.024233864 

23 0.007187166 0.051597446 83 0.077358991 0.00569887 143 0.015336175 0.017000345 
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24 0.025042779 0.016813819 84 -0.075499264 0.073823478 144 0.012653875 0.020464625 

25 -0.034230711 0.075085827 85 -0.027563913 0.050171161 145 0.064270763 0.028473365 

26 0.019504245 0.019412899 86 0.057338944 0.047154875 146 0.018982736 0.041414723 

27 0.054339345 -0.121708319 87 0.101522827 0.151364221 147 0.007870882 0.01865221 

28 0.019646721 0.032037351 88 0.017692377 -0.068844601 148 0.010289796 0.016247901 

29 0.077212657 0.036834414 89 -0.102946999 0.018900112 149 0.024398334 0.022606746 

30 0.097739684 0.033721863 90 -0.039399924 0.123843716 150 0.009250443 0.016676345 

31 0.055663725 -0.010935012 91 0.000622066 -0.016586401 151 0.051482583 -0.104256946 

32 0.010147549 0.065185209 92 -0.028459573 0.04213398 152 0.01756852 0.011414578 

33 0.109124177 -0.022986714 93 0.015898849 -0.024271069 153 -0.001674982 0.016158662 

34 0.006655227 0.006616704 94 0.005011729 -0.020882626 154 0.016144542 0.040864 

35 0.012013661 0.018628413 95 -0.22320646 0.024881238 155 0.022789668 -0.016488843 

36 0.018250059 -0.024607265 96 -0.026322923 0.034786351 156 -0.081581075 0.02568866 

37 0.007455917 -0.042626926 97 0.013200939 0.015730911 157 0.042035882 -0.022363704 

38 0.029836371 0.013547051 98 0.034924034 0.034523259 158 0.020543447 0.018318098 

39 0.095596739 0.031689854 99 0.006078913 0.009286359 159 0.00904279 0.034517298 

40 -0.037511234 0.036883423 100 0.024123687 5.84E-03 160 -0.094146883 0.07518581 

41 0.044007226 0.07238993 101 0.174665415 0.066229128 161 -0.021057844 0.049872319 

42 0.024029181 -0.025901758 102 0.015759606 0.005838669 162 0.013402402 0.015700358 

43 0.012561389 0.012996784 103 0.028051647 0.042868024 163 -0.001472059 0.009540672 

44 -0.017034957 0.058790991 104 -0.01993307 0.036342204 164 -0.011743328 0.01526819 

45 -0.108949703 0.054111491 105 0.01735451 0.010954552 165 -0.00986535 -0.029596475 

46 0.009437472 0.186463938 106 0.013176597 0.032754961 166 0.045297595 -0.0049333 

47 0.005164041 0.003872865 107 0.062140399 -0.003995032 167 0.000200351 0.038346938 

48 0.015905481 0.036266646 108 -0.005053316 0.009584471 168 0.082883374 -0.003514098 

49 -0.03104545 -0.124527764 109 0.018222978 0.037038552 169 0.019428498 0.023890509 

50 0.089062189 0.068302008 110 0.046789312 0.097991772 170 0.020092188 0.019515503 

51 0.000856372 -0.018730517 111 0.012955998 0.020292777 171 -0.004163146 0.00680188 

52 -0.056086025 0.08135287 112 0.011592398 0.010873019 172 0.067730941 -0.116224706 

53 0.027631964 0.091947685 113 0.022357199 0.085284607 173 0.016211987 0.100878232 

54 0.004692105 0.043184787 114 -0.007656371 -0.050865927 174 0.014849009 -0.002268364 

55 -0.217671572 0.02399824 115 -0.027642601 0.011126746 175 0.012192779 0.024452171 

56 0.011037376 0.035376717 116 0.047822795 0.012670909 176 -0.011117678 0.020504189 

57 -0.095076638 0.215475771 117 -0.007900009 0.057338761 177 0.02961493 0.038273457 

58 0.032063066 0.019901808 118 0.036413251 0.022502864 178 0.010995542 -0.020647512 

59 0.023362187 0.015569395 119 0.021256411 0.007536819 179 0.013634667 -0.00930086 

60 -0.009422622 0.010489067 120 0.060508213 0.027606005 180 -0.159537714 -0.172247015 

 

 

Figure 3.11 UWB test points location error when applying GA. 
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3.3.2 Kalman Filter then GA simulation 

To increase the accuracy of Genetic algorithm, Kalman Filter was applied on UWB test 

points first for the training set and test set. In which the number of iterations the produce 

the best prediction was obtained from the training set and used in the test set. Then the 

Kalman Filtered UWB test points for the training and test set were used as an input to the 

prosed system for the GA. Table 3.5 show the GA obtained offset values for the Kalman 

Filtered UWB measurements. The improvement in location average error for the test set 

are shown in Figure 3.12. In which the average localization error was reduced by 

approximately 46.57 % (from 16.34 cm to 8.73 cm). 

Table 3.6 GA offset values for the Kalman Filtered UWB. 

P. XOffset YOffset P. XOffset YOffset P. XOffset YOffset 

1 -0.013934788 0.007090201 61 -0.127359075 0.027747356 121 0.067984035 -0.064132048 

2 -0.003849929 0.015552505 62 0.0131404 -0.007296442 122 0.025111454 -0.042028436 

3 -0.024995119 0.05518178 63 -0.044808024 -0.003053772 123 0.020896592 -0.016032553 

4 -0.010112825 -0.10439578 64 0.036235616 -0.024436087 124 0.019095266 -0.000775138 

5 0.002864392 0.092811756 65 -0.193971394 -0.016322981 125 -0.002000519 0.013274685 

6 -0.071754817 0.128981901 66 -0.041373413 -0.010523608 126 -0.034487729 0.008787451 

7 -0.004503454 0.116092415 67 -0.003265355 0.069924934 127 -0.152503411 -0.009374035 

8 0.030597471 0.002252877 68 -0.009300766 0.010776766 128 -0.005184456 0.006979028 

9 -0.014740059 0.005292973 69 0.000448096 -0.00347114 129 -0.011824721 0.02463667 

10 -0.093761137 -0.230580001 70 -0.029543536 0.005894197 130 -0.007970264 0.006149619 

11 0.005073229 0.043135309 71 -0.023934597 0.017451825 131 -0.00095569 0.01116418 

12 0.00391877 -0.023367182 72 -0.118049452 0.018830005 132 -0.061595582 0.005606383 

13 0.022616543 -0.062625624 73 -0.169834906 0.223369971 133 -0.063592695 0.075870888 

14 -0.076643833 0.007544823 74 -0.102148421 -0.057268373 134 -0.006220672 -0.003462066 

15 -0.037964348 0.022672466 75 -0.008116744 0.117595812 135 -0.02358464 -0.0027708 

16 -0.023925787 0.03942252 76 -0.024265621 -0.042660493 136 -0.048551081 0.020980763 

17 -0.007036946 -0.011396629 77 -0.013358007 -0.02249812 137 0.01079783 0.004010772 

18 0.008288627 0.001945679 78 -0.031728689 0.012675152 138 -0.004473256 -0.000850677 

19 -0.011663014 -0.040707356 79 0.021938672 -0.019715745 139 0.015176128 -0.054648141 

20 -0.01141553 0.004430245 80 -0.042811374 -0.007124995 140 -0.01611384 0.010768822 

21 -0.001397356 0.094502334 81 -0.014237544 -0.014231128 141 0.015222232 -0.022103148 

22 0.006675903 0.006834756 82 -0.019907512 -0.00437135 142 -0.032936569 0.016900353 

23 0.004689379 0.037345545 83 0.027872775 -0.036473458 143 0.008033093 0.009210534 

24 0.00877366 -0.001163207 84 -0.04876592 0.063248862 144 0.007078347 0.009985511 

25 -0.011510377 0.055768865 85 -0.060597445 0.066182714 145 0.009675723 -0.000922071 

26 0.005753011 0.006338709 86 -0.019993047 0.029818475 146 -0.002282357 0.009792239 

27 0.020501661 0.006088412 87 -0.012076547 0.114680305 147 -0.00804825 0.011242335 

28 0.008360818 0.030321376 88 -0.010031713 -0.098001871 148 0.005723784 0.005316735 

29 0.037314679 0.006965379 89 -0.099446854 0.015854897 149 -0.013834075 -0.021711594 

30 -0.044760665 0.014732338 90 -0.05528483 0.113561496 150 -0.0082431 -0.006405085 

31 0.040944864 0.00171904 91 -0.011012881 -0.017232762 151 0.036771611 -0.094949178 

32 -0.03069109 0.038789945 92 -0.007777801 0.026764671 152 0.011933151 -0.010459084 

33 0.046096506 -0.076831444 93 0.005881395 -0.008688931 153 0.006730858 -0.009258729 

34 -0.008371799 -0.002641449 94 0.003370341 -0.003977832 154 0.010667788 0.020518526 

35 0.001269653 0.009855255 95 -0.066175239 0.010952582 155 0.019310384 -0.007614826 

