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Abstract: Ultra-wide band is one of the emerging indoor positioning technologies. In the application phase, accuracy
and interference are important criteria of indoor positioning systems. Not only the method used in positioning, but also
the algorithms used in improving the accuracy is a key factor. In this paper, we tried to eliminate the effects of off-set
and noise in the data of the ultra-wide band sensor-based indoor positioning system. For this purpose, optimization
algorithms and filters have been applied to the raw data, and the accuracy has been improved. A test bed with the
dimensions of 7.35 m × 5.41 m and 50 cm × 50 cm grids has been selected, and a total of 27,000 measurements have
been collected from 180 test points. The average positioning error of this test bed is calculated as 16.34 cm . Then,
several combinations of algorithms are applied to raw data. The combination of Big Bang-Big Crunch algorithm for
optimization, and then the Kalman Filter have yielded the most accurate results. Briefly, the average positioning error
has been reduced from 16.34 cm to 7.43 cm .
Key words: Indoor positioning, ultra-wide band sensors, optimization, big bang-big crunch algorithm, genetic algo-
rithms, the Kalman filter

1. Introduction
We often use not only the outdoor positioning but also indoor positioning in our daily lives. Outdoor localization
solutions have been improved over the years considering the Global Position System (GPS) and Assisted GPS
technology. These solutions are highly effective in determining the position in outdoor areas. GPS is developed
by the US Department of Defense and can best be described as a satellite based navigation system [1, 2]. Outdoor
positioning information can be calculated when four or more GPS satellites are within the field of view. GPS
enables critical outdoor positioning, especially for civil, commercial and military applications. Assisted GPS
(A-GPS) technology is a navigation system used on mobile devices that helps to identify a user’s location via
the base station’s A-GPS address server [3]. The accuracy provided by the GPS in determining the outdoor
location is between 3 m and 15 m , usually around 10 m . The accuracy that A-GPS provides in determining
the outdoor location is about 15 m , while the interior is 50 m [3]. As can be seen from the accuracy values,
these solutions are sufficient to determine the outdoor position, in other words, the position in the open space.
On the other hand, given the fact that people now spend more than 80% of their time indoors, a suitable system
for locating interior space is needed. Unfortunately, the use of GPS satellites in indoor location determination
is not possible as GPS signals are weaken due to atmospheric delays, multi-paths, steel structures, roofs and
building walls [1–3]. For this reason, efforts have been made to develop new technologies that allow reliable
indoor location determination with high accuracy, low average positioning error over the past two decades.
∗Correspondence: arsan@khas.edu.tr
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However, new algorithms and methods are needed to improve the existing results. When the GPS signals
cannot be reached, it is possible to use a different technology to determine the coordinates of indoor location
by means of infrared, ultrasonic, cellular, radio frequency identification (RFID), wireless networks (Wi-Fi),
Bluetooth Low Energy (BLE) beacons or Ultra-wide band (UWB) [4–6]. In some studies, even visible light
has been used [7–9] as well as technologies that utilize the Earth’s magnetic field [10, 11]. Indoor positioning
systems have been developed rapidly in recent decades. Methods of positioning are divided into two categories:
the location fingerprint positioning method [12] and the trilateration algorithm [13]. The need for high accuracy
indoor positioning is becoming a very important issue. Locating patients and workers in the hospital, finding
employees in a large office and finding people trapped in a burning building are a few of the applications of
indoor positioning systems that require high accuracy.

