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OSCILLATIONS AND CHAOS IN GENE NETWORK MODELS

Abstract

BÜŞRA ARIKAN

Master of Science in Computational Biology and Bioinformatics

Advisor : Assoc. Prof. CEM ÖZEN

July, 2017

Oscillations and chaos have always been interesting topics in the theory of dynamical

systems. In systems biology, oscillations emerging from gene networks are known to be

widespread as in circadian oscillations, various metabolic cycles and the cell cycle to

name a few.  According to the dynamical systems theory, chaotic behavior can also be

produced in strongly-coupled gene regulatory networks (GRNs) with dimensions equal

to  or  exceeding  three.   Although  there  is  a  large  number  of  studies  focusing  on

oscillators in systems biology, the number of studies on chaos is still  rather limited.

Therefore,  much work is  needed to  understand the  conditions  for  its  occurence,  its

possible roles in nature and even novel biological functions which may allow for new

biotechnological applications in future.

In this thesis, we are interested in the chaotic dynamics emerging from a couple of small

gene networks capable of exhibiting chaotic dynamics. Using different approaches, we

investigated the parameter space of these network models for configurations that yield

chaotic solutions.  Our findings indicate that although such solutions exist, they are rare

and isolated to the boundary separating the regions of the fixed-point and oscillatory

dynamics in the multi-dimensional parameter space. This finding is compatible with the

result of a recent study in the literature in which the same genetic circuits were studied

but in a more restricted parameter space.
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We also investigated the topic of chaos control  in  the systems we have considered.

Chaos control is a term for methodologies that are used to stabilize chaotic dynamics

and is rather young sub-discipline of the control theory. Using one of the most well-

known control  approaches,  the  Pyragas  method,  we have  demonstrated  that  chaotic

behavior can be stabilized by an application of a small perturbation in the form of a

feedback to the original system.  Beyond the scope of this thesis, we aim to extend the

control approach to develop a biologically feasible control method that may be used in

the future biotechnological applications.

Keywords: Dynamical Systems, Gene Regulatory Networks, Systems Biology, 

Mathematical Modeling, Oscillations, Parameter Estimation, Chaos Control

ii



GEN AĞ MODELLERİNDE OSİLASYON VE KAOS

Özet

BÜŞRA ARIKAN

Hesaplamalı Biyoloji ve Biyoinformatik, Yüksek Lisans

Danışman: Doç. Dr. CEM ÖZEN

Temmuz, 2017

Osilasyonlar  ve  kaos  dinamik  sistemler  teorisinde  her  zaman  ilgi  çeken  konular

olmuştur.   Sistem biyolojisinde,  gen  ağlarında  ortaya  çıkan  osilasyonlar,  sirkadiyen

osilasyonlar, çeşitli metabolik döngüler ve hücre döngüsü gibi bir çok alanda yaygın

olarak bilinirler. Dinamik sistemler teorisine göre, kaotik davranış, boyutları üç ve üçün

üzerinde olan güçlü-bağlı gen düzenleyici ağlarda(GRNs) da gözlemlenebilir. Ancak,

sistem  biyolojisinde  osilatörler  üzerine  yapılmış  bir  çok  çalışma  bulunurken,  kaos

üzerine  yapılan  çalışma  sayısı  hala  oldukça  sınırlıdır.  Bu  nedenle,  kaosun  oluşum

koşullarını,  doğadaki  muhtemel  rollerini  ve  hatta  gelecekte  yeni  biyoteknolojik

uygulamalara  yön  verecek  özgün  biyolojik  fonksiyonlarını  anlamak  için  daha  çok

çalışmaya ihtiyaç vardır.

Bu tezde, kaos oluşturabilen birkaç küçük gen ağında ortaya çıkan kaotik dinamikleri

ele  aldık.  Farklı  yaklaşımlar  kullanarak,  bu ağ  modellerinin  kaotik  çözümler  üreten

konfigürasyonları  için  parametre  uzayını  araştırdık.  Bulgularımız,  bu  çözümlerin

varolmasına rağmen, nadir olduklarını ve çok boyutlu parametre uzayında sabit nokta

ve  osilatif  dinamikleri  ayıran  sınırlarda  izole  olduklarını  gösterdi.  Bu  bulgu,  aynı

genetik devrelerin daha kısıtlı bir parametre uzayında çalışıldığı literatürde yapılan yeni

bir çalışmanın sonucuyla uyumludur.
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Ayrıca,  incelediğimiz  sistemlerde  kaos  kontrol  konusunu  araştırdık.  Kaos  kontrol,

kaotik dinamiklerin kararlı kılınmasında kullanılan metodolojiler  için bir terimdir ve

kontrol  teorisinin  oldukça  genç  bir  alt  disiplinidir.  En  iyi  bilinen  kontrol

yaklaşımlarından  biri  olan  Pyragas  yöntemini  kullanarak,  kaotik  davranışın,  orijinal

sisteme  geribildirim  şeklinde  küçük  bir  pertürbasyon  uygulayarak  kararlı

kılınabileceğini gösterdik. Bu tezin ötesinde, gelecekteki biyoteknolojik uygulamalarda

kullanılabilecek  biyolojik  olarak  uygulanabilir  bir  kontrol  yöntemi  geliştirmek  için

kontrol yaklaşımını genişletmeyi amaçlıyoruz.

Anahtar Kelimeler: Dinamik Sistemler, Gen Düzenleyici Ağlar, Sistem Biyolojisi, 

Matematiksel Modelleme, Osilasyonlar, Parametre Tahmini, Kaos Kontrol
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1  INTRODUCTION

Most cellular functions are carried out by proteins. Protein concentrations within cells

are  time-dependent  functions.  Mathematically  speaking,  the  rate  of  a  protein’s

concentration  change  depends  on  the  competing  production  and  degradation  rates.

While  the  degradation  rate  can  be  simply  due  to  the  cell  growth  or  the  additional

activity  of  active  agents  (such  as  proteases),  the  production  rate  may  depend  on  a

number of factors related to the machinery of transcription and translation. It can be

said that not single genes but this machinery is  mainly responsible for the complex

world of biology. In particular, if  single genes  are  likened to  an electronic circuit’s

elements,  many biochemical processes associated with these genes and their products

can be likened to the wirings of the electronic circuit.  Differences between two species

sharing a large number of genes, such as humans and chimpanzees or even humans and

yeast is largely attributable to the difference in the wirings of these species’ genomes

rather than the small number of different genes. Hence, one arrives at the concept of

gene  circuits  whose  overall  function  depends  on  a  system level  understanding,  and

cannot be reduced to the sum of the behavior of its constituent genes. 