36 0.032268562 -0.053298959 96 -0.01131462 0.024650482 156 -0.075943067 0.013033136 

37 0.003233798 -0.015349348 97 -0.010945693 0.006565555 157 0.03134309 -0.124218084 
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38 0.002260211 -0.002319978 98 0.001223649 0.0271946 158 0.007711224 -0.012605225 

39 -0.008408669 -0.008054201 99 -0.010045846 0.003662177 159 -0.041791576 0.016091539 

40 -0.011062853 0.01819054 100 -0.020379872 -0.009789508 160 -0.056938514 0.058986604 

41 0.00582209 0.047237242 101 0.044308072 0.014578788 161 -0.036529745 0.006536299 

42 0.016999817 -0.004002961 102 0.01004127 -0.008354599 162 -0.005889787 -0.026836491 

43 0.002906868 0.0045746 103 -0.019383673 0.022045585 163 -0.019558121 0.000496559 

44 -0.068785961 0.101834194 104 -0.008206382 0.014101663 164 -0.044387618 -0.005994822 

45 -0.091401534 0.104504005 105 0.000813832 0.008386149 165 -0.027401094 -0.03240899 

46 0.006020905 0.065881976 106 0.004437847 0.000384135 166 0.033778437 -0.023700844 

47 0.003231088 3.26E-05 107 0.042396038 -0.032712907 167 -0.001496098 -0.007653758 

48 0.001141624 0.015193434 108 -0.001210222 -4.47E-07 168 0.07345151 -0.025582539 

49 0.003394238 -0.005304607 109 -0.007512591 0.009153463 169 0.002579493 0.002715253 

50 0.073490673 0.017594881 110 0.023160489 0.00710088 170 0.009385453 0.003003327 

51 0.00011297 -0.009662935 111 0.006071986 0.008936988 171 0.001565709 0.005008488 

52 -0.028411889 0.070081606 112 0.003496166 -0.007833795 172 0.073176424 -0.098199667 

53 -0.009124592 0.04304501 113 0.00514385 0.027411807 173 -0.005639098 0.061548817 

54 -0.008830053 0.029683652 114 -0.023115957 -0.037218623 174 0.006421807 -0.026426692 

55 -0.117311772 0.001802938 115 -0.014212446 0.00772835 175 0.006084263 0.009450767 

56 -0.014134608 0.024799082 116 0.010743223 -0.001161342 176 -0.013964356 -0.064371873 

57 -0.009873537 0.181932464 117 0.005079194 0.043803446 177 -0.041455857 -0.01297556 

58 -0.01889398 0.007553923 118 0.002653911 0.003965282 178 -0.002511223 -0.024094371 

59 -0.018424427 0.03296092 119 -0.005832569 -0.009205445 179 0.006208235 -0.040564435 

60 -0.0413811 0.007136433 120 0.00155236 0.011749308 180 -0.133875429 -0.199727971 

 

 

 

Figure 3.12 Kalman Filter then GA. 

3.3.3 GA then Kalman Filter simulation 

In the final simulation, the raw UWB training set and test set were used as input to the 

proposed system, the output training and testing set were used then as input to the Kalman 

Filter. The improvement in location average error for the test set are shown in Figure 3.13. 

In which the average localization error was reduced by approximately 52.08 % (from 
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16.34 cm to 7.83 cm). Which is the best result obtained when applying Genetic 

Algorithm. Figure 3.14 show the results comparison for the test set among the 

implemented simulations. 

 

 

Figure 3.13 GA then Kalman Filter. 

 

 

Figure 3.14 Results of GA simulations. 
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3.4 Results Summary of the Optimization Algorithms 

The results of performing BB-BC and GA optimization algorithms for the training and 

test set are summarized in Table 3.6. In which the best result obtained when applying BB-

BC algorithm, is when the data test points was used as input to the Big Bang-Big Crunch 

(BB-BC) then applying Kalman Filter on the output data. The best result obtained when 

applying genetic algorithm (GA), is also when the raw data test points were used as input 

to the GA algorithm, then applying Kalman Filter on the output data. When comparing 

both algorithms, the best result was obtained when applying BB-BC algorithm. In which 

the average location error was reduced by 54.53 % (from 16.34 cm to 7.43 cm). 

Table 3.7 Results summary of the BB-BC and GA. 

Input 

data 

Raw 

 Data 

Raw 

Data 

KF 

Data 

Raw 

Data 

Raw 

Data 

KF 

Data 

Raw 

Data 

Algorithm - BB-BC BB-BC 

BB-BC 

then 

Kalman 

Filter 

GA GA 

GA  

then 

Kalman 

Filter 

Average 

Location 

Error 

(training) 

16.3378 

cm 

8.42  

cm 

7.91 

cm 

7.37  

cm 

11.13  

cm 

8.69  

cm 

7.82  

cm 

Average 

Location 

Error 

(test) 

16.3442 

cm 

8.47 

cm 

7.96 

cm 

7.43 

cm 

11.15 

cm 

8.73 

cm 

7.83 

cm 

 

Table 3.8 Computation time comparison of GA simulations. 

Simulation Computation time in seconds 

GA 1300.898 s 

KF then GA 1654.653 s 

BB-BC then GA 1651.091 s 
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4. EXPERIMNTAL WORK AND EVALUATION OF THE 

MACHINE LEARNING AND HYBRID ALGORITHMS 

4.1 Machine Learning Algorithms 

Experiments were performed using ALC data set. The goal is focused on improving the 

accuracy of UWB indoor positioning system using machine learning methods. Accuracy 

were used as the performance metrics in the comparison among the clustering methods. 

The accuracy metric is based on the distance between the measured location to real 

location for a given point. It was calculated the distance using Euclidean distance: 

𝑑 = √(𝑥𝑟 − 𝑥𝑚)2 + (𝑦𝑟 − 𝑦𝑚)2 

where 𝑥𝑟 , 𝑦𝑟 are the coordinates of real location and 𝑥𝑚 , 𝑦𝑚 are the coordinates of the 

measured location. The ALC dataset has 180 test points location, and each test point has 

150 samples. The dataset was partitioned randomly into training set and test set. In which 

the training set include 70% of the samples and test set has 30% of the samples. The 

proposed system for the clustering algorithms implementation is shown in Figure 4.2. 

4.1.1 Standalone clustering algorithms 

The proposed system is applicable for K-Means, FCM, and Mean Shift algorithms. 

However, when it comes to select the optimal number of clusters for each test point, K-

Means and FCM algorithms are similar in term that we need to pre-defined the number 

of clusters, whereas Mean Shift, is non-parametric algorithm, which mean that we don’t 

need to set the number of clusters. Thus, the average silhouette method was used to define 

the optimal number of clusters in K-Means and FCM algorithms for each test set point by 

varying k (number of clusters) from 2 to 6 clusters. For each k, the average silhouette c-

(4.1) 
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was calculated using Eq. 2.22. Then, the number of clusters with the highest average 

silhouette coefficient was selected, for both the training set and test set. In order to 

understand the calculation of the average silhouette method, the following example will 

specify the optimal number of clusters obtained for the tenth test point (Ts10), for the test 

set which has 45 samples. The number of clusters is represented by C = {1, . . . ,6}. 

 

Table 4.1 Silhouette coefficient values for the tenth test point. 

Samples C=2 C=3 C=4 C=5 C=6 

1 0.8946 0.2468 0.3928 0.4363 0.4384 

2 0.9095 0.3715 0.1627 0.5313 0.1833 

3 0.9065 0.0860 0.3548 0.5160 0.3015 

4 0.9190 0.5000 0.2619 0.5648 0.5216 

5 0.8968 0.4641 0.3704 0.5119 0.4928 

6 0.5563 0.5497 1 1 1 

7 0.2049 0.1840 1 1 1 

8 0.4813 0.1924 0.1776 1 1 

9 0.8697 0.3864 0.2296 0.4514 0.3437 

10 0.9190 0.5000 0.2619 0.5648 0.5216 

11 0.9444 0.4866 0.4266 0.6086 0.1944 

12 0.8676 0.3844 0.2429 0.3958 0.3611 

13 0.8887 0.4367 0.2759 0.4484 0.4222 

14 0.7884 0.2456 0.2753 0.2123 0.0394 

15 0.9188 0.2500 0.3810 0.0902 0.3736 

16 0.9352 0.3610 0.4397 0.3056 -0.0031 

17 0.9075 0.3432 -0.0640 -0.0126 0.0806 

18 0.9188 0.2500 0.3810 0.0902 0.3736 

19 0.9286 0.4138 0.5907 0.4676 0.6759 

20 0.9408 0.1055 0.5917 0.5833 0.5759 

21 0.9408 0.1055 0.5917 0.5833 0.5759 

22 0.9444 0.4866 0.4266 0.6086 0.1944 

23 0.9408 0.1055 0.5917 0.5833 0.5759 
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24 0.9352 0.3610 0.4397 0.3056 -0.0031 