Many solutions have been developed for estimating the position of the indoor objects. Most of these solu-
tions manage to provide locational information, and they are based on multi-lateration, and mostly triangulation
methods using radio signals or infrared, and ultrasound. There are many indoor positioning systems (IPS) with
different architectures, configurations, reliabilities, and accuracies to determine the location information of peo-
ple and objects. In general, infrared (IR), Wi-Fi, RFID, BLE Beacon, ultrasonic and UWB are the technologies
used in IPS [13, 14]. One of the best solutions is to use Wi-Fi for indoor positioning. However, there are still
several technical difficulties in the indoor localization based on Wi-Fi which have not been solved completely.
The main problem is about indoor positioning accuracy. In [15], a method is developed to estimate the position
of a tag. In this study, multi-lateration with probabilistic RFID map-based technique and the Kalman Filter
is used together to improve the indoor positioning accuracy. As soon as this method is applied, more accurate
position estimation and accelerations can be obtained. The bandwidth of Ultra-wide band (UWB) signals is
extremely large, exceeding 500 MHz [16]. This offers many advantages for radar applications; and it improves
reliability, since the signal contains different frequency components. Some of these frequency components can
go through or around obstacles [17]. Thus, the UWB provides a more accurate and reliable positioning. The
power consumptions of the UWB sensors are low when we compare them with localization technologies [18].
UWB offers a good multipath resolution, since the indoor wireless systems must cope with several multipath
scenarios [19].

The geometric properties of triangles are used in the Triangulation method to estimate the position of a
target. It includes two derivations: lateration and angulation. The lateration derivations estimate the location
of an object by measuring its distances from more than one reference point. Received signal strengths (RSS)
[20–22], the time of arrival (ToA) or time difference of arrival (TDoA) methods are usually used [23], instead
of measuring the distance directly. In these methods, distance is calculated by computing the attenuation of
the emitted signal strength or by multiplying the travel time and radio signal velocity. Roundtrip time of flight
(RToF) method is also used for range estimation in some systems whereas Angulation locates an object by
computing angles relative to multiple reference points in Angle of Arrival (AoA) method [24].

UWB is promising in indoor environments because it has nonprone to interference behavior, and much
better penetrating capability [25–27]. However, the location accuracy can be affected by the presence of a line-
of-sight (LoS) obstruction for two reasons. Firstly, there is excess propagation delay because of the high level of
dielectric constant of the LoS blocking material. This may cause bias in the location estimation. Secondly, the
propagation channel has multipath structure, and it has a complex behavior. The more complex the behavior,
the more difficult it is to estimate the time of arrival (ToA) from the direct path signal [25–27].
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1.1. Related previous works

Before the MDEK10011 UWB sensors that were the main subject of this study, indoor positioning studies [28]
were performed by using Wi-Fi, BLE beacons and TREK10002 UWB sensors. The aim of these studies was to
minimize the average positioning error value as much as possible [28]. The results obtained from the studies
in approximately 36 m2 test areas reduced average positioning error values of 139 cm with Wi-Fi technology,
86 cm with BLE Beacon technology, and 24 cm with TREK1000 UWB sensors [28]. These results show that
indoor positioning method can be applied to behavior mapping [28]. As a matter of fact, if only manual behavior
mapping is possible with an average positioning error value of less than 20 cm , it may be possible to perform
behavior mapping automatically by determining the user’s indoor location. Therefore, the studies shifted in
this direction. The average positioning error value of 24 cm was first reduced to 20.72 cm by making the
necessary calibrations and developing a ceiling system by placing UWB sensors at the appropriate height [29].
These studies are still being carried out on a multi-disciplinary platform. The most important development,
currently needed, is to be able to calculate both behavior mapping and interaction between users by minimizing
the average positioning error value. The first study to this end is to reduce two fundamental errors, especially
during measurement. Although the first error source was meticulously studied and calibrated as required, an
offset value was generated during the measurement. The second source of error is the noise effect caused by
disturbances and reflections. TREK1000 UWB sensors were used in the first studies to eliminate the offset value
and all the results were tested by calculating a common offset value. In [29], a single offset value was obtained.
By using this offset value, it was possible to reduce the average positioning error value from 20.72 cm to 15.02
cm [29]. Afterwards, the studies have been developed to reduce offset and noise effects in order to reduce the
average positioning error to around 15 cm .

