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Abstract: The Mineral Liberation Analyzer (MLA) can be used to obtain mineral maps from backscattered electron
(BSE) images of particles. This paper proposes an alternative methodology that includes random forest classification,
a prospective machine learning algorithm, to develop mineral maps from BSE images. The results show that the
overall accuracy and kappa statistic of the proposed method are 97% and 0.94, respectively, proving that random forest
classification is accurate. The accuracy indicators also suggest that the proposed method may be applied to classify
minerals with similar appearances under BSE imaging. Meanwhile, random forest predicts fewer middling particles with
binary and ternary composition, but the MLA predicts more middling particles only with ternary composition. These
discrepancies may arise because the MLA, unlike random forest, may also measure the elemental compositions of mineral
surfaces below the polished section.
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1. Introduction
Mineral maps are particularly used in process mineralogy to obtain quantitative data regarding the morphology
and composition of any particle population. These maps can be used to estimate various features of the
population such as modal mineralogy [1–4], particle and grain size distributions [5], mineral grade distributions
[5–9], mineral associations in binary- and ternary-composed particles [2, 10–14], and grade-recovery curves
[2, 11, 12, 15–17].

A mineral map for any sample of particles can be constructed from surface (2D) images of particles. 2D
images can be digitized on polished sections of particles by an ore microscope [18] or backscattered electron
(BSE) imaging [19, 20] on a scanning electron microscope (SEM). The optical micrographs can be evaluated with
various image processing methods [11, 21–26] for the construction of a 2D mineral map on particles. However,
the reflected light imaging in ore microscopy generates indistinguishable images of siliceous nonopaque minerals
and epoxy resin as the reflected light spectra of the transparent minerals and epoxy resin are very similar [27].
This brings a great limitation to the exclusion of epoxy resin from mineral maps. Some complex algorithms
were proposed to segment the borders between nonopaque minerals and epoxy resin for the discrimination of
these objects [23, 28]; however, these algorithms may be too difficult for end-users who are not experienced in
image processing.
∗Correspondence: camalanmahmut@gmail.com
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A common method to evaluate BSE images for mineral mapping is the Mineral Liberation Analyzer
(MLA), a commercial software package integrated into the SEM and the energy-dispersive X-ray spectrometer
(EDX). In order to construct the mineral map, the tool evaluates the X-ray spectra collected by EDX over
points or areas on BSE images [10, 19, 29–31]. Apart from MLA, image processing methods can be used for
the construction of 2D mineral maps from BSE images. A simple method for mapping is gray thresholding
over BSE images [19], which assigns the phases to gray colors located in a predetermined set of gray color
intervals. The method can be successful only if BSE imaging produces a significant gray color contrast between
the solid phases with different densities. If the background (epoxy resin) is significantly lighter than any mineral
phase, thresholding can easily separate the background image from any mineral phase in BSE images. However,
thresholding may not separate the mineral phases from each other when the minerals have similar densities.
Then sophisticated image processing methods may be required to distinguish minerals of similar density. A
convenient method for this purpose might be supervised image classification [26] based on the random forest
tree (RFT or random forest), a machine learning (ML) algorithm [32, 33]. This algorithm was found to give
better accuracy than many ML algorithms when it classified narrowly localized synthetic data (i.e. data in
close proximity) with an increasing number of training features [34]. This observation suggests that the RFT
is a prospective ML algorithm to classify BSE images of minerals of similar density, as long as sufficiently
large numbers of training images and features are supplied to the RFT. Random forest is also expected to
discriminate background (epoxy) from particles in BSE images, which had not been accomplished previously
by using the same classification method on microscopic images [26]. As the RFT is embedded in user-friendly
software, the users do not have to tackle the details of thresholding or other image processing methods. That is
to say, the user should only train the original images that correspond to the area of interest (AOI). The RFT
automatically classifies the unknown image through a voting scheme based on a number of textural, boundary,
noise, and membrane features [35] learned from the original images.