25 0.9444 0.4866 0.4266 0.6086 0.1944 

26 0.9444 0.4866 0.4266 0.6086 0.1944 

27 0.9408 0.1055 0.5917 0.5833 0.5759 

28 0.9332 0.5433 0.1176 0.5722 0.5185 

29 0.9240 0.4421 -0.0256 0.3056 0.1691 

30 0.9119 0.4965 0.2826 0.5093 0.4861 

31 0.9048 0.4228 0.5215 0.1480 -0.1884 

32 0.9318 -0.0467 0.5793 0.2901 0.3469 

33 0.9352 0.3610 0.4397 0.3056 -0.0031 

34 0.9408 0.1055 0.5917 0.5833 0.5759 

35 0.9444 0.4866 0.4266 0.6086 0.1944 

36 0.9444 0.4866 0.4266 0.6086 0.1944 

37 0.9332 0.5433 0.1176 0.5722 0.5185 

38 0.9309 0.4406 0.2359 0.5936 0.2735 

39 0.9286 0.4138 0.5907 0.4676 0.6759 

40 0.9153 0.3239 0.4685 0.4780 0.5288 

41 0.9408 0.1055 0.5917 0.5833 0.5759 

42 0.9190 0.5000 0.2619 0.5648 0.5216 

43 0.9286 0.4138 0.5907 0.4676 0.6759 

44 0.9201 0.4608 0.5805 0.1594 0.4286 

45 0.9201 0.4608 0.5805 0.1594 0.4286 

Mean Value → 0.886546 

 

0.352344 

 

0.41389 

 

0.480537 

 

0.402796 

 

Max → 

 

0.886546 

 

Based on the obtained mean values for each clustering, the maximum mean value is 

0.886546, which is belong to cluster number of 2. Thus, the selected number of clusters 

to be used in tenth test point (Ts10) for K-Means algorithm is 2. 

Figure 4.1 show the graphical silhouette values for each specified number of clusters for 

tenth test point in test set. 
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Figure 4.1 Silhouette values for the tenth test point in test set. 

 

Figure 4.2 Flow chart of the proposed system for the clustering algorithm. 
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Figure 4.3 and Figure 4.4 shows the maximum average silhouette coefficient for K-Means 

and FCM for the training set, respectively. While Figure 4.5 and Figure 4.6 shows the 

maximum average silhouette coefficient for K-Means and FCM for the test set, 

respectively. 

 

Figure 4.3 The maximum average silhouette coefficient in K-Means for the training set. 

 

 

Figure 4.4 The maximum average silhouette coefficient in FCM for the training set. 
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Figure 4.5 The maximum average silhouette coefficient in K-Means for the test set. 

 

 

Figure 4.6 The maximum average silhouette coefficient in FCM for the test set. 
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Figure 4.7  shows the optimal distribution of the measured UWB test points (180 points) 

over clusters when applying the clustering algorithms for the training set. After setting 

the obtained number of clusters in all of the implemented algorithms for training set, one 

of the outcome clusters was chosen as a delegate based on its distance to the real location 

(Xr, Yr) using Eq. 4.1. Then, the selected cluster center was calculated (Xc, Yc). So, for 

each test point in the training set, we have the selected cluster center, which is coordinates 

dependent.  

When it comes to the test set, the average silhouette method was also used to define the 

optimal number of clusters for K-Means and FCM algorithms. The optimal distribution 

of the test set over clusters is shown in Figure 4.8. One of the outcome clusters was chosen 

as a delegate based on its distance to (Xc, Yc) for each test point. In order to identify which 

(Xc, Yc). value belong to which test point in the test set, the average for each test point 

(XAvg, YAvg) in both the training set and the test set were calculated. Then, the average of 

test point (XAvg, YAvg) in the test set that has nearest distance to the test point (XAvg, YAvg) 

in the training set, uses the corresponding (Xc, Yc) value to select the delegate cluster. 

Table 4.2, Table 4.3, and Table 4.4 show the (Xc, Yc) values that obtained from the training 

set for each test point, and to be used to select the delegate cluster from the test set for the 

K-Means, FCM, and Mean Shift algorithms, respectively. The average location error 

comparison for the training set  and test are shown in Figure 4.9 and Figure 4.10, 

respectivly.  

 

Figure 4.7  The distribution of UWB test points over clusters for the training set. 
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Figure 4.8  The distribution of UWB test points over clusters for the test set. 

Table 4.2 Obtianed (Xc,Yc) values in K-Means algorithm. 

P. Xc Yc P. Xc Yc P. Xc Yc 

1 0.57 0.09429 61 0.38942 2.13096 121 0.58667 4.07 

2 1.05375 0.005 62 1.02909 2.00273 122 1.11356 4.19724 

3 1.51 0.08 63 1.43759 1.92862 123 1.60621 4.10017 

4 2.11311 0.12156 64 2.01654 1.87436 124 2.037 3.992 

5 2.49351 0.10521 65 2.27543 1.97087 125 2.4425 4.12438 

6 2.98704 0.13898 66 2.95 1.885 126 2.82019 4.13148 

7 3.63516 0.14742 67 3.52476 2.03857 127 3.4042 4.23275 

8 4.06756 0.15133 68 4.03039 2.16779 128 4.03214 4.215 

9 4.51063 0.07397 69 4.50545 2.05424 129 4.54512 4.14659 

10 4.91029 -0.3669 70 5.01182 2.17424 130 5.01591 4.10591 

11 5.53224 0.01224 71 5.5375 2.185 131 5.56945 4.20418 

12 6.01471 -0.1206 72 6.10217 2.16217 132 5.91568 4.15123 

13 6.6657 -0.1299 73 6.35067 2.14933 133 6.55636 4.32909 

14 6.914 0.065 74 7.02908 1.99667 134 7.13 4.06 

15 7.2851 -0.0254 75 7.30667 1.97 135 7.47828 4.05328 

16 0.6 0.73 76 0.41333 2.43 136 0.4539 4.4478 

17 1.01711 0.56868 77 1.00417 2.63375 137 1.04318 4.53716 

18 1.55 0.56 78 1.33906 2.52672 138 1.54446 4.70446 

19 2.11964 0.44782 79 2.02654 2.48962 139 2.1431 4.5269 

20 2.61 0.592 80 2.37886 2.46971 140 2.56 4.62 

21 3.02 0.47 81 2.876 2.327 141 3.00229 4.48458 

22 3.53 0.52 82 3.485 2.49742 142 3.54485 4.73364 

23 4.035 0.555 83 4.08535 2.51408 143 4.029 4.541 

24 4.54727 0.60909 84 4.45821 2.67462 144 4.56692 4.548 

25 4.97125 0.64438 85 5.03511 2.57389 145 5.06174 4.60826 

26 5.6434 0.68925 86 5.56811 2.70324 146 5.64385 4.78923 

27 6.06705 0.4375 87 6.08167 2.83024 147 6.146 4.6475 

28 6.51545 0.53545 88 6.67122 2.43265 148 6.55 4.625 

29 7.2764 0.6644 89 7.02533 2.57667 149 7.14833 4.58944 

30 7.3787 0.75739 90 7.302 2.534 150 7.48378 4.59756 

31 0.58389 0.94556 91 0.49911 3.02844 151 0.57321 4.965 
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32 1.02927 1.0978 92 0.97 2.98 152 1.05857 5.14873 

33 1.475 1.1 93 1.58778 2.99333 153 1.49775 5.12596 

34 2 1.02833 94 2.05478 2.98652 154 2.13548 5.15619 

35 2.57473 1.08203 95 2.30741 3.18667 155 2.52935 4.99581 

36 3.01929 1.00821 96 2.95 3.13 156 3.0625 5.02 

37 3.54375 0.97375 97 3.59 3.10111 157 3.74581 5.00326 

38 4.23696 1.1787 98 4.045 3.14684 158 4.11328 5.09688 

39 4.6379 1.05597 99 4.57 3.13867 159 4.54375 5.13 

40 4.98136 1.11559 100 5.048 3.09971 160 4.94391 5.11848 

41 5.56571 1.03905 101 5.69337 3.15436 161 5.53054 5.03068 

42 6.02625 1.0475 102 6.045 3.04 162 6.16 5.07045 

43 6.54444 1.09889 103 6.52306 3.25163 163 6.52765 5.13314 

44 7.02222 1.07078 104 6.986 3.201 164 7.13586 5.07207 

45 7.41 1.07 105 7.3875 3.0425 165 7.37259 4.97035 

46 0.52254 1.67718 106 0.60188 3.76688 166 0.57857 5.47571 

47 1.05 1.55714 107 1.08842 3.56807 167 1.02229 5.54643 

48 1.56118 1.53456 108 1.50747 3.54949 168 1.49333 5.46167 

49 1.98463 1.40254 109 2.0225 3.57 169 2.026 5.56 

50 2.6875 1.65261 110 2.732 3.686 170 2.525 5.54625 

51 3.00429 1.49071 111 3.09481 3.62667 171 2.99688 5.52025 

52 3.40966 1.62068 112 3.61 3.53714 172 3.55833 5.40167 

53 4.24125 1.60125 113 4.19167 3.5275 173 4.06 5.5687 

54 4.53333 1.67 114 4.51862 3.50759 174 4.64 5.41 

55 4.8 1.7275 115 4.99333 3.565 175 5.06186 5.47763 

56 5.635 1.56167 116 5.62038 3.56077 176 5.47268 5.47317 

57 5.89333 1.45 117 5.92 3.61 177 6.08161 5.6225 

58 6.62739 1.53848 118 6.61 3.67716 178 6.53878 5.39341 

59 7.0292 1.5372 119 7.15929 3.57286 179 7.09353 5.40647 

60 7.50754 1.55754 120 7.4375 3.6525 180 7.4 5.21 

 

Table 4.3 Obtianed (Xc,Yc) values in FCM algorithm. 

