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DEVELOPMENT OF HYBRID MPI+UPC PARALLEL  

                                            PROGRAMMING MODEL 

 

 

 

                                  Abstract  

 

 

Parallel Computing is a form of computation that divides a large set of calculations 

into tasks and runs on multi-core machines simultaneously. Today, Message Passing 

Interface (MPI) is the most widely used parallel programming paradigm that 

provides programming both for symmetric multi-processors (SMPs) which consists 

of shared memory nodes with several multi-core CPUs connected to a high speed 

network and among nodes simultaneously. Unified Parallel C (UPC) is an  

alternative language that supports Partitioned Global Address Space (PGAS) that 

allows shared memory like programming on distributed memory systems. 

 

In this thesis, we describe the MPI, UPC and hybrid parallel programming paradigm 

which is designed to combine MPI and UPC programming models. The aim of the 

hybrid model is to utilize the advantages of MPI and UPC; these are, MPI’s data 

locality control and scalability strengths with UPC’s global address space, fine grain 

parallelism and ease of programming to achieve multiple level parallelism. This 

thesis presents a detailed description of hybrid model implementation comparing 

with pure MPI and pure UPC implementations. Experiments showed that the hybrid 

MPI+UPC model can significantly provide performance increases up to double with 

pure UPC implementation and up to 20% increases in comparison to pure MPI 

implementation. Furthermore, an optimization was achieved which improved the 

hybrid performance an additional 20%.  
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                           HİBRİD MPI+UPC PARALEL PROGRAMLAMA  

                                        MODELİNİN GELİŞTİRİLMESİ 

 

 

 

                                                      Özet  

 

 

Paralel Hesaplama geniş hesap kümelerini görevlere bölen ve bu görevleri çok 

çekirdekli makinelerde aynı anda çalıştırmaya yarayan hesaplama biçimidir. Bugün, 

Message Passing Interface (MPI - Mesaj Gönderme Arayüzü) ortak hafıza noktaları 

ile birçok çok çekirdekli işlemcinin yüksek hızlı bir networke bağlanmasından oluşan 

simetrik çoklu işlemciler (SMP) ve noktalar (nodes) arasında aynı anda 

programlamayı sağlayan ve kullanılan en geniş paralel programlama paradigmasıdır. 

Unified Parallel C (UPC) dağıtık adresli sistemleri ortak hafızalı sistemler gibi 

programlamaya izin veren Bölünmüş Global Adres Alanı’nı (PGAS) destekleyen 

alternatif bir dildir. 

 

Bu tezde, MPI, UPC, MPI ve UPC programlama modellerini birleştirmek için 

tasarlanan hibrid paralel programlama paradigması anlatılmıştır. Hibrid modelin 

amacı MPI ve UPC' nin avantajlarından faydalanmaktır. Bunlar MPI modelin yerel 

data kontrolü ve ölçeklenebilirliği ile UPC modelin global adres alanı, ince taneli 

paralellik ve çoklu seviye paralellik sağlamak için programlama kolaylığı 

özellikleridir. Bu çalışma hibrid model uygulamasını  yalnız MPI ve yalnız UPC 

uygulamaları ile karşılaştırmak suretiyle ayrıntılı açıklama sunmaktadır. Deneyler 

hibrid MPI+UPC modelin önemli ölçüde yalnız UPC uygulaması ile iki kat ve yalnız 

MPI uygulamasında %20’ ye kadar performans artışı sağlayabildiğini göstermiştir. 

Ayrıca hibrid performansı geliştiren bir optimizasyonda ek olarak %20 iyileşme 

kazanılmıştır.    
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                                           Chapter 1 

                                         Introduction 

 

Recently, there is a growing demand for parallel models of High Performance 

Computing (HPC) infrastructures for solving operations large data sets  because of  

their scalability and performance. Parallel hardware and software technologies are 

serving to this demand however users had to effort to find the best suited 

programming paradigm for the underlying computer architecture. Most people are 

interested in hybrid models that merge the advantages of two different models. There 

is many examples of models that combines MPI library with shared memory model 

OpenMP.  

 

Message Passing Interface is the most commonly used parallel programming model 

for parallel computing [9]. MPI is usually used on distributed memory and this 

model provides portability, good scalability and significant flexibility in parallel 

programming. However, today MPI is used by many scientific applications, MPI 

requires explicit communications with large granularity which renders programming 

and programming problematic. Partitioned Global Address Space (PGAS) languages 

supports that a single program can be able to run across the shared and distributed 

memory features of the machine [1]. One of the most popular PGAS language is 

Unified Parallel C (UPC) is a parallel programming language which facilitate us to 

use the distributed memory as the shared memory and save us from using explicit 

communication via simplified statements like read/ write to remote memory.  

 

This study aimed to exploit the complementary strengths of both models by 

providing a hybrid model that combines MPI and UPC models.  This hybrid model 

reduces the communications overhead by lowering data movements within nodes. In 

addition the goal of this hybrid model is to offer the fine granularly parallelism of the 
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UPC, partitioned address space and it’s benefit of simplified programming. Hybrid 

model adds the strengths of the MPI’s good scalability, portability and coarse grain 

parallelism with a larger message size. The recent trend in high performance 

computer architecture is to increase cores on nodes and hence decrease the memory 

per core at nodes, consequently encouraging us to explore different programming 

paradigms such as an MPI+UPC hybrid on a large scale distributed platform. 