Theoretical  system  biology  is  the  branch  of  biological  sciences  focused  on

understanding the working principles of such systems through mathematical modeling

and  computational  methods.  One  of  the  most  common  mathematical  modeling

approaches is the formalism of dynamical systems which describes the system as a set

of differential equations, each of which representing the rate of concentration change of

a system variable.  The resulting system of equations  are in general coupled, first order

ordinary differential equations (ODEs). Using standard computational methods one can

integrate  these  equations  starting  from a  given  set  of  initial  values.  This  way, one

obtains trajectories in the state space of system variables, uniquely determined from the

system equations and initial conditions.       
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In this thesis, we investigate the emergence of chaotic dynamics and its control in some

GRNs which are expressed as dynamical systems.  In general, dynamical systems are

classified according to the type of behavior its trajectories settle in the limit of long

time.  Accordingly, the systems could settle to a fixed-point, an oscillatory trajectory or

a chaotic trajectory. Among these behaviors, oscillations and chaos are usually the more

interesting from a mathematical as well as biological point of view. To date, a large

number  of  oscillating  networks  have  been  identified  in  systems  biology  with  the

circadian rhythms, mitosis, cyclic AMP production in signaling being just a few well-

known  examples  (Novak  2008).  Mathematical  models  of  these  systems  have  been

studied since the 1960s (Goodwin 1965). 

Dynamical  systems  of  dimension  equal  to  or  exceeding  three  can  exhibit  chaotic

dynamics if the system is strongly coupled and sufficiently nonlinear.  Chaotic systems

exhibit aperiodic behavior that is also characterized by an extreme sensitivity to initial

conditions. Variability in such systems sometimes can be confused with randomness,

although the systems are perfectly deterministic. Unlike the case for oscillators,  the

relevance of chaos in systems biology still remains  a largely open question.  The first

problem is practical: observing chaos in gene expression data is extremely challenging

due  to  noisy  cellular  environment.  So  far,  it  has  not  been  possible  to  obtain  an

experimental evidence for chaos in gene networks to our knowledge. Another question

is rather functional: assuming that chaotic gene networks exist, how can a random-like

dynamical behavior be useful in a biological system. Could there be any useful function

for chaotic dynamics that might have been discovered by natural evolution? Or perhaps,

could it be a manifestation of a diseased state such as cancer? Yet another possibility is

a synthetic one: can one identify an altogether novel function for chaos which may

create  opportunities  for  future  biotechnological  applications  as  in  synthetic  biology.

While these questions remain mostly speculative at the moment, there are a few studies

in the literature addressing some aspects of these questions.  As an example, recently

Zhang et.al (Zhang 2012) investigated the abundance of chaotic solutions in randomly

2



generated small gene networks to identify whether there are chaotic networks that are

more likely to occur in biological systems than pure chance would dictate. 

In this  thesis,  we have investigated some of the GRNs identified in Zhang 2012 as

capable of exhibiting chaotic dynamics. To differ from Zhang 2012 study, we expanded

the parameter set of the mathematical models to provide greater dynamical behavior

range to these systems.  Subsequently, we have searched the parameter  space of the

model  for  discovering  sets  of  parameters  that  yield  chaotic  solutions.  Our  results

indicate that although such solutions can be found, they are isolated and confined to the

boundary  between  domains  of  fixed  point  and  oscillatory  dynamics.  We have  also

investigated the applicability of a chaos control method in the networks we examined.

Chaos  control  refers  to  a  purposeful  manipulation  of  a  system  exhibiting  chaotic

dynamics with the aim of stabilizing the system. Typically such a control is performed

using a feedback control mechanism to stabilize a particular regular orbit embedded

within the chaotic set of solutions, known as the chaotic attractor. The motivation for

controlling  chaos  in  gene  networks  stems  from  a  growing  number  of  engineering

applications,  such  as  secure  electronic  communications  and  fast  decision  making

systems in robotics (Feki 2003; Steingrube 2010).  

1.1 WHAT IS SYSTEM BIOLOGY ? 

Biological systems are composed of thousands of elements and exhibit complex behav-

ior. The organization and function of these elements in the cell is a result of millions of

years of evolution. The hierarchy of complexity continues to grow from one cell to the

organism with layers of intercellular and intracellular interactions. Every living organ-

ism keeps the information necessary for its survival in the genetic metarial, DNA. Most

cellular functions such as cell growth, cell division, response to external stimuli,  are

managed by the action of proteins, which are expressed from the  genes. 

3



Through the advances in molecular biology techniques not only the genes and  proteins

but also their functions have been rapidly deciphered in recent years.  However, it is

clear that to understand the complexity of biological systems requires more than under-

standing their components, so that  a system-level understanding is essential in this en-

deavor. Almost all biological function emerges at the system level. Processes such as

growth, proliferation, differentiation, response to a stimulus occur as a result of  interac-

tions among many cellular components. System biology tackles the problem of under-

standing of the emergent properties of biological systems by way of mathematical mod-

eling and computational methods (Kitano 2002).

1.2 GENE REGULATION 

Cells are the basic units of life. By the differentiation and association of the cells, more

advanced organisms are formed. For this reason we need to start from the cells to under-

stand the living things. Decisions such as the growth, differentiation, death or prolifera-

tion of a cell are regulated by functional proteins. Conversion of hidden code in genetic

material into active proteins constitutes the gene expression. Gene expression occurs in

two steps,  transcription and translation. Transcription is the RNA synthesis step from

DNA in the nucleus. Translation is the synthesis of protein from messenger RNA in  the

ribosomes  which  found  in  cytosol.  The  addition  of  DNA replication,  which  is  the

process of making a new DNA from existing DNA, defines the central dogma of the bi-

ology (Figure 1.1).
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Figure 1.1: Central dogma of biology. DNA replication, transcription and translation (Alberts 2014).

Although all the cells of an organism have the same genome, they have to make differ-

ent gene expressions according to the functions of the cells in different regions and

tasks. Hence gene regulation is the basis of function of biological mechanisms. 

The conversion of a gene to active protein is controlled in many steps within the cell.

First, transcription of a gene is regulated by the recognition and binding of specific re-

gions (promoter) of the protein, which are called transcription regulators and constitute

the largest class of proteins in cells (Alberts 2014). While transcriptional activator pro-

teins enhance or induce gene transcription by the RNA polymerase, transcriptional re-

pressor proteins prevent or suppress gene expression. Although this system in prokary-

otes generally works in a wide on-off form, the gene control region of eukaryotes con-

tains the sequence to which multiple transcription regulators can bind at the same time.

Many transcription regulators work together to determine which gene,  when, and to

what extent transcription will occur.
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In addition, a gene product is seen in many biological mechanisms in which it functions

as its own transcription regulator. The control mechanisms by which a gene product in-

hibits its own transcription are called  negative feedback loop (NFL). Conversely, the

mechanism by which a gene product activates its own transcription is called  positive

feedback loop (PFL).