P. Xc Yc P. Xc Yc P. Xc Yc 

1 0.57 0.09429 61 0.3887 2.13389 121 0.6098 4.04569 

2 1.05192 0.01077 62 1.02909 2.00273 122 1.11356 4.19724 

3 1.515 0.14125 63 1.43716 1.92875 123 1.59893 4.09714 

4 2.11311 0.12156 64 2.01654 1.87436 124 2.03895 3.99421 

5 2.49351 0.10521 65 2.27204 1.97082 125 2.43611 4.10944 

6 2.98704 0.13898 66 2.902 1.89975 126 2.821 4.1292 

7 3.63943 0.15571 67 3.52476 2.03857 127 3.40296 4.23408 

8 4.04235 0.17353 68 4.04103 2.1631 128 4.03 4.21588 

9 4.50185 0.07352 69 4.51552 2.04828 129 4.54909 4.13727 

10 4.91029 -0.3669 70 5.056 2.164 130 5.01765 4.09706 

11 5.54333 0.00412 71 5.54 2.18571 131 5.56509 4.20943 

12 6.01667 -0.1193 72 6.10217 2.16217 132 5.91652 4.14188 

13 6.66849 -0.1211 73 6.35067 2.14933 133 6.55636 4.32909 

14 6.995 0.0925 74 7.02908 1.99667 134 7.1285 4.065 

15 7.28195 -0.0199 75 7.30667 1.97 135 7.4731 4.0469 

16 0.55618 0.81127 76 0.39833 2.42833 136 0.4519 4.44857 

17 1.01711 0.56868 77 1.004 2.62267 137 1.0431 4.53655 

18 1.55929 0.55857 78 1.35574 2.51957 138 1.545 4.694 

19 2.08545 0.40727 79 2.02986 2.47743 139 2.14974 4.52167 

20 2.62375 0.5925 80 2.34847 2.46972 140 2.54917 4.62708 

21 3.01667 0.55556 81 2.86333 2.34333 141 3.00102 4.48633 

22 3.53 0.52 82 3.49067 2.49933 142 3.53694 4.73429 

23 4.04214 0.59179 83 4.08535 2.51408 143 4.03333 4.54 

24 4.56143 0.60643 84 4.45821 2.67462 144 4.56 4.52857 

25 4.96511 0.67787 85 5.03511 2.57389 145 5.06174 4.60826 

26 5.6434 0.68925 86 5.5715 2.70175 146 5.64385 4.78923 

27 6.06588 0.41635 87 5.90105 2.83816 147 6.14 4.64778 
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28 6.534 0.52267 88 6.66029 2.43103 148 6.55733 4.62733 

29 7.28943 0.65914 89 7.00947 2.57684 149 7.14779 4.59029 

30 7.3863 0.75704 90 7.31125 2.63958 150 7.478 4.6 

31 0.58486 0.94622 91 0.50348 3.01 151 0.55579 4.94789 

32 1.02927 1.0978 92 0.97436 3.04513 152 1.06529 5.13988 

33 1.475 1.1 93 1.58765 2.98118 153 1.49974 5.12421 

34 1.99909 1.02818 94 2.05 2.98333 154 2.13548 5.15619 

35 2.57323 1.07815 95 2.30741 3.18667 155 2.52364 5.00364 

36 3.01723 0.98475 96 2.968 3.164 156 3.0625 5.02 

37 3.54357 0.97429 97 3.57792 3.10849 157 3.74636 5.00295 

38 4.22941 1.18647 98 4.045 3.14684 158 4.11615 5.07692 

39 4.63703 1.05844 99 4.58053 3.13526 159 4.53138 5.15793 

40 4.94909 1.07909 100 5.01376 3.10835 160 4.95333 5.1175 

41 5.5587 1.04087 101 5.62667 3.15778 161 5.5307 5.02775 

42 6.0616 1.0168 102 6.05813 2.99875 162 6.15945 5.074 

43 6.54604 1.09917 103 6.52 3.22083 163 6.55105 5.11895 

44 7.02236 1.0727 104 6.98107 3.20679 164 7.1548 5.0748 

45 7.24131 1.06949 105 7.39636 3.04 165 7.37505 4.97165 

46 0.518 1.512 106 0.59867 3.76667 166 0.58333 5.47 

47 1.06143 1.54 107 1.09743 3.56432 167 1.02229 5.54643 

48 1.56118 1.53456 108 1.50818 3.54896 168 1.49333 5.46167 

49 1.98463 1.40254 109 2.03457 3.59957 169 2.03684 5.55737 

50 2.6875 1.65261 110 2.73 3.69737 170 2.525 5.53875 

51 2.99655 1.48276 111 3.09759 3.62552 171 2.99628 5.51949 

52 3.40931 1.61966 112 3.61 3.53714 172 3.51286 5.45 

53 4.24125 1.60125 113 4.19091 3.52273 173 4.05862 5.61672 

54 4.53375 1.6825 114 4.51903 3.50516 174 4.649 5.40867 

55 4.792 1.737 115 4.98444 3.56278 175 5.06186 5.47763 

56 5.63118 1.57353 116 5.62667 3.56091 176 5.47526 5.46868 

57 5.90455 1.56727 117 5.95563 3.655 177 6.08102 5.64602 

58 6.6124 1.5428 118 6.61 3.67716 178 6.53878 5.39341 

59 7.02934 1.53658 119 7.15929 3.57286 179 7.096 5.411 

60 7.52156 1.55667 120 7.45795 3.65282 180 7.20224 5.22092 

 

Table 4.4 Obtianed (Xc,Yc) values in Mean Shift algorithm. 

P. Xc Yc P. Xc Yc P. Xc Yc 

1 0.58612 0.09959 61 0.40625 2.10313 121 0.60865 4.04712 

2 1.05647 0.01529 62 1.02 2.02 122 1.11234 4.19714 

3 1.65 0.12 63 1.515 1.9225 123 1.60108 4.1052 

4 2.11311 0.12156 64 1.99088 1.87475 124 2.01 3.98 

5 2.49351 0.10521 65 2.23425 1.97057 125 2.4303 4.12561 

6 2.98 -0.1 66 2.95 1.885 126 2.81257 4.1603 

7 3.618 0.1195 67 3.52538 2.01423 127 3.39789 4.23947 

8 4.01 0.03 68 4.03063 2.17188 128 4.03306 4.22367 

9 4.54908 0.07449 69 4.52098 2.055 129 4.55 4.11 

10 4.91365 -0.3671 70 5.01058 2.18385 130 5.01621 4.10448 

11 5.54333 0.00412 71 5.50455 2.20652 131 5.56684 4.19316 

12 6.00038 -0.1396 72 6.11692 2.16538 132 5.91561 4.15207 

13 6.67346 -0.0585 73 6.52 1.96 133 6.48 4.28 

14 7.01 0.09333 74 7.02908 1.99667 134 7.1341 4.06385 

15 7.2851 -0.0254 75 7.30667 1.97 135 7.46833 4.05125 

16 0.6 0.73 76 0.43 2.45 136 0.46367 4.429 

17 1.01056 0.56528 77 1.01077 2.63385 137 1.03548 4.54817 

18 1.56727 0.56584 78 1.33338 2.52118 138 1.53887 4.70592 

19 2.1492 0.4876 79 2.04038 2.48894 139 2.15088 4.52755 

20 2.62902 0.60293 80 2.33808 2.46936 140 2.59 4.60667 

21 3.016 0.561 81 2.86382 2.33971 141 3.01538 4.46808 

22 3.53906 0.51969 82 3.49762 2.50286 142 3.595 4.725 

23 4.035 0.555 83 4.08433 2.53788 143 4.04464 4.54988 
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24 4.548 0.61575 84 4.44333 2.6 144 4.56357 4.53429 