 

In this study, we presented and described a new hybrid parallel programming model 

that combines advantages of MPI and UPC model to increase the performance and 

scalability of operations comparing with pure MPI and pure UPC implementations. 

We selected a funneled approach for our hybrid model, meaning that all interactions 

between the MPI and UPC are controlled by a master thread and only the master 

thread calls MPI routines. In this manner, all communication process between nodes 

is made by a single thread-master thread- of the node, so we can say all 

communication is funneled to the master thread.      

 

In this thesis, we developed three codes to probe the efficiency and scalability of the 

models on distributed multi-core systems with the Cannon matrix multiplication 

algorithm, which was chosen to exploit some of the advanced features of MPI.  We 

used MPI virtual topology to benefit from regional locality, as the UPC has only 

local or shared (global) objects and in this way the hybrid model will enhance UPC 

program performance with regional locality. In addition, we utilized an optimization 

to overlap MPI communications with UPC computations on the hybrid model and 

this optimized benchmark performance up to 30% on some data sets. 

 

The rest of the thesis organized as follows. Chapter 2 presents an overview of MPI 

and UPC parallel programming models on parallel platforms, briefly describing their 

strengths, weaknesses and most known implementations, and Chapter 3 examines 

hybrid models and describes the funneled model in further detail by the 
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implementation. In Chapter 4 we give an overview of memory types that parallel 

programming is being utilizing and we used for this study and Chapter 5 presents 

detailed explanation of Cannon matrix multiplication with a sample example of 

multiplication with figures. Chapter 6 explains four different implementations of the 

Cannon’s Algorithm that we used for our experiments in Chapter 7. Related Work 

and Conclusion are presented in Chapter 8 and 9 respectively.   
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                                            Chapter 2 

                               Overview of MPI and UPC 

 

This chapter provides an overview of MPI and UPC parallel programming model and 

examines the advantages and disadvantages of each model for the construction of a 

hybrid programming model.  

 

2.1 MPI Model 

 

A group of computer vendors, computer science researchers, application scientists 

from government laboratories, universities and industry came together at a workshop 

and decided to cooperate for the message passing model about parallel computing in 

April 1992. Sixty people from forty organizations attended MPI standardization 

effort and these people were mainly from United States and Europe.  As a result of 

this workshop MPI Forum is emerged and accepted a primary model of high 

performance computing environment. MPI (Message Passing Interface) is resulted 

from these deliberations and now it is synonymous with the parallel computing 

model itself. In June of 1995, the first product of these efforts MPI 1.1 released [2]. 

Membership of the MPI Forum has been open to all high performance community 

members.   

 

Message Passing Interface specification has been used for a wide range of compute 

systems from general purpose operating systems such as Windows NT and UNIX, to 

high performance computer systems such as Intel Paragon, IBM SP1. 

 

MPI is not a language, operations of MPI are called as functions, methods according 

to language features for example C, C++ and Fortran-77 and 95. 
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MPI Standard is developed for people (application developers that studies on parallel 

machines) who want to write high level portable programs in C++, C and Fortran. 

For world wide usage, the standard must present a simple and easy to use interface 

for advanced machines. 2D finite difference, molecular dynamics and atmosphere-

modeling problem are examples of parallel programming model.  

 

Until today, MPI had several extensions. These are provided in remote-memory 

access operations, process creation, collective operations and parallel I/O. 

Also, MPI is not an implementation, it is a specification and there are several MPI 

implementations. One of these implementations is MPICH, developed by Argonne 

National Laboratory and Mississippi State University. The MPICH implementation 

is well-known world-wide used implementation that provides high portability and 

efficient usage and serves as a basis for several other MPI implementations. After 

passing several revisions and improvements it became a good message passing 

implementation. Layered software architecture is the foundation of its portability [3]. 

There are three layers of MPICH: API, ADI and Device. MPI standard provides 

threads that user can call API, ADI functions and device threads. The first layer API 

provides high level message passing logic and helps for implementing abstractions 

such as topologies and data types. The second layer ADI (Abstract Device Interface), 

consists of three queues of pointers that handles communication processes. 

The third layer of MPICH is the device layer that consists of communication 

modules and provides three threads: Sender, Receiver and Terminator. 

Sender and receiver threads are responsible for making sure that data can be sent or 

received. Terminator threads are waiting states for the signal to terminate the process 

[4].   

 

Portability and ease of use are the main advantages of using message passing 

standard (MPI). This is important for application developers to benefit these 

specifications in a distributed memory communication environment because of this 
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architecture includes higher level routines and lower level message passing routines. 

In addition to this, MPI provides clearly defined routines that can be implemented 

efficiently. Main goal of MPI is developing a widely used message passing standard 

for parallel programming. Therefore MPI should be portable, efficient, practical and 

flexible. 

 

Designing MPI, developers considered some issues: 

 For heterogeneous environment, it’s allowed for implementations can be used 

in. 

 To provide efficient communication, avoid memory-to-memory copying. 

 Fortran-77, Fortran-95, C and C++ are allowed for the developed interface. 