1.2. The main contribution
This work provides a potential application of behavior mapping with multiple UWB sensors by reducing the
average positioning error by less than 8 cm . Briefly, the aim of this article is to find a proper solution to
obtain improved accuracy of MDEK1001 UWB sensor-based IPS to reduce the average positioning error value
to less than 8 cm , as it is currently around 16 cm to 20 cm . For this purpose, all the combinations of BB-
BC algorithm, genetic algorithm and the Kalman Filter are examined and implemented in an active learning
classroom (ALC) test bed. The accuracy of indoor positioning is increased further, and preliminary studies are
conducted to understand the interaction of two or more users with individual movements, such as swinging left
and right, and multiple users in behavior mapping, which will enable future studies.

The contribution of this work is threefold:
• Eliminating the offset value that affects the raw data accuracy, it is also called bias cancellation. We

use the BB–BC optimization algorithm and the genetic algorithm to achieve this aim.
• Removing outliers and noise caused by interference. We use the Kalman Filter to achieve this aim.
• Finding the exact order of the methods which provides a better accuracy, briefly low average positioning

error to less than 8 cm. This also allows multiple users of behavior mapping.
The organization of the rest of the article is as follows: Section 2 introduces all the proposed methods;

BB-BC optimization algorithm, genetic algorithm and the Kalman Filter are explained in detail. Section 3
1MDEK1001 (2017). MDEK1001 Kit User Manual Module Development and Evaluation Kit for the DWM1001 [online]. Website

https://www.decawave.com/mdek1001/usermanual/ [accessed 8 June 2019]. DecaWave (2017).
2TREK1000 (2016): TREK1000 User Manual, How to Install, Configure and Evaluate the Decawave Trek1000 Two-Way Ranging

(TWR) RTLS IC Evaluation Kit. Website https://www.decawave.com/trek1000/usermanual [accessed 22 May 2019]. DecaWave
(2016).
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describes experimental setup and indoor positioning dataset. Section 4 introduces experimental studies and
results. While BB-BC or GA is used for removing the offset value dataset, the Kalman Filter is used for noise
cancellation. In this section, combinations of optimization algorithm and filtering is experimentally applied.
Section 5 presents the discussion about the accuracy results that we have obtained from all the applied methods.
Our paper is completed by the conclusions in Section 6.

2. The proposed methods

The proposed methods are the Big Bang-Big Crunch (BB-BC) optimization algorithm [30, 31] and the Genetic
Algorithm [32–34] for eliminating the offset value (bias cancellation) and optimization, the Kalman Filter [35–37]
for removing outliers and noise caused by interference:

2.1. The big bang-big crunch algorithm (BB-BC)

The BB-BC algorithm essentially consists of two stages: a big bang (BB) stage and a big crunch (BC) stage.
In BB stage, candidate solutions will be distributed uniformly over the search space. The BC stage can be
visualized as a transformation from a disordered state of energy to an ordered state of energy. The BC has
multiple inputs, and one output, namely, center of ‘mass’. The BC is a concurrence operator, and the word
‘mass’ indicates the inverse of the objective function value. The center of mass is calculated as follows [30, 31]:

−→x c =

N∑
i=1

−→x i

fi

N∑
i=1

1

fi

, (1)

where −→x i , fi , N denote a point within an n -dimensional search space, the objective function value for this
point, and population size, respectively. After the BC stage, the optimization algorithm creates new members
to be used for the BB stage in the next iteration. This process can be achieved by jumping to the first step and
generating an initial population.

For an optimization algorithm to be classified as global, it must converge to an optimal point. For this, it
must include certain points that have a decreasing probability within its search population. So, a large number
of solutions produced must be around the optimal point, and only few remaining points are distributed within
the search space after a fixed number of steps. As the number of iterations increases, the ratio of solution points
around the optimal value to points away from optimal value must decrease. The center of mass can be utilized
by spreading new offsprings around it. After that, the center of mass will be recomputed. These contraction
steps are performed until a specified stopping rule. The new candidates around the center of mass are then
calculated as [30, 31]:

xnew = xc +
Lγ

k
, (2)

where xc , γ , L , k represent center of mass, normal random number, the upper bounds on the values of the
optimization problem variables, and the iteration step respectively. As the number of iterations approaches
infinity, the deviation term will reach zero. Hence, there will always be offsprings located far from the center
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of mass with decreasing probability, but will never equal zero. This will assure the global convergence of the
algorithm. The pseudocode of BB-BC algorithm is given in Figure 1.