The present study aims to investigate random forest classification for the accurate retrieval of 2D mineral
maps from the BSE images of a chromite ore sample. For the purpose of the present study, the accuracy
of the method on BSE images was assessed with the confusion matrix. Furthermore, the features of mineral
maps predicted from BSE images were compared with the features of mineral maps predicted from the MLA.
Additionally, the classification accuracies of the RFT and other reputable ML algorithms were evaluated on the
training data set (Section 2) to compare their likely success in accurate mineral mapping from BSE images.

2. Experimental material and procedure

The experimental sample was a chromite ore sample within the size range of –0.425 + 0.300 mm. The modal
mineralogy predicted by the MLA (Table 1) suggests that the sample mainly consists of chromite, forsterite
(olivine), serpentine, and some minor minerals. These minor mineral surfaces were not predicted one by one by
random forest; they were predicted as a cluster.

Table 1. Modal mineralogy of the sample estimated by MLA.

Mineral
Chromite Forsterite Serpentine Augite* Diopside* Ilmenite* Plagioclase* Mg-oxide*

Area (%) 70.16 14.22 11.48 0.33 1.85 0.74 1.11 0.11
* Minor minerals
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A single polished section was prepared for the acquisition of BSE images and for the MLA analysis. The
polished section was prepared in a cold-mounting EpoxyCure2 resin and further ground and polished on a series
of diamond and velvet discs using a Buehler PowerPro 4000.

The epoxy (background) and the mineral surfaces were predicted with point-by-point X-ray mapping [19]
by FEI-QUANTA SEM adapted with the EDAX Genesis XM4i X-ray microanalysis system. The constructed
mineral map of approximately 4000 particles was evaluated by MLA DataView software to extract the equivalent
circle diameter of particles and mineral grains (µm) as well as the areal mineral composition in each particle
(µm2) .

A straightforward methodology (Figure 1) was developed to classify the BSE images for 2D mineral
mapping and to measure the classification accuracy. All steps in Figure 1 were performed in Fiji-ImageJ
software except for the performance evaluation of classifiers, the confusion matrix, and map evaluation, which
were performed in Weka, QGIS, and Clemex Vision, respectively. For the sake of simplicity, the methodology
is briefly called “BSE image analysis” throughout the paper. The whole methodology is explained in detail
throughout the remaining part of this section.

Data 
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Image 
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Image Postprocessing
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2D maps 

Figure 1. The steps in the BSE image analysis.

The BSE images of 1400 particles were acquired at 50× magnification by FEI-QUANTA SEM operated
at 20 kV accelerating voltage. To increase the accuracy of the next classification step, BSE images were
preprocessed by removing the noise on them while exposing the boundaries between different objects (mineral
surfaces and epoxy). This stage was achieved by successive application of the Kuwahara [36] and sharpen [37]
filters to the BSE images. Kuwahara, an edge-preserving filter, was applied on 5× 5 pixel-window subregions
to remove the noise on the BSE images without blurring the boundaries between different image features.
This optimum window size was selected by judging the qualitative effects of window size on the success of the
Kuwahara filter. Then the sharpening filter was applied to expose the object boundaries more by increasing the
color contrast in the images. The filter used the following weighting factors of [–1, –1, 1; –1, 12, –1; –1, –1, –1]
to replace each pixel with a weighted average of the 3 × 3 neighborhood. Figures 2a and 2b demonstrate the
preprocessed images after successive application of the Kuwahara and sharpen filters, respectively, to a sample
BSE image (Figure 2c).

Prior to classification, the performance of random forest was pair-wise evaluated against some powerful
machine learning algorithms (naive-Bayes, support vector machine, k-nearest neighbor, C4.5 decision tree, and
logistic regression) to assess the adequacy of random forest for BSE image analysis. These ML algorithms were
chosen for comparison because many studies suggest that they can work quite accurately with any type of data
different in size and dimension [34, 35, 38–40]. The pair-wise comparisons were made between the accuracy
indicators (overall accuracy and kappa statistics) of random forest and each selected algorithm on the training
data set chosen from the training images (Figure 3). Each test was conducted using the ’Weka experimenter’
tool embedded in the Weka segmentation toolbox. The tool initially performed repeated classifications of
the training data set with all ML algorithms, simply by splitting 10 equal-sized subsets of the whole data
into new training sets and unknown data sets. This resampling technique, called 10-fold cross-validation, is
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favored in data science as it provides acceptable variance, low bias, and low computational cost while evaluating
the performance of a predictive model [41]. After classification with ML algorithms, two-tailed t-tests were
performed between the mean kappa statistics or overall accuracies of each algorithm and random forest. The
null hypothesis of each test was that the selected indicators of the ML algorithm and random forest were equal.
The null hypothesis was rejected when the P-value of the test was lower than the significance level of 0.05.
However, when the difference between the two tested algorithms was statistically significant, the algorithm with
higher overall accuracy and kappa statistic was concluded to perform more accurate classification.