 For a reliable communication interface, communication failures are handled 

by communication subsystem, so the user need not make an effort to solve 

these problems. 

 Without changes in system software and related communication, the interface 

can be implemented on many vendors’ platforms. 

 The interface should support thread safety. 

 The interface is designed to be language independent. 

 

MPI is designed for parallel machines and workstation clusters to get high 

performance and portability. It is widely and freely available. Programs which are 

including high performance message passing operations may run on shared memory 

architectures, hybrid architectures and particularly on distributed memory 

architectures.  

 

To provide multiple application level threads, MPI implementation must be thread 

safe. 
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In multithreaded programming, thread - safety is a critical issue. If code can be used 

in multithreaded application, it can be called as thread safe. In order to provide 

parallelism by multithreading, thread safety allows code to run in multithreaded 

environments and process synchronization [6]. 

 

MPI provides the processes communicate with other processes by calling library 

routines with send and receive messages. To collaborate and communicate processes 

with each other, MPI-1 provides library routines and includes two-sided send/receive 

operation for exchanging data between process pairs. MPI functions are called by 

threads. Some basic functions that are being used in MPI are defined below: 

MPI_Init:  A function that helps the system to do need setups for other calls for MPI 

library. It’s not necessary to use this call in the first executable statement but it must 

be used before any other MPI function.   

MPI_Finalize: If the functions are completed, the function MPI_Finalize is called. 

This free ups the allocated resources for MPI. 

MPI_Reduce: This collective communication MPI function is responsible for 

reduction operations. Reduction operations are finding minimum/maximum, and/or, 

multiplication and summation [7]. 

MPI_Barrier: This function is one of the collective communication functions that 

allows barrier synchronization.  

MPI_Bcast: A collective communication function that provides to broadcast one 

process to other processes in a communicator. 

MPI_Gather: A collective communication function that performs gathering 

operation. 

MPI_Scatter: A function that delivers data to different processes. 

MPI_Isend:  Collective communication operation that performs transmission of the 

message. Computation thread sends a request using this function for accessing 

remote memory [5]. 
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MPI_Irecv:  The MPI_Isend request that is sent by computation thread is received 

by a communication thread with MPI_Irecv in the remote node.   

 

MPI-2 standard is developed to support one sided communication, parallel I/O and 

dynamic process management. Three one sided communication operations, PUT, 

GET and ACCUMULATE are supported by MPI-2.  These operations are used for 

writing to remote memory, reading from remote memory and a reduction operation 

on the same memory across a number of processes. MPI-2 is similar to UPC’s global 

address space programming model because MPI-2 model supports remote process 

access to data without help from the user. But it’s more inhibitive than UPC’s global 

address space model because o cache coherence and synchronization features. 

 

The advantages of MPI model are:  

 Process synchronization 

 User’s complete control of data distribution 

 Allowing the optimization of data locality 

 Clear (explicit) communication 

 

These characteristics give MPI standard scalability and high performance. 

Unfortunately these are also made MPI difficult to program and debugging skills.  

 

The disadvantages of MPI model are: 

 Not allow incremental development 

 Difficult to write program 

 Difficult to debug 

 

Developer efforts to reconfigure the existing sequential applications to adapt MPI 

parallelization. 

 

      8 



 

vii 

 
vi 

2.2 UPC Model 

 

There is a growing demand for parallel runtime systems with multi-core processors. 

Scalable, efficient multi-core systems are increasing their popularity. To meet the 

growing demand of new programming models that supports these architectures, UPC 

is shown an alternative to parallel programming models. UPC adds global memory 

access, parallelism and keeps characteristics of C provides ability to read and write 

remote memory with simple statements and understanding of what is remote and 

local for memory access. 

 

High computing vendors and users are interested for the simplicity, usability and 

performance of UPC and they spend effort to develop and commercialize UPC 

compilers. Through the efforts of a consortium of industry, government an academia, 

the first product, UPC specification V1.0 is released in February 2001. In Michigan 

Technical University and University of California Berkeley, there are available open 

source implementations such as MuCP and BUPC [8].   

 

UPC (Unified Parallel C) is an extension of C programming language that provides 

support to application development on distributed, shared and hybrid architectures 

and simplifies the programmers’ problems with logically partitioned address space 

(PGAS) also known as the distributed shared memory model. This memory model 

allocates to partitions the memory into available memory domains and also is similar 

to shared memory model in terms of data locality. Languages which support PGAS, 

showed that in demonstrations, they provide increased productivity, better 

performance and high level control over data locality. However, UPC model 

provides memory coherence, fine -grained, asynchronous communication and 

dynamic distributed data structures. Every shared data element has affinity (logical 

association) to a thread by means of UPC. This data locality information is denoted 

to the user. By this way user can get increased performance. 
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P0 P1 P2 P3 .... Pn-1

Th0 Th1 Th2 Th3 Thn-1...

Memory Partitions

 

 

                                 Figure 2.1 Shared Memory Model in UPC 

 

Memory is divided into partitions where each partition Pi has affinity to thread Thi, 

shown in Figure 2.1. UPC memory is divided into two partitions: Private and Shared.  