Figure 1. Pseudocode of big bang-big crunch algorithm.

2.2. The genetic algorithm (GA)

The GA is a heuristic algorithm that can be applied in a straightforward manner and implemented in a wide
variety of problems. Due to its population characteristics, the GA has been extended to solve search and
optimization problems efficiently, including multi-objective and multimodal ones [32]. GA is based on genetics
and biological evolution in which design variables are represented as genes on a chromosome. It features a
group of candidate individuals called population on the response surface. Because of its genetic operators and
environmental selection, mutation and recombination, chromosomes that have an optimal fitness are obtained
[32].

Genetic algorithm was invented by ”John Holland” in the 1960s, and consists of the following four
important steps [34]:

(i) Initial candidate population of chromosomes are formed in two ways: (i) randomly, (ii) by perturbing
an input chromosome. The way the initialization step is done is not critical if the initial population extends
into a wide range of design variable settings. Hence, if there is information about the system optimization,
this information can be adopted in the initial population. In the binary representation, every chromosome is a
string of zeros or ones and the length of the string depends on the required accuracy.

(ii) Evaluation of the fitness is computed at this step. The fitness function aims to numerically encode the
performance of the chromosome. In real world applications, the selection of the fitness function is considered a
critical step.

(iii) Then, the chromosomes with the highest scores when it comes to the fitness are placed once or several
times into a mating pool subset. This placement is in a semi-random manner. The low fitness chromosomes
are removed from the population.

(iv) Exploration includes the crossover and mutation operators. Two chromosomes are selected randomly
from the mating pool subset to be mated. The probability that these parents are mated is usually initialized
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with a high value, and its user-controlled option. If the parent chromosomes can mate, a crossover operator
is utilized to exchange the genes between the two parents to output two offspring. If they cannot mate, the
parents are copied into the next generation unchanged. The pseudocode of Genetic Algorithm is given in Figure
2.

Input:     nP: Population size,  nVar: Number of variables,

Initial population range,  mG: Maximum generation.

Output: The best individual in all generation.

Step 1: Generate initial population of size nP. 

while (Number of generations is less than mG)

Step 2: evaluate the initial population according to

 the fitness function.

Step 3: select the individual according to their 

fitness (selection).

Step 4: do crossover with Pc probability.

Step 5: do mutation with Pm probability.

Step 6: update population (population=selected 

individual after Step 4 and 5).

end while

Step 7: Return the best individual.

Genetic algorithm

Figure 2. Pseudocode of genetic algorithm.

2.3. The kalman filter (KF)

The Kalman Filter (KF) algorithm uses a serial data, which may contain noise, and is observed over time. The
main goal is to increase the accuracy in estimation of the unknown variables [35]. The KF was proposed firstly
by Rudolf Emil Kálmán in 1960 [38], and it became a standard approach to achieve optimal estimation. The
KF is considered as one of the most famous Bayesian filter theories [36]. The state equation and observation
equation are the linear representation of wk , uk , x(k−1) and xk , vk , and they represent a dynamic model in
the reliable estimation corrected by measurements [8]. The state equation of the Kalman Filter is represented
as follows [35]:

xk = F xk−1 +B uk + wk, (3)

whereas the observation equation is represented as follows:

zk = H xk + vk, (4)

where in the above equations: F , xk , H , wk , zk , vk , uk represent the state transition matrix, state vector,
observation matrix, system noise vector, observation vector, observation noise vector, and system control vector,
respectively. wk and vk are assumed to satisfy positive definite, uncorrelated and symmetric, zero mean white
Gaussian noise vector.