Figure 2. The successive application of the Kuwahara (a) and sharpen (b) filters to a sample image (c).

Figure 3. Training feature extraction for the classification of BSE images.

The classification of the preprocessed BSE images was performed with open-source Fiji-ImageJ software
[42] using the Trainable Weka Segmentation toolbox [35, 43]. The supervised classification method was the
RFT algorithm [32, 33], which predicted five classes (chromite, serpentine, olivine, epoxy, and a cluster of minor
minerals) by using random decision trees constructed from the edge detectors, texture filters, noise-reduction
filters, and membrane detectors available in the Weka toolbox [43]. The training features were extracted
using the blow/lasso tool from four surface images (Figure 3) whose compositions were known to be predicted
accurately by the MLA. (Figure 4). Additional care was taken while sampling around the boundaries of different
objects to avoid collecting false training data.
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Image postprocessing was performed on the classified BSE images to (i) remove residual noise generated
by classification and (ii) separate particles erroneously connected by the classification. The removal of residual
noise was achieved by applying a 3 × 3 median filter [44] to the classified BSE images. Then watershed
transformation [45] was applied to the classified BSE images (a sample is provided in Figure 5a) to separate
particles erroneously connected by the classification (Figure 5b).

Figure 4. The true mineral compositions of the training samples estimated by the MLA.

Figure 5. A classified image (a) showing some close particles that were erroneously connected. The final image after
watershed transformation (b) in which the connected particles are separated (shown in circles).

The accuracy of the classification method was determined with the confusion matrix [26, 46, 47]. The
confusion matrix included a comparison between the true and predicted compositions of a total of 1000 random
points on the training images (Figure 3). The random points on the training samples were generated by using
QGIS software. The true surface compositions were taken from the mineral maps of some specific training
samples (Figure 3) that were correctly predicted by the MLA (Figure 4). The user can use the confusion matrix
to describe various indicators that will reflect the success of the classifier and training feature selection. The
producer accuracy for any class demonstrates the percentage of correctly classified points of that class on the
original image, showing the success of the classifier. The user accuracy for any class is the percentage of true
points of that class on the classified image, showing the success of user-dependent training feature selection.
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The overall classification accuracy, on the other hand, is the percentage of all points correctly predicted by
classification. Meanwhile, the kappa statistic (kappa coefficient) is another indicator to rate the overall accuracy
of the classification [48]. A kappa coefficient of one shows perfect agreement between classifier prediction and
true class values on the image; however, a coefficient of zero means that the agreement is no better than what
would be expected by chance.

The mineral content (µm2) and the equivalent circle diameters (µm) of particles and grains were
calculated from the 2D mineral maps by successively using gray thresholding and Boolean operators in Clemex
Vision software. Any particle that touched the image edges was not evaluated at this stage.

The methods described in Sections 3.1–3.4, except watershed transform, were embedded into JavaScript
that can be executed over multiple images by using the batch-processing plug-in of ImageJ (Figure 6). The
plug-in allowed the automation of most of the image preprocessing, classification, and postprocessing methods
on different images. For the batch processing of the classification stage, the plug-in called the classifier file
(.model) and the training data (.arff), which had been saved through the Weka Toolbox (Section 3.3), were
used. The run time of the whole JavaScript took nearly 2.5 min for each BSE image frame in 1024× 884 pixels
with a scale of 5.88 µm/pixel. These values suggest that the method classifies 0.26 mm2 of the polished section
in one second, being sufficiently fast for mineral mapping.