For accessing private part of the memory is similar in C language. To access the 

shared part, the user should use “shared” qualifier  

 

As we mentioned, UPC has two kinds of data; shared and private. Private Memory 

space is allocated for an object by UPC when a private object declared. Private 

objects that are created by a thread is accessible only by this thread.  In addition to 

this, shared memory space is partitioned for shared objects which have affinity with a 

thread and all data in the global address space can be reached by all operations 

without help from user.  

                                          

It’s important for data locality to utilize data distribution and work sharing in UPC. 

This model provides work sharing by upc_forall function for distributing tasks to 

each thread. 

 

Usage of distributed shared memory model simplifies data distribution in UPC. This 

model provides sharing data by unsophisticated statements. For example to share an 
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array of size N equally in UPC,  user declares the array as “shared” and UPC 

distributes array in round robin fashion among threads. 

 

UPC has a library that provides parallel programming functions that supports 

collective (that means data is sent and received from many nodes synchronously) 

operations such as broadcast, gather, scatter etc. for user to access and manipulate 

shared and private data by threads in a collective way. This library is also called as 

UPC Collective Library. 

 

Some basic keywords that are being used in UPC are defined below: 

 

THREADS : THREADS keyword is const int variable that can be signified at 

compile time or runtime. It defines the number of threads which the current UPC 

program is used. 

 

MYTHREAD :  MYTHREAD keyword is const int variable that used for signify the 

current thread number that is currently being executed  and initialized between 0 and 

THREADS-1 indexes. 

 

upc_forall : upc_forall statement is a collective parallel statement and looks similar 

to a traditional for loop but adds a fourth parameter, that defines the affinity. This 

field determines the current iteration of the loop should be run by thread. 

 

upc_barrier : upc_barrier is the parallel statement that makes all threads to wait at 

barrier until all threads has reached it. It provides synchronizing of the threads when 

data dependency appears between threads. 

 

     11 



 

vii 

 
vi 

upc_all_broadcast :  This function is used to copy a block of memory which has 

assigned to a thread, to a block of shared memory on each thread as shown in Figure 

2.2. 

                                  

                                            Figure 2.2 upc_all_broadcast 

 

upc_all_scatter : This operation is used for copying an ith block of shared memory 

which has an affinity with a thread, to a block of shared memory which has affinity 

with ith thread as shown in Figure 2.3.  

             

                                        Figure 2.3 upc_all_scatter 

 

upc_all_gather : This operation is used to copy a block of shared memory with 

affinity to ith thread, to ith block of shared memory which has affinity to a thread 

[10] as shown in Figure 2.4. 
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                                        Figure 2.4 upc_all_gather 

 

upc_all_reduce : The upc_all_reduce function is a computation operation which is  

used to execute a user specified operation such as upc_add on the threats and return 

the result to a single thread. 

 

upc_all_sort : The upc_all_sort function is a computation operation which is used to 

perform a sorting operation of a taken shared array in ascending order. 

In UPC model requirements of the user to develop application is, analyzing the 

association of programming model and making effort for data locality and memory 

consistency.   

 

User don’t need to handle complex language structures for high level programming 

because UPC provides user an easy mapping with low level instructions and also this 

model presents to user a common syntax for parallel programming in C. 

Providing of converting a sequential program to a simple shared- memory 

implementation easily, performing incremental parallelization of applications, ability 

and efficient mapping to machine architecture, minimization of thread 

communication, usage of simple statements are the key features of UPC model. Also 

pointers and arrays can easily tied to addresses and provides easy usage to 
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programmer. But like other systems UPC has disadvantages too. UPC does not 

support thread groups and distributions on arrays do not provide flexibility. 
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                                             Chapter 3 

                                Hybrid MPI+UPC Model 

 

Hybrid programming model is preferred because of offering reduced communication, 

improved load balance, memory consumption and also improved level of parallelism.  

 

MPI is an API based library that provides flexible and efficient programming 

environment the programmer and it can be linked C, C++ or Fortran languages. On 

the other hand, UPC is an extension of C programming language and supports 

distributed, shared memory systems for parallel programming. Both MPI and UPC 

use a Single Program Multiple Data (SPMD) model. SMPD is a high level 

programming model that provides a single program is executed by all tasks. This 

model also allows to execute different data on all tasks. Thus, the UPC program calls 

MPI libraries to form a hybrid program with an SPMD model. 

 

The objective of the hybrid MPI+UPC programming model is to combine the 

strengths of MPI’s locality control and scalability with UPC’s fine grain parallelism 

and ease of programming and UPC's partitioned global address space features. The 

hybrid model consists of UPC - an extension of C language - , MPI library, so we can 

say the model is simply a UPC program that calls MPI library and program is 

compiled with the UPC compiler and linked with MPI libraries [16]. 