The pseudocode of the KF is given in Figure 3. In Figure 3, xest , Pest , z , R , Q are the predicted
state estimate vector, estimate covariance matrix, observation matrix, covariance matrix of the measurement
noise, and the covariance of the process noise, respectively. xupdated and Pupdated represent fully parameterized
posterior distribution, and xest its covariance Pest . In the Kalman Filter implementation, the parameters are
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considered as follows. There is no variance or standard deviation used for the Kalman Filter implementation.
H is a combination of 1’s and 0’s , since the state of a system that we apply a Kalman Filter to is directly
measurable. H transforms the current estimate of state to the best estimate of the system output zk . F is set
to an identity matrix, used for updating the last-known estimate of state, xk−1 to reflect the current state at
xk . Input matrix B is set to zero, so no system input (control) is used as an input to the Kalman Filter.

Figure 3. Pseudocode of the kalman filter.

3. Experimental setup and indoor positioning data

In this article, we use a dataset taken from a 39.76 m2 ACL, measuring 7.35 m × 5.41 m . Some desks, chairs
and moveable tables are available in the classroom, as shown in Figure 4. It is easy to provide several seating
alternatives. The class is limited to 28 people; and it is designed to provide maximum control for the users [28].
The 12 people setup is used when the dataset is collected, as in Figure 4. While the ACL is designed as a test
bed for collecting data, the anchors are attached to the ceiling (shown as A0, A1, A2 and A3 in Figure 4), and
they are held on each corner of the testbed at 2.85 m height.

Decawave MDEK 1001 UWB development kit is used in this experiment by including 4 anchors in the
ceiling and a tag for a test user. MDEK 1001 development kit contains 12 sensors, which are configurable as 1
to 8 tags and 4 to 11 anchors. For 39.76 m2 test bed, 4 anchors are convenient, but if we consider around 100
m2 test bed, it is possible to use up to 11 anchors for 1 kit, and up to 30 anchors for 3 kits to cover the area.
In this condition, a tag can select the most convenient anchors dynamically as it passes through the area. The
future studies will be conducted on multiple sensors and a larger test bed. As shown in Figure 5, an adaptive,
remotely controlled ceiling system is developed to offer better LOS and also a direct path between the anchors
and the tag. In the test area, the measuring points are marked at every 50 cm starting from (0, 0) . In this
way, a total of 180 test points are identified. The test user, wearing a UWB sensor called tag around the neck
area, collects the location data of the test user. A total of 150 measurements are taken from each point; and
the total number of measurements is 27,000; the duration of data collection is around 9 hours. The total time
does not include the change of observation cycles and the time for set-up.
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Figure 4. Layout of the active learning classroom; the dimension is 7.35 m × 5.41 m , A0, A1, A2 and A3 are the
anchors, Tag1 is the tag for the test user, × denotes the test points, and the grid size is 50 cm × 50 cm .

Decawave MDEK 1001 UWB development kit contains single chip CMOS Ultra-Wideband integrated
circuit, which supports the IEEE 802.15.4–2011 UWB standard. It operates at data rates of 6.8Mbps in 30 m

range. It also uses UWB Channel 5 with 6.5 GHz and supports up to 10 Hz update rate for each individual tag
and up to 150 updates per second per cluster. MDEK1001 supports a wide range of applications in fields as
varied as engineering, healthcare, defense, shipping, logistics and inventory management systems for real time
indoor positioning systems.
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A0
A1

A2
A3

Figure 5. Adaptive ceiling system; four Decawave MDEK1001 UWB sensors (anchors) are mentioned as A0, A1, A2
and A3.

4. Experimental studies and results

The experiments and evaluation studies are carried out using the active learning classroom data set. The goal
is to improve the accuracy of UWB sensor-based IPS by applying two optimization algorithms; namely, BB-BC
and GA. When it comes to the performance metrics, the accuracy provided by the two algorithms are used as
the comparison metric between the implemented algorithms. The accuracy is the Euclidean distance between
the measured location to real location for each point [39]:

d =
√
(xr − xm)2 + (yr − ym)2, (5)

where (xr , yr ) are the coordinates of real location and (xm , ym ) are the coordinates of the measured location.
The active learning classroom dataset has 180 test points location. At each location, the test user collects 150
samples. The dataset is randomly divided into two sets: the training set and the test set. 105 of the samples
(70%) are for the training set, and 45 of the samples (30%) are for the test set.