Although transcriptional regulation is the most important control step in the translation

of a protein, subsequent control steps are also effective such as transport of molecules

between cell compartments, degradation reactions, complex formation, etc. Mathemati-

cal models are shaped according to the subjects to be investigated. These intermediate

steps can be added to the model. In this study we will examine models based on the im-

portance of transcriptional regulation. Figure 1.2 shows a general graph for transcrip-

tional regulation of gene expression.

Figure 1.2 : Transcriptional regulation of gene expression. Transcription begins by binding the RNA

polymerase to the promoter region of the Y gene. X is trancription factor (TF) of gene Y. Transcription is

increased by binding the activator X to the promoter region(left). Conversely, attachment of repressor X

to the promoter region stops or inhibits transcription(right) (Alon 2007).
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1.3 MATHEMATICAL MODELLING AND GENE NETWORK DYNAMICS

A model briefly refers to the simplified representation of a real system. Making mathe-

matical models that can explain observed biological phenomena or experimental results

informs us both the ability to ask more questions about the system we are searching for

and the freedom to answer more questions by leaving the challenge and expense of ex-

perimental work aside.

Mathematical  modeling of a biological system  are usually classified into deterministic

and stochastic type of models. The deterministic models treat system variables as con-

tinuously changing quantities whose future values can be uniquely calculated using a

precise set of mathematical expressions and initial conditions.  Stochastic models on the

other hand  take various sources of noise, external and internal, into account. Although

they are in general more realistic than the deterministic models, their solutions are often

more difficult and their results are comparatively not easy to interpret. For such reasons,

in this thesis,  we have used a on a  deterministic approach. 

A cell is a dynamic system consisting of thousands of interactive elements. In order to

understand how the dynamic system develops over time, we can construct ordinary dif-

ferential equations (ODE) that indicate the rate of change in the state variables of the

system. Accordingly  the change of a component over time depends on the rate of gain

and loss. When we think of gene networks, processes such as synthesis, degradation,

complex formation, transport between cell parts, and chemical modifications determine

the gain-loss rate of a component over time.  However, the most important regulation

mechanism gene networks is of the transcriptional kind. For this reason, in this thesis

only transciptional regulation through the action of activator and repressor proteins have

been considered to keep the problem as simple as possible. 
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In the description of transcriptional regulation, we have used the so called  Hill func-

tions,  which can be derived from the law of mass action or more formally using the

thermodynamic equilibrium. Suppose that the transcription of a gene Z is controlled by

the transcription factor X. Transcription rate of gene Z is a function dependent on the

concentration of X,  .  

If gene Z transcription is controlled by more than one transcription factor, transcription

rate can be described by a multi-dimensional Hill equation, , and formaliza-

tion depends on the specifics of the promoter of the gene. If all TFs are needed to start

transcription and they act independently to each other, it is similar to AND gate. 

In this thesis, we have made the choice of employing  AND logic to describe the regula-

tion of a gene by multiple transcription factors. The detailed diagrams of these mecha-

nisms and the corresponding equations for the transcription rates are shown  in  Table

1.1.
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Table 1.1: Mathematical expression of transcriptional regulation.  is activation / repression coefficent ,

 is the maximum expression level of the gene and  is Hill coefficient, larger  creates more step-like

motion in the S-shaped Hill function which indicates cooperative effects.  typically takes values be-

tween 1-4.
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For a more detailed discussion of the gene regulation, one can refer to many publica-

tions. For example, see Alon 2007, Ingalls 2013, Klipp 2016.

1.3.1   Classification of Dynamic Behavior 

Using biochemical reaction kinetics, biological systems can be written a set of ODE,

which  describes a dynamical system. We assume that being physical systems, these

systems are attractive dynamical systems, that is, their solutions are always confined to

a finite region in the space of their stata variables.  In the theory of dynamical systems,

attractive dynamic systems are classified according to the limit sets of solution, that is,

the set of state point(s) the system will settle to, after a sufficiently long period of time.

These dynamic behaviors are stable fixed point, an oscillatory solution or a chaotic at-

tractor (Figure 1.3).

Stable Fixed Point : System collapses to a single point in the phase space. It is the

point where f(X) is fixed for all time t (where  t is sufficently long).

Oscillation :  A periodic trajectory in the phase space, which is usually a limit cycle, a

periodic trajectory on which all nearby trajectories converge in sufficiently long periods

of time. 

Chaos :  Trajectories are attracted to a limit set of points in the phase space, which is

called a strange attractor. Trajectories on the strange attractor are aperiodic, and in ap-

pearance they look like random. Another feature of chaotic dynamics is the extreme

sensitivity on initial  conditions,  so that  two initially nearby trajectories will  diverge

from each other eventually (Figure 1.4).

10



Figure 1.3 : Dynamic behaviors of systems at the level of a system component. The x-axises indicate

time(s) and the y-axises indicate concentration of one of the components in the system for each plot. a)

Fixed-point dynamics, b) oscillatory behavior, c) chaotic dynamics.

Figure 1.4 : Decomposition of two trajectories over time in a chaotic  system, initiated from two points

very close to each other. 
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A distinguishing feature of a chaotic time-series from a random time-series is that when

the   element is plotted versus the  element,  a chaotic time-series produces a

pattern that shows non-zero correlations that are not present in the case of the random

time-series  (Liebovitch  1998).  Another  difference  between chaotic  and random pro-

cesses  can  often  be  observed  in  the  structural  differences  between  their  respective

power spectra. Despite the presence of an infinite number of peaks in both, there are

also correlations governing the distribution of peaks in case of chaos, that are again

missing in the random case (Figure 1.5).

Figure 1.5: Features of random, regular and chaotic mechanisms. Each column contains a plot for ran-

dom, regular and chaotic behaviors. The columns show the time series data sets, the phase space sets and

the power spectra of the three mechanisms, respectively.
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1.4 OSCILLATION AND CHAOS IN GENE NETWORKS

In vivo, most of the genetic and metabolic intracellular and intercellular regulation is

homeostatic.  This  is  achieved  by  adaptation  of  important  parameters  according  to

changing environmental conditions such as reaction speed. Lost of the balance leads to

many injuries and illnesses for the living. Recognizing biological regulatory systems,

describing the system where the behavior is necessary, and classifying the its character

will guide us when we are able to control these systems, avoiding diseases, treating, or

even creating synthetic mechanisms.

The motif idea has recently attracted considerable interest in gene regulatory network

(GRN) studies because a network motif is thought to be a key feature of its function.