 

MPI demands large granularity and small messages are expensive because every 

communication has a fixed startup overhead latency. Thus, the hybrid model  will 

use MPI for the outer parallelism and UPC for inner parallelism.                             
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                           Figure 3.1 The Funneled Hybrid MPI+UPC Model 

 

Figure 3.1 shows a hybrid model in which multiple UPC groups are combined with 

one outer MPI group. In this figure, gray circles represent the hybrid MPI+UPC 

master thread and white circles represent UPC threads. UPC threads can 

communicate with each other within their group while MPI is used for intergroup 

communication. There is only one master thread in each UPC group, such as the last 

thread (MYTHREAD == THREADS-1) which can participate in MPI 

communication; i.e., responsibility of all communication is on the master thread. Our 

model is very similar to MPI_THREAD_FUNNELED support in which MPI 

implementation may be multithreaded but only one of those threads (main thread) 

makes MPI calls [17,18]. We can call this hybrid model as the funneled model.   
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Pure MPI
One MPI process 

per group

Hybrid 
MPI+UPC

MPI: intergroup 
communication

UPC: inner group
communication

Pure UPC
Distributed global 

address space

Funneled Model
One process in every UPC group 

that participates in MPI 
communication

 

 

           Figure 3.2: Scheme of parallel programming model on hybrid platforms. 

 

As shown in Figure 3.2, hybrid model offers more acceptable model than MPI one 

sided communication because it’s able to utilize UPC’s programming features and 

tunable performance model. Also this model enables the processing of larger 

problems by using shared global address space for memory constrained MPI codes. 

For locality constrained UPC codes, this model can provide locality through MPI 

connections between UPC groups. 
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                                          Chapter 4 

                                      Memory Types 

 

There are three fundamental memory types which multi-processors have been using. 

 Shared Memory 

 Distributed Memory 

 Distributed Shared Memory 

 

We believe it is important to understand these memory types for parallel 

programming especially, hybrid parallel programming which combines the 

programming paradigms of different memory types. 

 

4.1 Shared Memory 

 

Shared Memory expression defines a computer architecture that all CPU's can access 

to a common main memory where the physical memory actually exists [12]. This 

means addresses of different CPU's are located in same memory location. Also we 

can call this architecture as Uniform Memory Access (UMA) Multiprocessor or 

Symmetric Multiprocessor (SMP). 

 

As usual in a uni-processor, CPU is connected to a primary memory and I/O device 

by a bus. As an extension to this architecture, in shared memory, multiple CPUs are 

connected to a bus and they share same primary memory. All CPUs have the same 

access time to memory. A CPU can write a value into the primary memory easily and 

all other CPUs can read the value. CPU is kept busy by cache memory while data is 

taken from memory. The architecture is showed below in Figure 4.1 : 
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Bus

CPU Cache Memory CPU Cache Memory CPU Cache Memory CPU Cache Memory

Primary 
Memory

I/O Devices

 

                                     Figure 4.1 Structure of Shared Memory 

 

There are some advantages and disadvantages of this architecture. Having a single 

primary memory provides a user friendly programming environment and data 

sharing between processors are fast and uniform. On the other hand, when user wants 

to add more CPUs, the traffic on the shared memory - CPU bus increases and 

becomes bottleneck so, to design and produce machines that have increasing number 

of CPUs is expensive and difficult. Most of shared memory machines have ten or 

fewer processors because of scalability problem [13].  

 

4.2 Distributed Memory 

 

Shared memory has limits for existence of processors in the architecture. We 

mentioned that if the user adds more processors to the existing system, there can 

occur bottleneck problem. To overcome this problem, distributing primary memory 

builds an alternative architecture called as distributed memory and also called 

nonuniform memory access (NUMA) micro-processor. In distributed memory, each 

CPU has its own local memory and I/O. Distributed memories work independently. 
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Changes in the local memory don't effect other processor's memories. Memory 

access time changes from process to process whether address is located in that 

processors local memory or remote processors local memory. If a processor is 

needed to accessed by an another processor for getting data from it, user must define 

the communication. In addition to this, synchronization of processes is one of the 

users responsibilities. 

 

Distributed memory architecture is scalable. User can increase the number of CPUs 

and memories. Each processor can easily compute with its own memory. However 

user is responsible for many skills about data communication when programming 

and converting an existing structure that is mapped with shared memory architecture 

can be difficult. Distributing data over memories is an important point in 

programming. Distributed Memory architecture is showed in Figure 4.2 : 
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                                     Figure 4.2 Structure of Distributed Memory 
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4.3 Distributed Shared Memory 

 

Distributed shared memory (DSM) also known as distributed global address space 

(DGAS) or partitioned global address space (PGAS). This hybrid architecture 

combines shared memory architecture and distributed memory architecture. This 

system utilizes both distributed memory and shared memory architectures and 

improves flexibility and performance. 

The architecture is designed by dividing memory into shared parts among nodes as 

shown in Figure 4.3. 
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                           Figure 4.3 Structure of Distributed Shared Memory 
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Distributed shared memory reduces cost and complexity of developing a program 

and it becomes easier to integrating different architectures to this architecture [14]. 

 

MPI and UPC allow programming on these memory types. However, we targeted our 

hybrid programming model runs on the distributed shared model. The high 

performance computer at Kadir Has University has the distributed shared memory 

model. 
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                                        Chapter 5 

                                Cannon’s Algorithm 

 

Many scientific and engineering problems such as in signal processing and chemistry 

need to use large matrices and matrix multiplication can be required for solution. 

There are many matrix multiplication algorithms. One of them is Cannon’s algorithm 

also it can be called Fox's algorithm [11].  

 

Cannon algorithm is first described in 1969 by Lynn Elliot Cannon and this 

algorithm provides memory efficiency in parallel programming and less 

communication between processes. 