25 4.96633 0.663 85 5.0389 2.57396 145 5.06926 4.61259 

26 5.63974 0.68947 86 5.56933 2.69933 146 5.63982 4.79786 

27 6.06592 0.40019 87 6.12 2.62 147 6.14526 4.64737 

28 6.53313 0.52375 88 6.67107 2.4301 148 6.55606 4.6424 

29 7.33062 0.65741 89 6.89767 2.57447 149 7.14926 4.58779 

30 7.42536 0.7575 90 7.31125 2.63958 150 7.48512 4.59732 

31 0.57929 0.93643 91 0.52183 2.98923 151 0.60273 4.89354 

32 1.06333 1.06833 92 0.97 2.98 152 1.06392 5.14539 

33 1.62275 0.98294 93 1.59533 2.99267 153 1.49476 5.12913 

34 2.0095 1.0402 94 2.06 2.98262 154 2.13581 5.15387 

35 2.57354 1.0857 95 2.365 3.18 155 2.51111 5.02778 

36 3.01657 0.98608 96 2.95 3.13 156 3.0625 5.02 

37 3.545 0.985 97 3.5931 3.09241 157 3.74241 5.01034 

38 4.23923 1.1901 98 4.04 3.1 158 4.12268 5.08415 

39 4.63955 1.06455 99 4.57563 3.14493 159 4.52667 5.1642 

40 4.95891 1.11624 100 5.00849 3.11264 160 4.87 5.01 

41 5.55171 1.07829 101 5.69186 3.15529 161 5.5401 5.06808 

42 6.07938 0.98814 102 6.04 3.05 162 6.16814 5.06294 

43 6.53524 1.09905 103 6.53275 3.2645 163 6.53627 5.12902 

44 7.02571 1.07264 104 6.98345 3.21127 164 7.1548 5.0748 

45 7.445 1.07 105 7.3875 3.0425 165 7.38515 4.97427 

46 0.495 1.425 106 0.60364 3.78121 166 0.585 5.467 

47 1.06175 1.55138 107 1.10624 3.56426 167 1.009 5.5574 

48 1.535 1.46 108 1.49595 3.56243 168 1.58592 5.43379 

49 2.01118 1.44118 109 2.01667 3.57 169 2.03222 5.55556 

50 2.6875 1.65261 110 2.73163 3.71038 170 2.47667 5.55333 

51 3.00231 1.47423 111 3.09948 3.63805 171 2.99465 5.52495 

52 3.40148 1.61037 112 3.62026 3.53421 172 3.43333 5.47333 

53 4.24125 1.60125 113 4.18814 3.57153 173 4.05831 5.63896 

54 4.54 1.65 114 4.52577 3.45615 174 4.65467 5.43133 

55 4.78243 1.75049 115 4.99333 3.565 175 5.05973 5.4824 

56 5.63168 1.59871 116 5.6325 3.56075 176 5.49058 5.52835 

57 5.89333 1.45 117 5.95824 3.66 177 6.08073 5.64417 

58 6.63047 1.55791 118 6.6101 3.67673 178 6.52893 5.395 

59 7.0427 1.47486 119 7.17169 3.57377 179 7.10832 5.40594 

60 7.52806 1.5566 120 7.39 3.64 180 7.188 5.42 

 

 

 

Figure 4.9 The average error comparison for the training set. 
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Figure 4.10 The average error comparison for the test set. 

4.1.2 Clustering algorithms with Kalman Filter 

To improve the accuracy of the clustering algorithms, in the second simulation the same 

simulation was repeated, but instead of using the row UWB measured test points, the 

Kalman filtered UWB test points were used as an input to the proposed system. Figure 

4.11 and Figure 4.12 shows the maximum average silhouette coefficient when applying 

Kalman filter on training set for K-Means and FCM algorithms, respectively. The 

maximum average silhouette coefficient when applying Kalman filter on test set are 

shown in Figure 4.13 for the K-Means algorithm and Figure 4.14 for the FCM algorithm, 

respectively. 

 

 

Figure 4.11  The maximum average silhouette coefficient in K-Means after applying 

Kalman filter for the training set. 
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Figure 4.12  The maximum average silhouette coefficient in FCM after applying 

Kalman filter for the training set. 

 

Figure 4.13 The maximum average silhouette coefficient in K-Means after applying 

Kalman filter for the test set. 

 

Figure 4.14 The maximum average silhouette coefficient in FCM after applying 

Kalman filter for test set. 
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The distribution of test points over clusters after applying Kalman filter for the training 

set and test set are shown in Figure 4.15 and Figure 4.16, respectively. Table 4.5, Table 

4.6, and Table 4.7 present the (Xc,Yc) values that obtained from the Kalman Filtered 

training set for each test point, and to be used to select the delegate cluster from the 

Kalman Filtered test set for the K-Means, FCM, and Mean Shift algorithms, respectively 

 

 

Figure 4.15 The distribution of test points over clusters after applying Kalman Filter for 

the training set. 

 

Figure 4.16 The distribution of test points over clusters after applying Kalman Filter for 

the test set. 
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Table 4.5 Obtianed (Xc,Yc) values in KF K-Means algorithm. 

P. Xc Yc P. Xc Yc P. Xc Yc 

1 0.475 0.07 61 0.36188 1.96708 121 0.54667 3.99667 

2 1.02549 0.0202 62 1.02643 1.99143 122 0.98 3.96 

3 1.59333 0.13333 63 1.43593 1.93868 123 1.54571 4.00429 

4 1.9546 0.10747 64 2.02654 1.88423 124 2.01 3.99 

5 2.50351 0.10521 65 2.28543 1.98087 125 2.41565 4.08174 

6 2.99704 0.13898 66 2.96 1.895 126 2.80109 4.09652 

7 3.37578 0.15822 67 3.49476 2.01857 127 3.3171 4.11823 

8 4.03183 0.13817 68 3.94333 2.09333 128 3.93227 4.11273 

9 4.49072 0.07398 69 4.48588 2.02912 129 4.44286 4.04762 

10 4.92029 -0.3669 70 5.01333 2.14667 130 4.98444 4.06778 

11 5.50364 0.00909 71 5.4975 2.165 131 5.41947 4.08711 

12 6.025 -0.1083 72 5.95125 2.1625 132 5.92652 4.14188 

13 6.4857 -0.1276 73 6.36067 2.14933 133 6.38091 4.21182 

14 6.934 0.065 74 7.01908 1.99667 134 6.96136 3.95136 

15 7.30176 -0.0147 75 7.325 1.9925 135 7.31737 3.94632 

16 0.44762 0.60714 76 0.39833 2.43833 136 0.4539 4.4478 

17 0.99636 0.55 77 0.96467 2.466 137 1.02794 4.50206 

18 1.51 0.55 78 1.33906 2.52672 138 1.50814 4.57488 

19 2.02214 0.48714 79 2.02986 2.48743 139 2.0775 4.44 

20 2.4415 0.564 80 2.39367 2.48033 140 2.48333 4.5 

21 3 0.47 81 2.87667 2.36167 141 2.99778 4.4975 

22 3.50739 0.51913 82 3.50067 2.49933 142 3.45 4.60455 

23 4.005 0.555 83 3.97433 2.46788 143 3.999 4.501 

24 4.51 0.60941 84 4.46821 2.67462 144 4.51765 4.50647 

25 4.97511 0.67787 85 4.99511 2.55389 145 4.96768 4.49524 

26 5.51635 0.65423 86 5.49544 2.64412 146 5.4913 4.66674 

27 6.01543 0.41864 87 6.06765 2.74603 147 5.98833 4.52583 

28 6.527 0.516 88 6.50318 2.37091 148 6.50733 4.58733 

29 7.10122 0.66061 89 7.03533 2.57667 149 6.95596 4.47263 

30 7.34927 0.73455 90 7.312 2.534 150 7.30294 4.48588 

31 0.56595 0.91838 91 0.50193 3.02246 151 0.55579 4.95789 

32 0.94552 1.0303 92 0.9593 3.0257 152 1.03505 5.00161 

33 1.45333 0.93833 93 1.58778 3.00333 153 1.45775 4.98596 

34 1.9895 1.0302 94 2.03813 2.97 154 2.05619 5.05206 

35 2.50473 1.05203 95 2.31741 3.19667 155 2.52962 5.00925 

36 2.99723 0.97475 96 2.912 3.092 156 3.0625 5.01 

37 3.51875 0.9675 97 3.49016 3.02111 157 3.64538 4.87564 

38 3.93 1.09417 98 3.96291 3.07354 158 3.99818 4.97182 

39 4.51377 1.03507 99 4.47 3.055 159 4.41 5.01905 

40 4.97227 1.11546 100 4.97716 3.07642 160 4.94944 5.1075 

41 5.50968 1.04129 101 5.483 3.078 161 5.49056 4.98775 

42 6.00269 1.02538 102 6.00786 2.99786 162 5.99622 4.93892 

43 6.49946 1.08786 103 6.34917 3.13083 163 6.50333 5.08455 

44 6.98459 1.06255 104 6.92429 3.16714 164 7.00444 4.93333 

45 7.26131 1.06949 105 7.3468 3.0196 165 7.37505 4.97165 

46 0.48338 1.54706 106 0.54769 3.49923 166 0.57857 5.43571 

47 1.02867 1.51 107 1.005 3.525 167 0.99013 5.39975 

48 1.52118 1.49456 108 1.49747 3.51949 168 1.476 5.428 

49 1.99463 1.40254 109 1.99 3.484 169 2 5.405 

50 2.48739 1.52859 110 2.48 3.48 170 2.45306 5.42571 

51 3.005 1.49 111 3.01941 3.52618 171 2.99 5.45833 

52 3.41966 1.62068 112 3.51 3.455 172 3.509 5.422 

53 3.926 1.5 113 4.0829 3.5371 173 3.94862 5.46672 

54 4.42 1.61 114 4.5205 3.5045 174 4.61 5.43 

55 4.79828 1.73793 115 4.99444 3.56278 175 5.02333 5.43262 

56 5.485 1.54603 116 5.47667 3.46909 176 5.45058 5.48583 

57 5.92381 1.56238 117 5.90563 3.625 177 5.915 5.431 

58 6.49059 1.51706 118 6.43058 3.58165 178 6.52444 5.38361 



67 

 

59 7.00879 1.50364 119 7.0025 3.47667 179 7.0475 5.4525 

60 7.31856 1.51667 120 7.28486 3.55541 180 7.22202 5.23283 

 

Table 4.6 Obtianed (Xc,Yc) values in KF FCM algorithm. 