GRNs have common character and network structure. For example, PFLs and NFLs are

found in many biochemical networks and in important gene regulatory systems. The

studies also support the idea, for example, that oscillation-based systems often have a

negative feedback control, or that swicth-like movement usually occurs with a positive

feedback control.

Especially oscillations are the most effective elements in anticipating biochemical many

processes and providing homeostasis in minute, daily, even monthly periods. Such as

glycolysis, mitosis, circadian rhythms, which fulfill important functions for the cell, are

structures based on feedback loops (FL). Table 1.2 gives examples of oscillators in im-

portant functions in the cell.
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Table 1.2 : Some of the important biological oscillatory process (Novak 2008).

Since gene regulatory networks are known to contain more than one and associated os-

cillators, complex nonlinear behaviors such as chaos can also be expected in those with

more than three component. While there is such a high probability, the rare occurrence

of chaos in GRNs is still an unanswered question. 

In some of the studies in which the chaos theme was examined, chaos was found both

as experimental and simulated in chemical reactions (Furusawa 2009). Are there chaos

in gene regulatory systems? If so, what is its role? There are a few studies trying to an-

swer these questions. Zhang et al. showed the presence of chaotic motifs in GRNs in

their research published in 2012, which investigates the relation of chaotic dynamics to

the structure of the system. 

One of the findings of  Zhang 2012 is that chaotic dynamics usually emerges with the

competition between two or more oscillatory components. They also suggest that motifs

that produce chaos also require very particular choice of system parameters  and  they

attribute the  rareness of chaos to this reason. Beyond the scope of Zhang et al., the fol-

lowing questions are also important for future: Is there a mechanism to protect GRNs
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from chaos, or do GRNs use chaos in a controlled way? To answer these questions, it is

necessary to conduct further research on this subject.

Chaotic models have been shown to be more robust to cellular noise and mutation than

other models. Robustness is a term used to define how much a system can protect its

function in varying conditions. Systems that are overly sensitive to structural or envi-

ronmental changes are not suitable for biological or other dynamic systems. Robustness

is an important feature for biological systems, considering how complex the cellular

events are. Returning to the topic of chaos, if GRNs contain and benefit from such dy-

namics, these networks must also contain robust attractors with respect to variations in

system parameters.

Lastly,  if genetic  systems display  chaotic dynamics, is  it used to a useful end in a

process such as the differentiation, adaptation or provision of equilibrium? Or is it, as

suggested by some scientists, associated with the onset of cancer? The answers to these

questions are still largely unknown and further research is needed to clarify it.
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2 METHODS

2.1 CHAOTIC MODELS

The approaches and algorithms we will discuss in the method section are designed to

address different problems and complexities. The work we are trying to do here is a

multidisciplinary approach that brings together the laws of physics, mathematics and bi-

ology.  Before attempting on a direct application to the biological problem at hand, for

reasons of testing the algorithms and their accuracy, we have performed a number of

studies on toy models which have been extensively studied in the literature. The result

of these studies have been reported in this section.

The first of these toy models is the Lorenz model, which was first proposed by Edward

N. Lorenz, a meteorologist, for his work on very-long-range weather prediction in 1963.

This system, which consists of 3 coupled differential equations and has 3 variable pa-

rameters, has been used as an example of deterministic chaos in many studies including

the methods to be shown below(Wolf 1985; Rosenstein 1993; Silk 2011). 

Lorenz model equations are:
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The other toy model  we use is known as the Rössler model which was proposed by the

mathematician Otto Rössler for studies on chaos in 1976. This system, also contains 3

variables and 3 parameters as in the Lorenz system and is described by the following set

of equations:

2.2 CLASSIFICATION OF DYNAMIC FEATURES

2.2.1 Calculation of Lyapunov Exponents

In the theory of dynamical systems, Lyapunov exponents are measures of average expo-

nential rate of  convergence (or divergence) between two trajectories which started from

two initial points that are very close to each other. In an n-dimensional system,  there

are n Lyapunov exponents . The largest of these is the measure of the least stable direc-

tion and by itself  sufficient for characterizing the system dynamics. Table 2.1 summa-

rizes the dynamic behavior of the system according to the value of the maximum Lya-

punov exponent.
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Table 2.1 : Classification dynamic features by calculation maximum Lyapunov exponent

There are different methods for calculating Lyapunov exponents. One of the most well-

known of these is the Rosenstein algorithm proposed by Rosenstein et al. in 1993 for

finding the maximum Lyapunov exponent from time series (Kantz 2003). 

As an advantage to many other methods,  this approachdoes not require  one to know

the systems dynamical equations.  Thus, it was particularly useful for studies in which

only data in the form of times series is available, as in electrocardiogram(ECG) and

electroencephalogram(EGG) data.  However, as a downside,  the determination of the

(maximal) Lyapunov exponent requires a curve-fitting process which requires human

involvement. Therefore, the applicability of this method turned out to be rather restric-

tive for a large number of such computations that we intended to do in this thesis. 

As an alternative to the Rosenstein method, there are also approaches in the literature in

which the Lyapunov exponents can be determined using a recursive computation. The

Bennettin algorithm is one such method, and can compute not only the maximum but all

of the  Lyapunov exponents. Contrary to the Rosenstein method, the Benettin method

requires the knowledge of the system equations and also do not follow a curve-fitting

procedure (Parker 1989).
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The Benettin algorithm is based on the principle that the variational  equation 

 

is integrated simultaneously with the dynamical system itself,  , for a short pe-

riod  of  time  .  Here  we  use   the  initial  conditions of   and  the  orthonormal

 vectors. Here,   represents the Jacobian matrix. The

steps of the algorithm are as follows:

• Initial value assignment:

 and  orthonormal  are  selected. Then,

the following steps are performed iteratively.

• İntegration:

In the  instance, the system 

is integrated during time  with conditions  and   to obtain  

and  . The new   vector is usually not orthonormal. 

• Orthonormalization:

In the  iteration,  the orthonormal  is obtained with the Gram-Schmidt

orthonormalization from the nonorthogonal vector : 
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• Update:

In the  iteration

is calculated.

This  iteration  is  terminated  when  the  Lyapunov  exponents  converge  or  when  the

maximum number of iterations is reached.

Table 2.2 shows that the maximum Lyapunov exponents ( ) calculation is made using

both the Benettin and Rosenstein algorithms, and the expected values. Two algorithms

give  very  comparable  results.  We have  tried  these  calculations  on  the  Lorenz  and

Rössler systems, which have been used in many Lyapunov calculation studies. The cal-

culations we have made with previously published and commonly used parameter val-

ues showing chaotic dynamics show that both methods can be successfully used. For the

experiments we have made much more detailed, we assume that the following table

gives a summary view. The Rosenstein algorithm has been used as a control in order to

increase the reliability of the work we have done for the special points we have found in

our further studies.
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Table 2.2 : Comparison of results of two Lyapunov calculation methods with reference values of maxi-

mum Lyopunov exponents for Rössler and Lorenz systems.