 

We are interested in performing C = A x B multiplication where C, A, B are n x n 

square matrices. We assume that these three matrices are decomposed into 2 

dimensional square sub blocks. Let P is a square number and n will be the multiple of 

 𝑷 .  

 

In Cannon algorithm, a processor is responsible for (n /  𝑷) x (n /  𝑷)  block of C. 

The steps of matrix multiplication are explained for the case of 4x4 matrices as an 

example below in Figure 5.1 .                

     

                   C                        =                      A                      x                      B  

 

                                    Figure 5.1 Matrix Multiplication                                                                                                                                

𝑪 0,0 𝑪0,1 𝑪0,2 𝑪0,3 

𝑪1,0 𝑪1,1 𝑪1,2 𝑪1,3 

𝑪2,0 𝑪2,1 𝑪2,2 𝑪2,3 

𝑪3,0 𝑪3,1 𝑪3,2 𝑪3,3 

𝑩0,0 𝑩0,1 𝑩0,2 𝑩0,3 

𝑩1,0 𝑩1,1 𝑩 1,2 𝑩1,3 

𝑩2,0 𝑩2,1 𝑩2,2 𝑩2,3 

𝑩3,0 𝑩3,1 𝑩3,2 𝑩3,3 

𝑨 0,0 𝑨 0,1 𝑨0,2 𝑨0,3 

𝑨1,0 𝑨1,1 𝑨 1,2 𝑨1,3 

𝑨 2,0 𝑨 2,1 𝑨 2,2 𝑨 2,3 

𝑨 3,0 𝑨 3,1 𝑨3,2 𝑨3,3 

x

 

x

x

X 

=

 

x

x
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                              Figure 5.2 (a)                               Figure 5.2 (b) 

                                  Figure  5.2 Broadcast and shift operations 

 

First, starting from the diagonal sub blocks (Figure 5.2 (a)) of matrix A, 𝑨𝟎,𝟎 is 

broadcasted to all processes in the first row. In the second row 𝑨𝟏,𝟏 is broadcasted                                                                                                                                                                                               

to all processors. For the other rows this process occurs similarly.  

 

Then broadcasted A sub blocks are multiplied with sub blocks of B matrix in each 

processor and stored in the sub blocks of C matrix.                                                                                          

 

After each multiplication sub blocks of B matrix are shifted to the upper sub block 

and replaced with the lower sub block (Figure 5.2 (b)). This replacement is 

continuously done and become a circular movement.  And the results of the product 

of sub blocks are added to the partial results of C sub blocks. Matrix multiplication 

operation continues until sub blocks of B matrix are retuned to their original places. 

Matrix multiplication steps are showed below in Figure 5.3 :  

 

     

                 C                        =                     T                       x                       B 
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                 C                        =                     T                        x                     B    

                                                                             

 

     

                C                          =                     T                         x                    B 

                                                                             

 

                                                                                            

                            

 

                  Figure 5.3 Steps of Cannon’s Matrix Multiplication Algorithm 

 

T matrix is the A matrix that is utilized at the current operation.  

For the element of 𝑪𝟏,𝟐  is equal to 𝑨𝟏,𝟏  * 𝑩𝟏,𝟐  + 𝑨𝟏,𝟐  * 𝑩𝟐,𝟐  + 𝑨𝟏,𝟑  * 𝑩𝟑,𝟐  + 

𝑨𝟏,𝟎  *  𝑩𝟎,𝟐 . 
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The Cannon’s algorithm is showed below: 

 

The Cannon matrix multiplication algorithm. 

for i = 0 to ( 𝑷 − 𝟏)  do  // P is the total number of processors 

       broadcast_A( T ← appropriate 𝑨𝒔𝒖𝒃 along rows ) 

       𝑪𝒔𝒖𝒃 ← T x 𝑩𝒔𝒖𝒃 

       cshift_B ( 𝑩𝒔𝒖𝒃 upward along colums ) 

end for 

 

                                        Figure 5.4 Cannon’s Algorithm 

 

As shown in Figure 5.4, algorithm has three fundamental steps. The first step 

broadcasts the diagonal Asub sub-blocks along each row of tiles. The broadcast 

source will be shifted to the right of the rows for the next iteration. The second 

step performs sub matrix multiplication. The final step performs an upward 

circular shift along to each column of B matrix.  
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                                             Chapter 6 

                                        Codes Overview 

 

In this chapter we developed four different implementations of the same parallel 

program. This parallel program is matrix multiplication with Cannon’s algorithm and 

MPI, UPC, hybrid MPI+UPC and optimized hybrid MPI+UPC version respectively. 

 

6.1 MPI Implementation 

 

Our MPI implementation of Cannon’s algorithm is based upon a two -

dimensional block decomposition, in which there are two collective 

communication operations involving a subset of the processes such as rows of 

processes and columns of processes. In order to involve only a subset of the 

original process group in a collective operation, we need to create a Cartesian 

topology, a two-dimensional virtual grid of processes as shown in Figure 6.1 
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Figure 6.1: An MPI Cartesian Topology: a two-dimensional virtual grid of 

MPI processes with wraparound connections.  