P. Xc Yc P. Xc Yc P. Xc Yc 

1 0.46375 0.07 61 0.35925 1.9734 121 0.58429 3.94804 

2 1.02192 0.01077 62 1.01941 1.98 122 0.99941 3.93529 

3 1.59333 0.13333 63 1.43716 1.93875 123 1.54533 4.006 

4 1.95367 0.11111 64 2.02654 1.88423 124 2.03773 3.99682 

5 2.50351 0.10521 65 2.28204 1.98082 125 2.41882 4.08 

6 2.99704 0.13898 66 2.96 1.895 126 2.80109 4.09652 

7 3.32833 0.07917 67 3.49476 2.01857 127 3.31443 4.124 

8 4.03257 0.13829 68 3.93214 2.09571 128 3.93333 4.10667 

9 4.46185 0.07352 69 4.49111 2.02889 129 4.44111 4.04556 

10 4.92029 -0.3669 70 5.01333 2.14667 130 4.97688 4.0675 

11 5.50235 0.00412 71 5.49857 2.16286 131 5.41945 4.09418 

12 6.02471 -0.1206 72 6.11217 2.16217 132 5.92652 4.14188 

13 6.4875 -0.1237 73 6.36067 2.14933 133 6.38091 4.21182 

14 7.015 0.0925 74 7.01908 1.99667 134 6.96136 3.95136 

15 7.3141 -0.0369 75 7.29848 2.09606 135 7.31737 3.94632 

16 0.44636 0.60818 76 0.4 2.442 136 0.4519 4.44857 

17 1.0019 0.5519 77 0.96467 2.466 137 1.0331 4.49655 

18 1.52333 0.54 78 1.35574 2.51957 138 1.49421 4.56632 

19 2.02625 0.50125 79 2.02986 2.48743 139 2.088 4.448 

20 2.42902 0.55817 80 2.35847 2.47972 140 2.49038 4.50808 

21 2.99667 0.55556 81 2.87333 2.35333 141 3.00102 4.49633 

22 3.5 0.52 82 3.49765 2.49471 142 3.45 4.60455 

23 4.01111 0.58444 83 3.96824 2.52324 143 3.999 4.501 

24 4.51 0.60941 84 4.47923 2.67462 144 4.52 4.49111 

25 4.97511 0.67787 85 4.99511 2.55389 145 4.9651 4.50255 

26 5.51589 0.65536 86 5.49692 2.64554 146 5.5 4.66286 

27 6.01588 0.41635 87 6.06765 2.74603 147 5.99091 4.52727 

28 6.527 0.516 88 6.474 2.36875 148 6.50733 4.58733 

29 7.13487 0.63256 89 7.01947 2.57684 149 6.95779 4.47029 

30 7.29115 0.7325 90 7.32125 2.63958 150 7.30294 4.48588 

31 0.56667 0.92051 91 0.50093 3.0163 151 0.55579 4.95789 

32 0.95455 1.04864 92 0.97667 3.01833 152 1.02935 4.99484 

33 1.50823 0.91532 93 1.58765 2.99118 153 1.45974 4.98421 

34 1.97909 1.01818 94 2.03 2.96333 154 2.05784 5.04703 

35 2.50323 1.04815 95 2.334 3.187 155 2.52364 5.01364 

36 2.99723 0.97475 96 2.90444 3.08889 156 2.945 4.99333 

37 3.51083 0.965 97 3.49846 3.00692 157 3.64636 4.87295 

38 3.9225 1.08875 98 3.96397 3.07466 158 3.99579 4.96526 

39 4.51358 1.03209 99 4.463 3.0565 159 4.41138 5.01793 

40 4.955 1.07125 100 4.97376 3.07847 160 4.94302 5.10628 

41 5.51304 1.03087 101 5.47667 3.076 161 5.49056 4.98775 

42 6.0116 1.0068 102 6.00706 3.00294 162 5.98867 4.94467 

43 6.49604 1.08917 103 6.35462 3.16231 163 6.50105 5.07895 

44 6.96236 1.0627 104 6.93444 3.18 164 6.9648 4.9349 

45 7.26131 1.06949 105 7.35105 3.01947 165 7.37505 4.97165 

46 0.48246 1.56101 106 0.5475 3.49833 166 0.57857 5.43571 

47 1.02867 1.51 107 1.005 3.525 167 0.99133 5.398 

48 1.52118 1.49456 108 1.50067 3.51317 168 1.48333 5.42 

49 1.99463 1.40254 109 1.99471 3.51647 169 2 5.41727 

50 2.48739 1.52859 110 2.516 3.464 170 2.46042 5.41458 

51 2.99655 1.48276 111 3.00923 3.52538 171 2.97681 5.47819 

52 3.41931 1.61966 112 3.52045 3.46091 172 3.51286 5.46 

53 3.926 1.5 113 4.0829 3.5371 173 3.94862 5.46672 

54 4.41632 1.64421 114 4.51903 3.50516 174 4.612 5.405 
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55 4.802 1.737 115 4.9925 3.55917 175 5.02186 5.43763 

56 5.47971 1.54086 116 5.48341 3.46854 176 5.43649 5.42703 

57 5.92455 1.56727 117 5.90563 3.625 177 5.92093 5.49505 

58 6.49059 1.51706 118 6.43653 3.57707 178 6.52878 5.38341 

59 6.96934 1.52658 119 6.99524 3.48095 179 7.05333 5.39667 

60 7.32095 1.51674 120 7.28706 3.54235 180 7.22224 5.23092 

 

Table 4.7 Obtianed (Xc,Yc) values in KF Mean Shift algorithm. 