2.2.2 Bifurcations

We know that the qualitative properties of the dynamics depends  on the parameter val-

ues   as well as the initial conditions.   Bifurcation analysis is one of the most commonly

used approaches to study the change in the qualitative behavior of the system. In bifur-

cation  diagrams,  asymptotically  visited  values  of  a  chosen  state  variable  is  plotted

against changing values of a system parameter, which is called the bifurcation parame-

ter. All other parameters of the system is kept constant. In the following, we use the ap-

proach that when the system is in an oscillating dynamics, we pick the peak value of the

oscillating state variable’s values to be plotted against the bifurcation parameter. De-

pending on the topology of the limit cycle, in oscillatory dynamics one can find one,

two, three, .. peaks, corresponding to period-1, period-2, period-3 oscillations. 

When  the  dynamics  become  chaotic,  the  asymptotic  time  series  become  aperiodic,

therefore the number of peaks become infinite and corresponding to a given bifurcation

parameter value, one obtains a continuum of peak values. Lastly, when the dynamics is

of fixed point type, there would be no local variability in a state variable’s values, hence

no peak value can be assigned, as such we, by convention, omit fixed points in these

plots.   
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In  Figure 2.1 we show the bifurcation diagram of the Rössler system with respect to the

parameter 'a' of the Rössler system. While the 'a' parameter indicates that the system ex-

hibits an oscillatory behavior at small values (a < 0.1), it is later seen that the period

doubling into complex dynamics and chaotic transformation has occurred.

Figure 2.1: Bifurcation diagram of Rössler system’s first component X when parameter ‘a’ varied in the

range [0-0.4] and other parameters are constant (b=0.20, c=5.7): x-axis indicates parameter values and y-

axis indicates X peak values.

In Figure 2.2, we plot the asymptotic trajectories of the Rössler system in its 3-D phase

space. Each subplot corresponds to a particular choice of the bifurcation parameter that

were used in Figure 2.1.  These figures show the onset of chaos while the system goes

through a series of bifurcations, involving what is called period-doubling bifurcations,

which is a well-known route to chaos in dynamical systems theory.  
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Figure 2.2 : 3D phase space images of Rössler system with choosen ‘a’ values at bifurcation diagram

Figure 2.1. Other two parameters are fixed at same values in Figure 2.1: a) a=0.1, a periodic limit-cycle,

b) a=0.12, a period two cycle, c) a=0.15, a period four cycle, d) a=0.2, a chaotic attractor. 

2.2.3 Lyapunov Spectrum of Dynamical Systems

Another way of showing the qualitative changes in a dynamical system is to plot the

maximal Lyapunov exponent of the system against changing values of one of the sys-

tem parameters  In the following,  we reproduced a  calculation which is  available  in

Gonzalez-Miranda 2004, as a supplement to the bifurcation diagrams and as a further

test of our Lyapunov exponent codes. Using the same parameter range as in the  previ-

ous bifurcation plots for the Rössler system, in Figure 2.3 and Figure 2.4  we plot  the

Lyapunov spectrum against the changing values of the parameter 'a' of the Rössler sys-

tem.
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Figure 2.3 : The Lyapunov spectrum of the Rössler system when parameter ‘a’ varied in the range [0-0.4]

and other parameters are constant at same values in Figure 2.1: (a) plot of the whole spectrum, and (b) de-

tailed view of the two largest Lyapunov exponents. These plots are taken from reference (Gonzalez-Mi-

randa 2004)

Figure 2.4: The Lyapunov spectrum of the Rössler system when parameter ‘a’  is varied in the range 

[0-0.4]  while the other parameters are kept constant at the  same values used in Figure 2.1.Calculations

were made using Benettin algorithm: (a) plot of the whole spectrum, and (b) detailed view of the two

largest Lyapunov exponents. the green line indicates the largest Lyapunov exponent.

Results  shown in  these  plots  are  in  agreement  with  the  related  reference  and  thus

demonstrates the reliability of our codes. Note that it is much easier to identify the os-

cillatory regions that lie between chaotic regions in comparison to the earlier bifurcation

diagrams.
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In Figure 2.5, we plot  the asymptotic state of the system at certain chosen values of pa-

rameters, with the value of the bifurcation parameter indicated by the colored points in

the corresponding plots of Lyapunov spectrum. In these plots it is clearly seen  from the

3-D plots how the system  evolved from a periodic motion (characterized by the  maxi-

mum Lyapunov exponent equal to zero) to a chaotic motion (when  the  the maximum

Lyapunov exponent exceeds zero).

Figure 2.5: Determination of system dynamics by Lyapunov exponents: (a) detailed view of the two

largest Lyapunov spectrum of the Rössler system when parameter ‘a’ varied and other parameters are

constant at same values in Figure 2.1. The blue dot indicates the parameter value (a = 0.07) where the

maximum Lyapunov equals zero , (b) Three-dimensional phase space view of Rössler system at the

parameter a=0.07 point and periodic limit-cycle is easily visible, (c) Same plot in (a) and the blue dot

indicates the parameter value (a = 0.18) where the maximum Lyapunov greater than zero, (d)  Three-

dimensional phase space view of Rössler system at the parameter a=0.18 point. Chaotic attractor is easily

visible.
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It is seen that the maximum Lyapunov exponent and the Lyapunov spectra serve as very

useful tools to characterize and display the variations in the qualitative behavior of dy-

namical systems respectively.

2.3 PARAMETER ESTIMATION

We have seen the effect of parameter selection on system dynamics. Now we turn our

attention to dynamical systems of a given model but unknown parameters. The relevant

question is, how can a certain qualitative dynamical behavior be achieved by demand?

That is, formulated as an inverse problem, we would like to determine parameter values

or domains which could guarantee that the system display the demanded type of dynam-

ics. 

Such questions are called inverse problems in mathematical modeling and are intended

to design a model that will produce output in the desired manner. There are many differ-

ent approaches that have been developed for these problems.  Note that the bifurcation

diagrams can probe the system only in one dimension of the parameter space, and does

not provide a very useful tool in general. Among many alternatives, in this thesis we

have chosen the so called Unscented Kalman Filter (UKF) method for the search in the

parameter space for obtaining a desired dynamical output. The UKF is a very useful

method that can search for parameter space in multidimensional parameter spaces and is

a relatively new method that has found many interesting applications from robotics to

systems biology (Haykin 2001, Silk 2011). 