 

In order to involve only a subset of the original process group in a collective 

operation we need to utilize Cartesian virtual topology. Virtual topologies in 

MPI, define a mapping of processes into a geometric shape [15]. This is not a 

physical implementation, a logical implementation that should be programmed 

by software developer. Generally virtual topologies are used for simplifying 

writing code and optimizing communications.  

 

Each process is connected to its neighbors virtually and shifting operation can 

be cyclic [19]. As we used in our MPI implementation, this topology might used 

for decomposing a matrix into two dimensional logical grid of processes and 

providing communication that user defined row wise or column wise 

communication as shown in Figure 6.1 above. 
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MPI supports and provides Cartesian topology and has Cartesian topology 

functions. Basics are: 

 

 MPI_Cart_Coords 

 MPI_Cart_Create 

 MPI_Cart_Rank 

 

MPI_Cart_Coords function is used to handle and process a Cartesian 

communicator. This function returns the coordinates of the process in the 

Cartesian topology as a result. 

MPI_Cart_Create function is used to create a new communicator which 

includes topology information. 

MPI_Cart_Rank function is used to return process rank in given Cartesian 

communicator. 

 

Figure 6.2 shows the Cannon’s algorithm implementation written for the MPI 

model. The code has two major parts, the first of which is to construct the 

Cartesian topology. The second part is to implement the algorithm in three 

steps. In the first step, the processes in the rows of the virtual process grid 

participate in the broadcast communication. The second step performs the sub 

matrix multiplication. In the last step, each column of processes in the grid 

performs the send/receive operations for executing a circular shift operation 

across a chain of processes in the grid column. The MPI program has explicit 

control of data locality. Regional data locality is provided among rows and 

columns by using the advance feature of MPI’s Cartesian virtual topology. MPI 

can enhance UPC by providing explicit control over data locality in the hybrid 

programming model, and Cannon’s algorithm is an ideal selection to 

demonstrate the importance of regional data locality.  

    29 



 

vii 

 
vi 

 

  // PART 1: Construct a Cartesian topology 

  MPI_Init (&argc, &argv); 

  MPI_Comm_rank (MPI_COMM_WORLD, &id); 

  MPI_Comm_size (MPI_COMM_WORLD, &p); 

  MPI_Dims_create (p, 2, grid_size); 

  MPI_Cart_create (MPI_COMM_WORLD, 2, grid_size, periodic, 1, &grid_comm); 

  MPI_Comm_rank (grid_comm, &grid_id); 

  MPI_Cart_coords (grid_comm, grid_id, 2, grid_coords); 

  MPI_Comm_split (grid_comm, grid_coords[0], grid_coords[1], &row_comm); 

  MPI_Comm_split (grid_comm, grid_coords[1], grid_coords[0], &col_comm); 

  // PART 2: Cannon Algorithm 

  int S = (int) sqrt( p ); 

  for( k = 0; k < S; k++) { 

    MPI_Bcast(Atmp, N*N, mpitype, src, row_comm); // STEP 1: Broadcast A 

    matmul(Atmp,B,C);                             // STEP 2: C = A x B 

    MPI_Sendrecv(B, N*N, mpitype, left, tag,      // STEP 3: CSHIFT B 

                 btmp, N*N, mpitype, right, tag, col_comm, &status); 

  } 

                

             Figure 6.2: MPI implementation of Cannon's Algorithm. 

 

6.2 UPC Implementation 

 
Figure 6.3 shows the UPC implementation of matrix multiplication with a block 

distribution. The UPC code for the matrix multiplication is almost the same size 

as the sequential code. This makes UPC easy to program and it allows for 

incremental parallelization of sequential codes. The global (shared) array 

declaration has the keyword shared  [block-size] to distribute shared arrays in a 

block per thread in a round-robin fashion. 
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shared [N] double Aupc[N][N], Bupc[N][N], Cupc[N][N]; 

void matmul_upc( ) { 

  int i,j,k; 

  double sum;  

  upc_forall(i=0; i<N; i++; &Aupc[i][0]) 

    for (j=0; j<N; j++) { 

      sum = 0; 

      for(k=0; k< N; k++) 

        sum +=Aupc[i][k]*Bupc[k][j]; 

      Cupc[i][j] = sum; 

    } 

} 

              

          Figure 6.3: UPC matrix multiplication with block distribution. 

 

The UPC does not provide a two-dimensional virtual topology to make a group 

of threads for regional data locality such as the row-wise or column-wise 

grouping as presented in Section 6.1. The UPC only differentiates between two 

different kinds of data, shared (global) and private (local) for threads.   UPC 

partitions parallel works by using the upc_forall construct, which distributes 

iterations of the loop according to the affinity expression, &Aupc[i][0]. The 

UPC will assign each iteration to the thread that has affinity to the 

corresponding element of Aupc. Berkeley UPC distribution version 2.10.2 

provides a matrix multiplication for the Cannon algorithm and that is the code 

we utilized for UPC matrix multiplication benchmarking. However, our 

MPI+UPC hybrid uses the block matrix multiplication (Figure 6.3) for the sub 

matrix multiplication. 
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6.3. Hybrid MPI+UPC Implementation 

 

In Figure 6.4, the funneled hybrid MPI+UPC is formed with the careful 

combination of the MPI program of Figure 6.2 and the UPC program of Figure 

6.3. Here again, we presented the simplified hybrid code however,  the main 

algorithm of the code should be clear. The hybrid program consists of one MPI 

group and each MPI process has one UPC group as shown in Figure 3.1. There 

is only one master thread in each UPC group such as the last thread 

(MYTHREAD == THREADS-1) which can participate in MPI operations as an 

MPI process. The master thread initializes MPI and is able to construct an MPI 

Cartesian topology at Part 1 of the code. Part 2 performs Cannon’s algorithm 

with two explicit levels of parallelism. MPI manages the outer parallelism by 

bringing the appropriate sub-blocks to the master threads of each UPC group. 