P. Xc Yc P. Xc Yc P. Xc Yc 

1 0.49 0.07 61 0.3792 1.936 121 0.58885 3.93712 

2 1.02647 0.01529 62 1.01 2 122 1.00053 3.93 

3 1.61 0.12 63 1.515 1.9325 123 1.56108 3.9952 

4 1.95367 0.11111 64 1.99528 1.88444 124 2.01 3.99 

5 2.50351 0.10521 65 2.24425 1.98057 125 2.4103 4.09561 

6 2.99 -0.1 66 2.96 1.895 126 2.79257 4.1303 

7 3.34421 0.10895 67 3.49538 1.99423 127 3.30789 4.12816 

8 3.9 0.03 68 3.92063 2.11188 128 3.92306 4.11367 

9 4.50908 0.07449 69 4.48098 2.035 129 4.43 4 

10 4.92365 -0.3671 70 5.05 2.15 130 4.97621 4.07448 

11 5.50235 0.00412 71 5.46455 2.18652 131 5.41684 4.08316 

12 6.01038 -0.1396 72 6.12692 2.16538 132 5.92561 4.15207 

13 6.49136 -0.0523 73 6.53 1.96 133 6.39333 4.21667 

14 7.03 0.09333 74 7.01908 1.99667 134 6.9441 3.95385 

15 7.3051 -0.0254 75 7.32667 1.97 135 7.2963 3.94543 

16 0.44654 0.61577 76 0.43 2.46 136 0.46367 4.429 

17 0.98742 0.55303 77 0.95359 2.45487 137 1.02548 4.50817 

18 1.52 0.54 78 1.33338 2.52118 138 1.49875 4.57597 

19 1.99203 0.45342 79 2.04038 2.49894 139 2.1 4.48 

20 2.42919 0.55919 80 2.34808 2.47936 140 2.48373 4.515 

21 3 0.495 81 2.87382 2.34971 141 3.01538 4.47808 

22 3.50906 0.51969 82 3.50762 2.50286 142 3.495 4.595 

23 4.005 0.555 83 3.97433 2.46788 143 4.01464 4.50988 

24 4.50874 0.61476 84 4.45333 2.6 144 4.52357 4.49429 

25 4.97633 0.663 85 4.9989 2.55396 145 4.96756 4.4941 

26 5.51328 0.65746 86 5.48773 2.64467 146 5.48982 4.66786 

27 6.01592 0.40019 87 5.96 2.55 147 5.9827 4.54 

28 6.52313 0.52375 88 6.49107 2.36583 148 6.50606 4.6024 

29 7.13313 0.63713 89 6.90767 2.57447 149 6.95926 4.46779 

30 7.31143 0.7339 90 7.32125 2.63958 150 7.30294 4.48588 

31 0.58571 0.94881 91 0.52183 2.98923 151 0.60273 4.90354 

32 0.98333 0.98833 92 0.95779 3.03115 152 1.03392 5.00539 

33 1.50284 0.91167 93 1.59533 3.00267 153 1.45476 4.98913 

34 1.9895 1.0302 94 2.04 2.96262 154 2.05892 5.0477 

35 2.50354 1.0557 95 2.375 3.19 155 2.53719 4.99156 

36 2.99657 0.97608 96 2.87 3.05 156 3.0625 5.01 

37 3.515 0.975 97 3.49 3.008 157 3.64241 4.88034 

38 3.91923 1.1001 98 3.93 3.02 158 3.99739 4.96522 

39 4.51727 1.03455 99 4.45563 3.06493 159 4.40667 5.0242 

40 4.96891 1.11624 100 5.01769 3.07 160 4.87 5 

41 5.50514 1.05457 101 5.54137 3.07363 161 5.49885 5.02808 

42 6.02938 0.97814 102 6.0174 2.99173 162 6.00676 4.92608 

43 6.48524 1.08905 103 6.35923 3.17436 163 6.48627 5.08902 

44 6.96571 1.06264 104 6.92345 3.18127 164 6.9648 4.9349 

45 7.25755 1.0717 105 7.34638 3.02652 165 7.38515 4.97427 

46 0.47243 1.59146 106 0.5598 3.50111 166 0.585 5.427 

47 1.03175 1.51138 107 1.005 3.525 167 0.9794 5.4074 

48 1.51311 1.51 108 1.48595 3.53243 168 1.57592 5.39379 

49 2.02118 1.44118 109 1.99583 3.48667 169 2.006 5.4036 

50 2.48739 1.52859 110 2.48 3.48 170 2.45324 5.41422 
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51 3.00231 1.47423 111 3.01948 3.53805 171 2.97416 5.48564 

52 3.41148 1.61037 112 3.51793 3.46069 172 3.43333 5.48333 

53 3.92 1.47167 113 4.07814 3.47525 173 3.95 5.40765 

54 4.42 1.61 114 4.52577 3.45615 174 4.61467 5.39133 

55 4.79243 1.75049 115 5.00333 3.565 175 5.01973 5.4424 

56 5.5175 1.5425 116 5.4825 3.469 176 5.45058 5.48583 

57 5.91333 1.45 117 5.90824 3.63 177 5.92073 5.49417 

58 6.46419 1.50371 118 6.4301 3.57673 178 6.51893 5.385 

59 6.9827 1.46486 119 7.002 3.4772 179 7.0475 5.4525 

60 7.32806 1.5166 120 7.27683 3.55394 180 7.208 5.43 
 

The average error comparison after applying Kalman Filter for the training set and test 

set are shown in Figure 4.16 and Figure 4.17, respectively.  

 

 

Figure 4.17 The average error comparison after applying Kalman Filter for the training 

set. 
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Figure 4.18 The average error comparison after applying Kalman Filter for the test set. 

 

As shown in Figure 4.18 the results were significantly improved, and again, the K-Means 

algorithm outperform both FCM and Mean Shift algorithms. 

In the final simulation, in which the Kalman Filter was implemented using the output data 

from the clustering algorithms as an input, produced very poor results. For example, when 

the Kalman Filter is implemented by using the output data that acquired from applying 

K-Means algorithm, the average location error increased from (16.34 cm to 16.5 cm).  

 

Table 4.8 Computation time comparison of clustering simulations. 

Simulation Computation time in seconds 

K-Means 
844.907 for training  

861.48 for test 

FCM 
990.043 for training  

997.899 for test 

Mean Shift 
1081.651 for training  

1103.171 for test 
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Table 4.9 Computation time comparison of clustering simulations with K.F. 

Simulation Computation time in seconds 

KF then K-Means 
1182.085 for training  

1274.91 for test 

KF then FCM 
1296.662 for training  

1381.319 for test 

KF then Mean Shift 
1360.853 for training  

1388.911 for test 

 

4.2 The Hybrid Algorithm  

A Hybrid (BB-BC KF K-Means) algorithm was applied on UWB test points. Since, the 

best result obtained in term of optimization was obtained when applying BB-BC 

algorithm. In which, Kalman Filter was applied to the UWB optimized BB-BC test points. 

The average location error was reduced by 54.53 %. Whereas, the best result in term of 

clustering was obtained from performing K-Means algorithm. In which the average 

location error was reduced by 13.77 %. Thus, using such Hybrid algorithm, will reduced 

the average location error significantly. 

As a result of using the Hybrid algorithm, the average location error was reduced by 

approximately 64.26 % (from 16.34 cm to 5.84 cm). Figure 4.19 and Figure 4.20 shows 

the maximum average silhouette coefficient when applying K-Means clustering 

algorithm on Kalman Filtered BB-BC optimized UWB test points for the training and test 

set, respectively. Figure 4.21 shows the optimal distribution of test points (180 test points) 

over clusters for the training and test set. Table 4.8 show the (Xc,Yc) values that obtained 

from the training set for each test point, and to be used to select the delegate cluster from 

the test set. While Figure 4.22 and Figure 4.23 show the improvement in accuracy of the 

Hybrid algorithm over the best results obtained from the implementation of different 

simulations in both, the optimization and clustering algorithms for the training and test 

set, respectively. 

Table 4.7 shows the computation time of implementing the hybrid algorithm for the 

training and test set.  
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Figure 4.19 The maximum average silhouette coefficient in Hybrid Algorithm for the 

training set. 

 

 Figure 4.20 The maximum average silhouette coefficient in Hybrid Algorithm 

for the test set. 
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Figure 4.21 The distribution of test points over clusters in Hybrid algorithm. 

Table 4.10 obtianed (Xc,Yc) values in Hybrid algorithm. 

P. Xc Yc P. Xc Yc P. Xc Yc 

1 0.5 0.08 61 0.4428 1.9928 121 0.49205128 3.971026 

2 1.01375 0.005 62 0.99 1.987143 122 1.03714286 4.050714 

3 1.48 -0.01 63 1.50229885 1.978966 123 1.525 3.98 

4 1.97417722 0.050759 64 1.99653846 1.984359 124 2.00181818 3.998182 

5 2.48351064 0.095213 65 2.51204082 1.980816 125 2.5 3.999655 

6 2.96625 0.045 66 2.99560976 2.002683 126 2.96583333 3.945 

7 3.41828571 0.061429 67 3.48463415 1.987073 127 3.41146667 4.0176 

8 4.00647887 0.108451 68 3.99075472 1.999623 128 3.99 4.015 

9 4.45072289 0.063976 69 4.5052 1.992 129 4.49111111 4.018889 

10 5.12 0.083333 70 4.98 2.075714 130 4.98333333 4.022667 

11 5.50444444 0.077778 71 5.47894737 1.993158 131 5.46083333 4.030278 

12 6.00222222 0.075556 72 6.07217391 2.092174 132 6.01 4.075 

13 6.32849315 0.158904 73 6.34366667 1.953444 133 6.43561798 4.031011 

14 6.92016129 0.082581 74 6.87869565 1.93587 134 7 4.001579 

15 7.38333333 -0.096667 75 7.32475248 1.966634 135 7.30804878 3.986341 
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16 0.44666667 0.495833 76 0.38111111 2.398444 136 0.44605263 4.388684 