The UKF is an iterative smoothing technique. So that, starting from initial values and

variances for a parameter, one follows a well-defined mathematical procedure to obtain

optimal values of the parameters until a certain criterion for error is achieved. Its details
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can be found in the aforementioned references, but we mention that it is highly suitable

for non-linear problems.

The parameter estimation  problem is set up by the following equations: 

in which is called  the state-space model in  the field of signal processing.   Above

 is a user-specified observation function, a function that depends on the system

and its  parameters. In this  study, this  function will  calculate the maximal  Lyapunov

exponent.  In the state space model,  and  indicate the system noise and measurement

noise respectively. Accordingly, the UKF performs a   parameter  deduction with  the

following iterative approach:

Initialize:

Prediction:
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Update:

In the equations above,  represents the mean value for the parameter vector and 

is  the  corresponding covariance  matrix.  and   represent  the  covariance  matrices

associated with the system and observation noise, respectively.

In the UKF method, the sigma points   and the corresponding weight  terms   are

chosen as follows,
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These points define the unscented transformation, which gives the method its name and

main distinguishing characteristics, and represent  how a multivariate Gaussian input

under a nonlinear function is transformed to its output, which is assumed to preserve the

Gaussian form.

In our studies the Lorenz model served as the first test case for the UKF method .  As an

example to a successful application of the UKF method, we set the goal of estimating

the parameters of the Lorenz system, which is to possess a certain value of the maxi-

mum Lyapunov exponent by demand.  In Figure 2.6 we show such a calculation. 
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Figure 2.6 : Parameter estimation by using UKF: a,b,c) Evaluations of Lorenz system parameters, respec-

tively , ,  (sigma, rho, beta) over UKF iterations and expected values of parameters (blue lines);

, , . d) Evaluation of maximum Lyapunov exponent, , over UKF iterations

and expected  = 0.9051 (blue line), according to the reference (Silk 2011) . 
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Here, the maximum Lyapunov exponent was chosen as the value the Lorenz system

would have at a particular choice of the system parameters, which are referred to as the

expected values. These values are fixed by the blue lines in each subplot for one of the

parameters being searched. The search starts from arbitrary values of the system param-

eters with properly chosen variances. It can be seen that as the system iteratively discov-

ers the desired value of the maximal Lyapunov exponent, the parameters of the system

converge on the blue lines. However it must be emphasized that, there can be multiple

configurations in the parameter space that may yield the same target dynamics. Hence,

the term “expected” is not to be taken rigorously but as a guidance here. In the light of

this, it  is seen that while the other parameters converge on the expected values, the

search discovers a value which is different than the expected one, nonetheless a value

that perfectly accommodates the target dynamics.  

The the example above shows us that the UKF can be  a  useful  method for the problem

of parameter estimation. In the following we take up another example by performing a

one-dimensional search in parameter  of the the Rössler system. In order to assist our

understanding of the search process, we have provided a plot of the Lyapunov spectrum

for this system using the  parameter as the bifurcation parameter.  Based on the spec-

trum plot, we can clearly see the distribution of the oscillating and chaotic regions. It is

clear that there are multiple parameter choices available for our search to fulfill the tar-

get dynamics. Intuitively, one can argue that in this search the initial value of the un-

known parameter should be important for the outcome of the search.  In order to see

whether this  is the case,  we perform a search that starts in alternative regions, both

chaotic, and aim to push the system to  oscillatory  dynamics which is achieved in two

narrow gaps in the  range of interest (see Figure 2.7a and for a detailed view Figure

2.7b ).

Starting from  two alternative initial values of   (approximately   and )

both of which lies in the chaotic regime,  the UKF proceeds to discover  the target oscil-

latory motion. Note that the search discovers the nearest target region in each case. 
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Figure 2.7: Sensitive parameter estimation with the UKF filter: (a) maximal Lyapunov spectrumof the

Lorenz system when parameter ‘  (rho)’ is varied and the other parameters are kept constant ( ,

) , (b) shows a detailed view of (a). Sensitive oscillatory targets  are chosen as the maximal

Lyapunov exponent at   and  approximately. (c) A search with the initial value of

, which corresponds ro a chaotic region,  the UKF can discover the target  oscillatory dynamics at

about , which can be seen to be well-isolated in the accompanying Lyapunov spectrum

plot, (d)  Another search,  using an initial value of  can again successfully lead to to reach the

ftarget oscillation region, which is available to this particular search in the near position of . 

The last example serves to show that  the UKF search is sensitive to the choice of the

initial value of a parameter as expected; accordingly it  can find target dynamics at alter-

native values of a search parameter as long as they yield the same qualitative dynamical

behavior.  This brings up the following question: How can the parameter search prob-
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lems  be restricted to a certain domain? This problem becomes more urgent especially in

situations  when  the  search  can  possibly  yield  unphysical  values.  For  example,  if  a

search parameter represents a biochemical rate constant,  its  physical values must be

non-negative. 

In the following, we take up the Lorenz system for a parameter search to be performed

for the parameter ' '; however,  different than the previous case we will perform a  con-

strained  parameter search. Without getting into the specifics, we achieve this by extend-

ing the observation function to become a two-valued function, so that in addition to the

target dynamics which is encoded by the maximal Lyapunov exponent, the observation

function now returns also a penalty value for the parameter to be constrained. This way,

we treat an imposed constrain in the same footing as any other target that can be de-

manded from the system. Consequently, we  need not to modify the UKF algorithm and

the existing codes, but only the definition of the observation function.

As an application to a constrained search using the UKF, we envision a search problem 

so that the unconstrained search can proceed, depending on the choice of the initial 

value as discussed above, to settle on either of two available target regions. By taking 

advantage of a constrain, we now aim to channel the search to a region of interest to the 

user. This functionality can become important to focus the method to a particular do-

main of the parameter space.  In the example we provide, a constrain that we impose at  

 can successfully separate the two alternative targets and a search that is likely to 

proceed to one, can be made to channel to the alternative when the constrain is added 

(See Figure 2.8). 
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Figure 2.8:  A constrained-parameter search using the UKF method. Left panel shows the maximal Lya-

punov spectrum of the Lorenz system plotted versus  parameter (rho), the target  dynamics are oscilla-

tions, i.e.,  (seen to exist ar approximately  and ).   The blue line indicates the

constrain which  was added at . 

These examples demonstrate that  the UKF mehod provides a versatile parameter esti-

mation approach, in single or multiple-valued parameter search problems, and if  de-

sired, the search can be constrained to a particular domain. 