4.1. Stand-alone BB-BC and GA implementation

In population-based approaches, the fitness function value is evaluated for every candidate solution in each
population. Thus, it has a major impact on the algorithm’s speed. The proposed system flow chart for BB-BC
algorithm is shown in Figure 6, whereas the proposed system for GA is shown in Figure 7. The fitness function
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in both algorithms are given as :

Fm,r =

N∑
i=1

[
(Xim −Xioffset −Xir)

2 + (Yim − Yioffset − Yir)
2
]
, (6)

values are presented by Xioffset , Yioffset , whereas Xim and Yim represent the measured UWB values. The
population size is set to 100; and the number of generations is 500, which also refers to the maximum number
of iterations that acts as stopping criteria for the proposed system for both the BB-BC and GA. In GA, the
crossover probability is 0.8, whereas the probability of mutation is 0.1. In the first implementation, the system
is trained using the raw UWB test points as an input to the proposed systems as shown in Figure 6 and Figure
7. As a result, for every test point (180 test points), the Xoffset and Yoffset values are obtained. In order to
apply these offset values to the test set, the average for each test point (XAvg, YAvg) in both the training set
and the test set are calculated. Then, the average of test point (XAvg, YAvg) in the test set that has the nearest
distance to the test point (XAvg, YAvg) in the training set uses the corresponding (Xoffset, Yoffset) value. The
average localization error comparison of the BB-BC and GA is shown in Figure 8.

The time consumption for big bang - big crunch and genetic algorithms in experimental studies for a
total of 180 locations, and 150 samples for each marked location are as follows. For genetic algorithm, the total
time consumption is 1300.90 s; for big bang - big crunch algorithm, it is 560.90 s. The BB-BC algorithm has
smaller time consumption, since GA has slow convergence when reaching the optimal result as compared to
BB-BC.

4.2. BB-BC and GA with the kalman filter
In order to obtain better results and improve the effect of the optimization algorithms, the Kalman Filter is
used in the second implementation on ALC data set. Since filtering the noise in signals is important, this comes
from the fact that many sensors have an output that is too noisy to be used directly, and the Kalman Filter
removes the uncertainty in the signal considered.

In order to compare the effect of using the Kalman Filter, two scenarios are performed. In the first
scenario, the Kalman filtered UWB test points are used as an input to the proposed system, instead of the
raw UWB measurements. The average positioning error comparison of the implemented algorithms for the
first scenario are shown in Figure 9. In the second scenario, the raw UWB test points are used as input
to the proposed systems. Then, the Kalman Filter is applied to the output data. The improvement in the
average positioning error for the test set when performing BB-BC and GA is shown in Figure 10 and Figure 11,
respectively. Figure 12 shows the comparison in the average positioning error for the second scenario, in which
the results are significantly improved compared to the first scenario. The average positioning error comparison
for all the implemented scenarios when performing BB-BC and GA are presented in Figure 13.

Finally, the moving sensor path location traces for two tags; blue tag and orange tag are given in Figure
14 and Figure 15. Here, the blue tag starting from (6.5,1.5) coordinates and stops at each test point by taking
measurements to the left of the (6.5,3.0) coordinates; and has reached the point (3.5,3.5). The blue tag, starting
from (4.0,1.5), proceeded by turning right three times, and stopped at each test point, reaching the point
(2.5,2.5). Measurements were taken at 10 test points for both tags. Figure 14 shows the results for raw data;
and Figure 15 shows the results for BB-BC then KF. The diameter of the circle is proportional to the average
positioning error value. The average positioning error value for raw data was 16.51 cm and 7.51 cm for BB-BC
then KF. The improvement was 54.51%. This result is important in terms of showing the accuracy of the study.
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Figure 13. The comparison of average positioning errors
for all implemented simulations.