Figure 6. Batch processing plug-in used for the semiautomation of the 2D mapping method.
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3. Results and discussion
In Table 2, the average accuracy indicators are given for the random forest, C4.5 decision tree, logistic regression,
naive Bayes, k-nearest neighbor, and support vector machine algorithms after 10-fold cross-validation tests on
the training data set. The table shows that the average accuracy of random forest classification is significantly
the highest among the accuracies of all tested algorithms. Therefore, random forest can be assessed as the
most prospective ML algorithm for BSE image analysis. Nevertheless, the other machine learning algorithms
have accuracies greater than 90%, indicating that they may also be used for mineral mapping on BSE images.
However, the space of the paper is currently limited for developing mineral mapping methodologies that include
other ML algorithms coupled with image pre- and postprocessing techniques.

Table 2. The kappa statistics of the random forest, naive Bayes, SVM, and kNN algorithms on the training data set
after 10-fold cross-validation performance tests.

Name Code name in Weka experimenter tool Overall accuracy Kappa statistics
Random forest weka.classifiers.trees.RandomForest 99.98 1
C4.5 decision tree weka.classifiers.trees.J48 99.91* 0.99*
k-nearest neighbor weka.classifiers.lazy.IBk 99.88* 0.99*
Logistic weka.classifiers.functions.Logistic 99.61* 0.99*
Support vector machine weka.classifiers.functions.SMO 99.55* 0.99*
Naive Bayes weka.classifiers.bayes.NaiveBayes 91.89* 0.89*

* The difference between the accuracy indicators of the selected algorithm and the random forest tree is statistically significant.

Figure 7 demonstrates a resultant classified image after the BSE image analysis on an unclassified image
of a sample of chromite ore particles, which verifies the correctness of the analysis qualitatively. The confusion
matrix in Table 3 shows that all the accuracy indicators including the producer and user accuracies for the
objects are quite high as well as the overall accuracy and kappa statistics (Section 3.5), proving that the
classifier works accurately for all the minerals and epoxy. The high accuracy for the background (epoxy)
classification will indicate a high success on the background extraction that cannot be accomplished on ore-
microscopy images [26]. Table 3 also shows that the producer accuracy of olivine is slightly lower than the
accuracies of other minerals, because of the misclassification of olivine as serpentine. These silicate minerals
have similar densities; therefore, they yield similar gray colors under BSE imaging, which may reduce the success
of their discrimination by random forest. The MLA might also face an analogous problem because these minerals
have similar compositions; therefore, they cannot be distinguished by their EDX spectra such as hematite and
magnetite [49]. Nevertheless, the producer accuracies of all minerals are quite high in the BSE image analysis
(Table 3), suggesting that random forest may be sufficient to differentiate minerals with similar appearances.

Figures 8a and 8b show the modal mineralogy and particle size distributions, respectively, which were
predicted by BSE image analysis and the MLA. These figures show that both analyses predict a similar modal
mineralogy and particle size distribution. Then one can initially think both analyses should produce the same
mineral map. However, there were some indicators opposing this assumption. As demonstrated in Figure 9a, the
grade distributions predicted from BSE images and MLA analysis are very similar except at the distribution of
chromite-rich particles: random forest predicts that chromite-rich particles are distributed in the fully liberated
chromite grains (particles having chromite grade of 100 %), but the MLA assigns chromite-rich particles to the
apparently liberated chromite grains (particles having chromite grade between 80% and 99.9%). As a result,
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Figure 7. The classified and unclassified image of a sample of chromite ore particles.

Table 3. Confusion matrix for the image classification.

Predicted class
Background Chromite Serpentine Olivine Minor

minerals
Total Producer

accuracy
(%)

True class

Background 406 0 0 1 2 409 99.27
Chromite 1 362 4 0 1 368 98.37
Serpentine 1 0 62 0 0 63 98.41
Olivine 0 0 3 26 0 29 89.66
Minor minerals 2 0 5 2 122 131 93.13
Total 410 362 74 29 125 1000
User accuracy (%) 99.02 100 83.78 89.66 97.60