2.4 CHAOS CONTROL

In this section, we lastly focus on the concept of chaos control. In the theory of dynami-

cal systems, chaotic motion is characterized by the existence of a limit set of points in

the phase space, whose points are visited aperiodically by the system. This limit set,

which is called the strange attractor, is made of an infinite number of periodic trajecto-

ries that are nonetheless not stable. In fact, a power spectrum analysis can identify the

relative strengths of the existing unstable periodic components lying in the strange at-

tractor. Chaos control methods (Schöll and Schuster 2008 ), refer to application of small

pertubations with the ultimate goal of stabilizing a chosen periodic oscillation that is

embedded in the attractor. 
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There are now a growing number of methods relying on a rather rich repertoire of ap-

proaches to achieve this end. Here, we focus on the Pyragas method (Pyragas 1992),

which is one of the most practical approaches of chaos control. This approach uses a

continuous but small  perturbation using a  delayed feedback approach. 

Figure 2.9: Feedback-based chaos control scheme in Pyragas method (Pyragas 1992). Where K measures

the strength of the perturbation and τ  is the period of an unstable periodic orbit which dynamical system

has. The difference between y(t) and control signal y(t − τ )  fed back original system, to stabilize a peri-

odic orbit.

Here, we  applied the Pyragas method on the Rössler model. We have chosen the orbit

to be stabilized to have the predominant period within the attractor.  In Figure 2.10, we

show the simulations of the model with the control perturbation to be turned on at some

time causing the system to stabilize onto the desired regular oscillation. With the re-

moval of the control, the system recovers its full chaoticity. 
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Figure 2.10:  Using the Pyragas method on the Rössler model. Each panel corresponds to a component of

the system (specified in the y-axes) plotted versus time. It is observed that shortly after the perturbation is

turned on, the initially chaotic system  is stabilized to a periodic behavior and  returns to the original

chaotic behavior after the removal of the perturbation (Perturbation is applied in the interval t=100-400). 
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Figure 2.11: Using the Pyragas method on the Rössler model. In the 3-D phase space of the Rössler sys-

tem, the red line indicates the limit cycle that is stabilized during the application of the perturbation

(t=100-400). 
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3 RESULTS AND DISCUSSION

3.1 GRN MODEL SELECTION

As mentioned before, the existence and possible roles of chaotic dynamics in genetic

networks remain mostly unanswered issues. The challenge of observing chaos in gene

expression is  probably the major  reason for  the lack of evidence in  this  regard.  To

investigate the existence of chaos in GRNs despite the experimental challenges, some

researchers, therefore, turned their attention to mathematical modeling. One of these

theoretical studies is a recent study by Zhang et.al. (Zhang 2012), in which the authors

considered  randomly  generated  gene  networks  and  investigated  the  likelihood  of

observing  chaotic  dynamics  in  few-node  gene  networks.  Accordingly  they  have

identified distinct topologies of networks that are significantly more likely to produce

chaotic dynamics than others. Such networks are widely known as motifs in system

biology.  One of the main conclusions of this study is that,  although chaotic motifs

exist, compared to the likelihood of observing fixed-point or oscillation type dynamics,

the likelihood of observing chaos from these motifs is very rare indeed, suggesting that

conditions for chaotic behavior are rather strict. This restriction occurs, according to the

authors of this study, due to competitions between competing oscillatory modes, which

is a finding that a more recent study also supports (Suzuki 2016). One aspect of the

Zhang study that may leave room for some arguments is the rather limited number of

kinetic parameters in their models of gene networks. In this thesis, we have focused on

one of the chaotic motifs reported in Zhang et al., but considering the possibility of

creating more dynamical flexibility we generalized the mathematical model of Zhang et

al. by using a greater number of kinetic parameters. 
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The  motif we have chosen is shown in Figure 3.1, consists of four genes that we have

numbered.  It  is  assumed  that  the  transciption  and  translation  proceeds  as  a  single

process, an often used simplification which simplifies the ensuing analysis. There are

six gene interactions in the model, shown by pointed, red (activation) or blunt, black

(repression) arrows. 

Figure 3.1 : GRN Motif

The  kinetic  parameters  of  the  model  represent  biochemical  reaction  constants  for

various binding/unbinding events (K parameters) and parameters for maximal protein

production rate and protein degradation rates. While we used a more general set for the

K parameters than in  the Zhang et  al.  study, we adopted the value of unity for the

maximal protein production and degradation rates respectively in the appropriate units.

We separated the K parameters into three groups; accordingly, the simple K stands for

repression, K1 for self-regulation, and K2 for activation. Our model also differs from

the study mentioned in the formulation of gene regulation with multiple transcription

factors, such that in our study we have used the AND logic. However, as mentioned in

Zhang et al., the exact form of the model is not resctrictive to the findings of the study. 
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The mathematical model representing the network shown in Figure 3.1 can then be

written as,

      

3.2 SEARCH FOR CHAOTIC DYNAMICS IN THE PARAMETER SPACE

Our first attempt to estimate the kinetic parameters, namely the kinetic constants 

mentioned above, was performed by employing the UKF approach. However, the UKF 

approach failed to identify parameter sets that produce positive values for the maximal 

Lyapunov exponent, the search criterion for the problem. This surprising fact which 

contrasts the earlier success of the method in the Lorenz and  Rössler systems prompted

us to repeat the search using a heuristic approach. Accordingly, we searched for 

parameters yielding chaotic dynamics on three orthogonally chosen 2-D planes in the 

parameter space. These planes were then cast into fine-grained grids, with each axis to 

be limited to the range [0, 0.3],  on which we systematically searched  through  the 

parameter tuples which yield positive values for  the maximal Lyapunov exponent (see 

Figure 3.2). 

Although our search is limited to three planar projections of the full parameter space, it 

has nevertheless yielded a number of chaotic solutions as well as strongly suggesting a 

reason for the failure of the earlier search based on the UKF approach. The chaotic 

solutions, as well as being rare, are seen to be isolated from each other. As can be 
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understood in intuitive terms, such a search method relies on the guidance of smooth 

changes describing the contours of a multi-dimensional surface for local extrema. For a 

search with extremely localized target values, the UKF method can not be guided as no 

variations can be encountered by the search algorithm, unless an extremely fine-grained

iteration scheme, which would be necessarily too slow to perform, would be required.

Figure 3.2: Scanning the parameter space  on selected 2-D projections. The left panel shows a sample

plane where the K parameter is fixed and the K1 and K2 parameters are varied  within the specified range

of [0-0.3] for each. The panel on the right depicts the 3-dimensional parameter in which  the selected

planes are shown. The red, blue and green planes correspond to  the search domains for tuples of K

parameters in which   K, K1, and K2  are kept constant at their reference values, respectively. 