5. Discussion
In this research article, BB-BC optimization algorithm and Genetic Algorithm are used to eliminate the offset
value of UWB sensor measurements. The Kalman Filter is used to reduce the noise effect. As a result of these
studies, BB-BC optimization method is applied to raw data to further improve the average positioning error
value calculated with raw data as 16.34 cm . The offset value is calculated at each point; and the average
positioning error value is found to be 8.47 cm . Genetic algorithm is then used; and the average positioning
error value is 11.15 cm . Finally, only the Kalman Filter method is applied; and the mean error value is 11.27
cm . At this point, the most successful result is obtained with BB-BC algorithm. From this point on, the studies
are developed on which, firstly, the offset and noise effects are eliminated. Combinations of BB-BC and Genetic
Algorithms are used for offset solution, and the Kalman Filter is used for noise reduction. Accordingly, the
average positioning error value is 7.83 cm when first Genetic Algorithm, and then the KF is applied; 8.73 cm

when first the KF, then Genetic Algorithm is applied; 7.43 cm when first BB-BC, then the KF is applied; 7.96
cm when first the KF, then BB-BC is applied As a result of these studies, it is concluded that the application
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Figure 15. The comparison of moving sensors related to
BB-BC then KF Data.

of algorithms to improve the offset value and then the noise effect yields more accurate results; and the best
average positioning error value is obtained as 7.43 cm when BB-BC then the KF is applied. As a result, the
target of reducing the average positioning error value to less than 8 cm is achieved. These obtained results are
better than newly developed systems such as [40]; and seem to be a good alternative for indoor positioning.
Future research direction would be to apply BB-BC, then the KF method to multiple UWB sensors based
indoor positioning system.

6. Conclusions
In this article, two optimization methods are compared in terms of accuracy using the ALC dataset, namely,
Big Bang-Big Crunch (BB-BC) optimization algorithm and Genetic Algorithm (GA). In conclusion, the BB-BC
outperforms GA during the implementations carried out in this study.

In the first implementation, the raw UWB measurements are used as an input to the proposed systems
for BB-BC and GA. The obtained results prove that the reduction of average positioning error is from 16.34 cm

to 8.47 cm ; the improvement is around 48.16%, when applying BB-BC algorithm. The GA manages to reduce
the average positioning error from 16.34 cm to 11.15 cm ,the improvement is only 31.76%.

In the second implementation, the Kalman Filtered UWB measurements are used as an input to the
proposed systems. The results of this implementation show that the BB-BC algorithm is better in than the GA,
in which the average positioning error is from 16.34 cm to 7.96 cm , the improvement is 51.29%, when applying
BB-BC while the GA reduces the average positioning error from 16.34 cm to 8.73 cm , and the improvement is
46.57%.

During the second simulation, another scenario is performed in which the raw UWB measurements are
used as an input to the proposed systems. Then, the optimized UWB measurements are used as an input to
the Kalman Filter. The best results are acquired in this study from the implementation of this scenario. The
GA algorithm, and then the KF method reduced the average positioning error by approximately 52.08%, from
16.34 cm to 7.83 cm , whereas the BB-BC algorithm, and then the KF method is able to reduce the average
positioning error by approximately 54.53%, from 16.34 cm to 7.43 cm . Briefly, BB-BC, and then the KF
method gives the best results in this research study.
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When it comes to the limitation of GA, it is noticed that GA has slow convergence when reaching the
optimal result; the optimal results in this case are the optimal offset values. This drawback is overcomed by
the BB-BC algorithm, since it yields convergence rapidly when approaching the optimal value.

As mentioned in the main contribution section, this study presents a potential application of behavior
mapping with multiple UWB sensors by reducing the average positioning error by less than 8 cm . We can
clearly observe that we can obtain an average positioning error of 7.43 cm when applying BB-BC, and then
KF to the raw data. This is the most important necessary condition for multi-sensor behavior mapping; and it
is already satisfied. Future studies will be carried on the multi-sensor behavior mapping with newly developed
real-time location system software in a larger test bed.
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