17 1.00068966 0.492069 77 0.98702703 2.503784 137 1.02793651 4.482063 

18 1.5 0.49 78 1.5190625 2.466719 138 1.51448276 4.495172 

19 1.99710526 0.525526 79 2.01774194 2.510968 139 1.9996 4.4968 

20 2.49133333 0.517333 80 2.49424242 2.499697 140 2.50852941 4.503235 

21 2.98895833 0.480521 81 2.87333333 2.343333 141 2.98745455 4.474182 

22 3.49043478 0.48087 82 3.505 2.48625 142 3.50045455 4.494545 

23 3.99719512 0.483902 83 3.99432692 2.507885 143 4.00210526 4.492895 

24 4.50333333 0.581667 84 4.50820513 2.484615 144 4.50344828 4.486897 

25 4.926 0.60225 85 4.95511111 2.543889 145 4.99768293 4.505244 

26 5.49166667 0.61 86 5.43544118 2.514118 146 5.48285714 4.499286 

27 5.96636364 0.504432 87 6.01382353 2.593235 147 5.98 4.516667 

28 6.50076923 0.496154 88 6.47106796 2.480097 148 6.50137931 4.5 

29 6.92882353 0.477647 89 6.97533333 2.536667 149 6.96833333 4.479444 

30 7.32928571 0.666071 90 7.38333333 2.573333 150 7.26277778 4.506667 

31 0.50043478 1.01029 91 0.50514706 3.006765 151 0.55321429 4.945 

32 0.98791667 1.012222 92 0.96909091 3.006023 152 0.99428571 4.962619 

33 1.53839286 0.963929 93 1.49769231 2.983846 153 1.49775281 4.985955 

34 2 0.998889 94 2 2.997647 154 2.05619048 4.992063 

35 2.51 1.030645 95 2.29740741 3.066667 155 2.5 5.002857 

36 2.99722772 0.984752 96 2.9652381 3.050476 156 2.95712871 4.962673 

37 3.50170732 0.998293 97 3.47595238 2.994286 157 3.45581395 4.973256 

38 4.01 1.109 98 3.97162162 3.023243 158 4.01170213 5.000213 

39 4.51955224 1.03209 99 4.49133333 3.004667 159 4.48 4.989048 

40 4.97236364 0.988545 100 5.04866667 3.027333 160 4.94333333 4.9675 

41 5.45327869 0.982787 101 5.51846154 3.040769 161 5.47870968 5.06 

42 5.97578947 0.953947 102 6 3.003333 162 6.018 5.018 

43 6.4705 0.991667 103 6.44777778 2.997037 163 6.48095238 4.99 

44 7.11333333 1.016667 104 7.0025 2.996875 164 6.92142857 4.990714 

45 7.42 0.99 105 7.34348837 2.999535 165 7.31928571 4.982143 

46 0.45794118 1.516765 106 0.5575 3.458333 166 0.47541667 5.362083 

47 0.98 1.49 107 1.00368421 3.492632 167 1.01845238 5.380952 

48 1.4672973 1.493514 108 1.50746835 3.499494 168 1.51040816 5.384082 

49 2.00462687 1.502537 109 2.00735294 3.505588 169 2.02659091 5.405455 

50 2.5175 1.561522 110 2.504 3.488 170 2.50346535 5.394356 

51 3.00347826 1.5 111 3.00481481 3.496667 171 2.97961538 5.405 

52 3.47608696 1.517174 112 3.52 3.49 172 3.4494898 5.316735 

53 4.00125 1.52125 113 4.00289855 3.527101 173 3.99888889 5.398889 

54 4.48631579 1.602632 114 4.46862069 3.497586 174 4.5 5.41 

55 4.79911111 1.632222 115 4.99 3.503333 175 4.976875 5.398125 

56 5.48740741 1.499259 116 5.49683544 3.512152 176 5.43848485 5.402727 

57 5.97638554 1.483735 117 5.95516854 3.480899 177 5.95092784 5.375052 

58 6.45075 1.52725 118 6.43872549 3.557157 178 6.48434783 5.328261 

59 6.89934211 1.526579 119 6.92222222 3.508889 179 6.99071429 5.403571 

60 7.3225 1.545 120 7.31584906 3.500943 180 7.37 5.204 

 

Table 4.11 Computation time of the Hybrid algorithm 

Simulation Computation time in seconds 

Hybrid algorithm 
1836.979 for training  

1876.08 for test 
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Figure 4.22 The Accuracy of Hybrid Algorithm for the training set. 

 

 

Figure 4.23 The Accuracy of Hybrid Algorithm for the test set. 
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5. CONCLUSION 

5.1 Optimization Algorithms 

Big bang big crunch (BB-BC) and Genetic algorithms were employed to increase the 

accuracy of UWB indoor positioning system, in which the ALC dataset was used for this 

purpose. As conclusion, the BB-BC algorithm outperform GA algorithm in all three 

performed simulations. 

In the first simulation, the raw UWB test points were used an input to the BB-BC and GA 

algorithms. As a result, the BB-BC algorithm reduces the average location by 48.16 % 

(from 16.34 cm to 8.47 cm). Whereas, the GA algorithm manage to reduce the average 

location error by only 31.76 % (from 16.34 cm to 11.15 cm). 

In the second simulation, the Kalman Filtered UWB test points were used as input to BB-

BC and GA algorithms. As a result, the BB-BC algorithm was able to reduces the average 

location by 51.29 % (from 16.34 cm to 7.96 cm). While the GA algorithm reduced the 

average location error by 46.57 % (from 16.34 cm to 8.73 cm). 

In the final simulation, just like the first simulation, the raw UWB test points were used 

an input to the BB-BC and GA algorithms, then, the optimized UWB test points were 

used as input to the Kalman Filter. As a result, the BB-BC algorithm was able to reduce 

the average location error by approximately 54.53 % (from 16.34 cm to 7.43 cm). 

Whereas the GA algorithm only reduced the average location error by approximately 

52.08 % (from 16.34 cm to 7.83 cm). 

The limitation of the GA algorithm is the slow convergence in term of reaching the 

optimal result, where in our case the optimal offset value. Whereas, the BB-BC overcome 

this drawback, since it offers speed convergence when reaching to the optimal value. 

Applying Kalman Filter reduced the average location and produce more optimized 

results. However, the Kalman Filter produce better result when its applied on UWB 

optimized test points, whether it’s been optimized by BB-BC or GA algorithms, when we 
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compare it to the results obtained when applying Kalman Filter on the Raw UWB test 

points, then using the output data as input to the optimization algorithms. 

5.2 Machine Learning Algorithms 

Three machine learning clustering algorithms are compared in terms of accuracy using 

ALC dataset. The aim was to find the most appropriate clustering algorithm for indoor 

positioning problem via UWB in term of accuracy. 

As a conclusion, The K-Means algorithm is superior to all other methods, with highest 

accuracy (14.09 cm) for the test set, especially when average silhouette method was 

utilized to determine the optimal number of clusters. Whereas Mean Shift algorithm has 

the lowest accuracy, (14.47 cm), when it’s compared with K-Means and FCM algorithms, 

despite its advantage. The main advantages of Mean Shift algorithms rise from the 

nonparametric nature of the kernel density estimate (KDE) and the user need only to set 

one parameter, the bandwidth. Which is often more convenient than having to select the 

number of clusters explicitly or utilizing other methods to define the number of clusters 

such as the average silhouette or the Elbow methods. 

FCM algorithm has accuracy of (14.27 cm), which is very close to the result that was 

obtained from K-Means algorithm. However, FCM algorithm tend to run slower when 

we compare it with K-Means, because more work is done during the processes. Where 

each data point is been evaluated with each cluster, and with each evaluation more 

operations are involved. FCM needs to do a full inverse-distance weighting, whereas K-

Means just needs to do a distance calculation. Thus, K-Means is simpler and 

computationally faster. 

The impact of using Kalman Filter on the measured UWB test points is also introduced 

when applying the clustering algorithms. As an advantage, the accuracy was enhanced 

significantly, where the average location error reduced by approximately 31.03%. 

Finally, the Kalman Filtered UWB data were applied as input to the clustering algorithm, 

the best result was obtained from K-Means algorithm, in which the average error reduced 

by 43.27% (from 16.34 cm to 9.27 cm). Based on the obtained results from the clustering 

algorithms, K-Means were the most appropriate one for indoor positioning system, due 

to its high accuracy, simplicity and fast computations. 
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5.3 Comparison Between the Optimization and Machine Learning Algorithms 

In term of compression among the applied method in this work, Figure 5.1 shows the 

average location error when applying the optimization algorithms and machine learning 

algorithms for the test set. In which the raw UWB test points were used as an input to the 

applied algorithms. 

The best result obtained when using the BB-BC optimization algorithm, since it produces 

the highest accuracy (8.47 cm).  

 

 

Figure 5.1 Accuracy Comparison of the optimization and Machine Learning algorithms 

using UWB test points for the test set. 
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Figure 5.2 shows the average location error when applying the optimization algorithms 

and machine learning algorithms. In which the Kalman Filtered UWB test points were 

used as an input to the applied algorithms for the test set. 

The best result obtained when using the BB-BC optimization algorithm, since it has the 

highest accuracy (7.96 cm). 

 

Figure 5.2 Accuracy Comparison of the optimization and Machine Learning algorithms 

using KF UWB test points for the test set. 

16.34

11.27

9.89

9.32 9.27

8.73
7.96

0

2

4

6

8

10

12

14

16

18

Raw Data Kalman

Filtered - KF

KF Mean

Shift

KF FCM KF K-Means KF GA KF BB-BC

A
v
er

a
g
e 

E
rr

o
r 

in
 c

m

Accuracy comparison



80 

 

Finally, a Hybrid (BB-BC KF K-Means) algorithm was implemented. In which the raw 

UWB test points go through three stages: (1) the implementation of BB-BC algorithm; 

(2) the implantation of Kalman Filter; (3) the implementation of K-Means algorithm. As 

expected, the results were significantly improved. In which the average location error was 

reduced by approximately 64.26 % (from 16.34 cm to 5.84 cm) for the test set. 

5.4 Suggestions for Future Work 

In order to develop the current implemented work, the following suggestions are 

presented: 

(i) Investigate other methods to define the optimal number of clusters in clustering 

algorithms such as the Elbow method. 

(ii) Implement classification methods such as K-Nearest Neighbor (KNN) and 

Support Vector Machine (SVM) to improve the classification after performing the 

clustering algorithms. 

(iii) K-Means clustering algorithm randomly select N cluster centroids. By setting the 

clusters centroid manually, in which the clusters centroid is defined in advance, a 

better performance might produce out of the K-Means clustering algorithm.  
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