In our search, we have made use of the numerical values of parameters given in Zhang 

et al., as reference values for the fixed parameter, while the two-dimensional scans are 

performed. Consequently, the dynamical behavior of each point on the planar grids  

have been assigned with the convention that  the blue dots indicating oscillatory 

solutions and  the red dots  indicate chaotic solutions, while the white areas on the 

planes represent the fixed-point dynamics.
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Figure 3.3:  Constant K plane. K value is kept constant  at the value of 0.065 value while the other

parameters K1 and K2 are varied in the range of [0-0.3]. The blue dots indicate oscillatory solutions, the

red points indicate chaotic solutions and the white areas correspond to the fixed-point dynamics.
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Figure 3.4: Constant K2 plane. K2 value is kept constant at the value of 0.09 value while the other

parameters K and K1 are varied in the range of [0-0.3]. The blue dots indicate oscillatory solutions, the

red points indicate chaotic solutions and the white areas correspond to the fixed-point dynamics.
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Figure 3.5: Constant K1 plane. K1 value is kept constant  at the value of  0.2 value while the other

parameters K and K2 are varied in the range of [0-0.3]. The blue dots indicate oscillatory solutions, the

red points indicate chaotic solutions and the white areas correspond to the fixed-point dynamics.

Another interesting observation from this study is that the chaotic solutions we have

found are not only well isolated but also localized to the boundaries of the fixed-point

and oscillation domains. This should be attributed to the mechanism for the emergence

of chaos. Although such a topic remains largely out of the scope of this thesis, we have

nevertheless performed an analysis based on the bifurcation/the Lyapunov spectra study

we have outlined in the Methods section. 
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3.3 BIFURCATION PLOTS AND THE LYAPUNOV SPECTRA

 

Figure 3.6: Bifurcations and Lyapunov spectra (for the maximal exponent) of the GRN model. In each

column, we show  the bifurcation plot and  the corresponding Lyapunov spectrum with the varied

parameter shown in the abscissae.  The accuracy of  maximal Lyapunov exponent varies according to the

selected system and the method used in the calculation. In calculations using the Bennettin algorithm on

our GRN model, chaotic dynamics were obtained at values .

Figure 3.6 summarizes the results of the bifurcation analysis which was complemented

by a Lyapunov spectrum analysis to help interpret the results. An inspection of these

plots suggests that, the chaotic  behavior  is born (or destroyed),  suddenly  out of (or

into) the fixed-point dynamics,  depending on the direction traversed on the varying

parameter. It is therefore somehow surprising to us that rather than being embedded

within  the  oscillatory  region (as  such created  and  destroyed through a  well  known

mechanism of the period-doubling route to chaos),  the birth or death of the chaotic

attractor at the boundary of the fixed point region must be due to another mechanism.  
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Indeed,  such a  mechanism is  well-known in  the  theory  of  dynamical  systems  and

named as  crisis phenomena (Hilborn 1994). Depending on the type of crisis, a chaotic

attractor may be born or destroyed abruptly at the boundary of an oscillatory or fixed-

point domains. Since the nature of the crisis phenomena lies beyond the scope of this

thesis, we have not investigated the phenomena in greater detail. 

A very recent study by Suzuki et al. invastigated chaotic dynamics in gene networks

made of one or two genes. They simplified their analysis by considering the regulations

through the use of explicit time delays in order to emulate more complicated processes

that involve intermediate steps in reality. The motifs they take into account are shown in

the  Figure  3.7.  This  study  shows  that  even  the  simplest  gene  networks  can  create

periodic, quasi-periodic, weak chaotic and strong chaotic dynamics (strong chaos is a

term used to describe systems with more than one positive Lyapunov exponents and

such systems are also called hyperchaotic, while the term weak chaos is reserved for

systems  with  a  single  positive  Lyapunov  exponent).  The  Suzuki  study  reveals  the

minimalist circuit topologies for the emergence of chaotic dynamics. It turns out that  in

both one and two gene circuits, presence of two negative/positive feedback loops is

required to generate chaos (see Figure 3.7).
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Figure 3.7: Samples of circuit motifs taken from (Suzuki 2016). This study examines the dynamic

properties of circuits containing one or two genes with explicit time-delays. These time-delays can

emulate  intermediate biochemical steps. (a) shows motifs with a negative feedback loop. These one-gene

and two-gene elements exhibit periodic oscillations. (b) shows motifs with two negative feedback loops.

They exhibit periodic, quasi-periodic and weak chaotic dynamics. (c) shows motifs with two negative

feedback loops and a positive feedback loop. They exhibit periodic, quasi-periodic, weak chaotic, and

strong chaotic dynamics. (d) shows a one-gene element with both self-activation and self-inhibition. 

A comparison of the circuits undertaken by the Suzuki study and ours, it is seen that the 

network we investigated in this thesis resembles  the one shown in Figure 3.7d (with 

gene number three acting as the single gene of the Suzuki relevant circuit, which 

interacts with itself through one positive and one negative feedback loop-- all other 

genes assuming  the role of intermediates in the meanwhile). The analysis performed by

Suzuki et al. indicates that the chaotic behavior is rather limited by the values of time-

delays. This result is also suggestive on the rarity of chaos. 
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3.4 CHAOS CONTROL

Control of chaotic behavior is a topic of increasing importance with many technological

applications developed to date (Schöll and Schuster 2008). It is therefore conceivable

that it may prove to be  a useful tool in genetic networks when it functions as a control-

lable switch  mechanism which may be used to alternate between chaotic and regular

oscillatory dynamics on demand. 

As mentioned before, chaotic systems have strange attractors in which infinite number

of unstable periodic orbits are embedded. Chaos control techniques target a particular

unstable  orbit  for  achieving stabilization.  Now we turn  our  attention  to  the  control

method of  Pyragas  for demonstrating  how such control can be  achieved in the genetic

circuit we have studied in the previous subsection.  

Figure 3.8: Power spectrum of GRN model. There are many different frequency within the system dy-

namic, but the most dominant frequency = 0.3, so period = 1/f = 3.29.

A preliminary power spectrum analysis have identified the range and relative strengths

of the periods that are present within the family of orbits composing the strange attractor

(Figure 3.8) . From this plot, the predominant period is clearly identified.  
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Subsequently, we have applied the Pyragas method, with the perturbation term being

ON  during  the  time  range  of    =  40-140.  Accordingly,  the  control  is  succesfully

achieved during the presence of the perturbation and the system has been stabilized  at

the periodic trajectory with period  = 3.29 (Figure 3.9). 

Figure 3.9: Using the Pyragas method in a  GRN model.  Each panel shows one of the  state variables

(protein concentrations)  of the system as a function of time. The stabilization is achieved approximately

during the period  t=[40, 140] when the perturbation is applied. 

These results serve as a simple demonstration of the control through a rather formal

point of view. A real application of a controller would, however, require the identifica-

tion of biochemical or other controller elements and mechanisms. This topic is one of

the research topics that we are motivated to study in the future.
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