Overall accuracy (%) 97.80
Kappa statistics 0.94

BSE image analysis predicts a grade-recovery plot shifting higher from the plot predicted by the MLA, i.e.
the former analysis overestimates the surface of liberated chromite grains with respect to the latter (Figure
9b). Meanwhile, Table 4 gives the percent distribution of chromite surfaces to the free (liberated), binary, and
ternary particles, which is predicted by the BSE image analysis and the MLA. The table shows that the MLA
distributes all chromite grains to the ternary particles, whereas the BSE image analysis distributes chromite
to both binary and ternary particles. Figure 10 demonstrates the number-weighted grain size distributions of
chromite, serpentine, and olivine minerals estimated with the MLA and the BSE image analysis. The figure
shows that only the grain-size distributions of chromite predicted by the two methods (Figure 10a) overlap
with the particle size distributions of the ore sample predicted by the methods (Figure 8b). This shows that
particles are mostly chromite grains and the other minerals might be locked with chromite. Meanwhile, the
MLA predicts the grain size distributions of serpentine (Figure 10b) and olivine (Figure 10c) finer than the BSE
image analysis does. The finer silicate grains are likely to lock with chromite grains and form ternary particles
rather than free or binary particles, which is consistent with the chromite association behavior predicted by the
MLA (Table 4).
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Figure 8. The number-based particle size distributions estimated with the BSE image analysis and MLA.

Figure 9. The chromite grade distributions (a) and chromite grade recovery curves (b) estimated with BSE image
analysis and microscopic analysis.

The abovementioned discrepancies between the mineral maps of the MLA and BSE image analysis may
be associated with some uncertainties in MLA measurement since the accuracy indicators in random forest are
quite high. We suspect that one significant uncertainty may arise from the high interaction volume of the X-ray
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Figure 10. The number-based grain size distributions of chromite (a), serpentine (b), and olivine (c) predicted by the
BSE image analysis and MLA.

Table 4. Distribution of chromite to free, binary, and ternary particles predicted with the BSE image analysis and
MLA.

BSE image analysis Free particles Binary particles Ternary particles
Percentage of chromite mineral surface
distributed to 38.49 Serpentine Olivine 41.14

20.38 0.00
MLA Free particles Binary particles Ternary particles
Percentage of chromite mineral surface
distributed to 14.67 Serpentine Olivine 82.91

0.00 2.42

spectra during MLA measurement. The interaction volume, accordingly, can be defined as the space in which
the electron and X-ray scattering events will occur when the incident scanning electrons interact with the solid
sample [50]. Even though the backscattered electrons are collected from the polished section surfaces, the X-ray
spectra of mineral grains may also be emitted below the polished section as the interaction volume of X-ray
scattering is higher than the volume of backscattered electron scattering [51]. If these spectra are collected by
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EDX detectors and further evaluated by the MLA software, the measured composition will not correspond to
the exact mineral composition of the polished surface but to the average mineral composition of some depth
below the polished surface.

4. Conclusions and recommendations
The supervised image classification method can be used to construct an accurate mineral map from BSE images
of chromite ore particles. Furthermore, the high accuracy (97.8%) and high kappa statistics (0.94) of random
forest classification prove that the method is indeed successful at mapping adherent mineral grains in particles
as well as separating the background (epoxy) from particles. The 10-fold cross-validation tests also suggest that
random forest will be significantly the most accurate machine learning algorithm for mineral mapping from BSE
images. Nevertheless, the accuracy of the other machine learning algorithms is still high, suggesting that they
may be coupled with image pre- and postprocessing techniques for mineral mapping.

The method is semiautomated and significantly fast for 2D mineral mapping. Even though most of the
method steps are straightforward techniques in image processing, the simplicity of the algorithm coupled with
the high classification accuracy proves the uniqueness of the method for 2D mineral mapping.

The results prove the success of the method to classify serpentine and olivine minerals, which have
similar appearances on BSE images. Thus, the method may be used to classify other minerals that are difficult
to differentiate under BSE, such as hematite and magnetite or chalcopyrite and pyrite. Future studies are
required to test the applicability of the methodology for mineral mapping of other ore samples.

The acquired map yields the same modal mineralogy and particle size distribution as the one generated
by the MLA. However, the supervised classification will predict fewer middling particles with binary and ternary
composition, whereas the MLA predicts more middling particles only with ternary composition. We suspect
that this discrepancy may arise because the MLA may inevitably measure the compositions of minerals beneath
the polished surface.
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