Master threads copy their private sub-blocks to the shared sub-blocks by a 

copy_from_master_to_upc() routine which performs simple copy operations and 

synchronizes each UPC thread group with upc_barrier(). The shared sub-blocks 

are in the global address space of each UPC group. Each UPC participates in the 

inner level parallelization of sub-block matrix multiplication with a block 

distribution which is given by matmul_upc() in Figure 6.3.  
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shared [N] double Aupc[N][N], Bupc[N][N], Cupc[N][N]; 

Boolean MASTER = (MYTHREAD == THREADS – 1); 

int main (int argc, char *argv[]) { 

  if(MASTER) { // PART 1: Construct a Cartesian topology 

    MPI_Init (&argc, &argv);  

    MPI_Comm_rank (MPI_COMM_WORLD, &id); 

    MPI_Comm_size (MPI_COMM_WORLD, &p); 

    . . . 

    MPI_Comm_split (grid_comm, grid_coords[0], grid_coords[1], &row_comm); 

    MPI_Comm_split (grid_comm, grid_coords[1], grid_coords[0], &col_comm); 

  } 

  for( k = 0; k < S; k++) { // PART 2: Cannon Algorithm 

    if(MASTER)MPI_Bcast(Atmp,N*N,type,src,row_comm); // STEP 1:Broadcast A 

    copy_from_master_to_upc(Atmp,B);                 // Copy to shared 

    matmul_upc();                                    // STEP 2: C = A x B 

    if(MASTER) MPI_Sendrecv(B,N*N,type,left,tag,     // STEP 3: CSHIFT B 

                   btmp, N*N, mpitype, right, tag, col_comm, &status); 

  } 

} 

 

Figure 6.4: Hybrid MPI+UPC Cannon’s algorithm. The sub-block 

multiplication is with UPC block distribution. 

 

The hybrid program is compiled with the UPC compiler and linked with the 

MPI libraries. The -fupc-threads-NUM option generates code for a fixed number 

NUM of UPC threads. The MPI launcher is used to start the hybrid program. 
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Below is an example UPC compilation and an example MPI launcher in which 4 

MPI processes are created and each process creates a UPC group with 4 threads. 

The total parallel thread number is 4MPI x 4UPC = 16 threads, as shown in 

Figure 3.1. 

$ upcc –o matmul_hybrid matmul_hybrid.upc -fupc-threads-4 –O 

 

$ mpiexec --mca btl self,openib –np 4 –hostfile hosts 

matmul_hybrid  

 

6.4. Optimized Hybrid MPI+UPC Implementation 

 

Although overlapping communication with computation provides the 

opportunity to improve the execution time of a parallel program, this parallel 

programming style is not widely used due to its complexity. However, the 

hybrid Cannon’s algorithm presents a good opportunity for overlapping 

communications with computation. In this algorithm, we only need the full 

synchronization of each UPC group before performing the sub-block matrix 

multiplication. The computation of sub-block UPC multiplication can be 

overlapped with the MPI’s communication. However, the upc_forall construct 

distributes iterations of the loop according to the affinity expression at the 

fourth parameter of the construct. The UPC will assign each iteration to the 

thread that has affinity to the corresponding element of the shared array. This 

implies that assignment statements of upc_forall involving shared arrays are 

executed exclusively by those threads which are owners of the shared array 

elements. We structured our hybrid code such that the master thread will not 

spend excessive much time on upc_forall computations, but rather dedicate time 

to MPI communication, since the master thread is both the UPC thread and the 

MPI process.   
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If the hybrid code partitions the shared arrays such that the master thread does 

not have shared array elements or has much less than the other threads, the 

master will finish upc_forall earlier than the others and reach the MPI 

communication operations while the other threads are still executing their 

portion of upc_forall iterations. Figure 6.4 shows a distribution scheme in 

which fewer shared array elements reside on the master thread’s memory space. 

The shared array declaration has the keyword shared [block-size] to distribute 

shared arrays in a block per thread in a round-robin fashion. The shared array 

size is NxN in the sub-block of Cannon’s algorithm, and in this way the master 

thread should have no data. The block size must be (N*N)/(THREADS-1) so 

that the last thread will have no data in a round-robin fashion. However, the 

Berkeley UPC implementation has a limit for the block size of 64k. Even if the 

problem size reaches the limit, the solution in Figure 6.4 still provides less 

shared array elements to the last thread (master thread) because of the round-

robin fashion distribution. The addition of the code in Figure 6.5 optimizes the 

hybrid MPI+UPC implementation of Figure 6.4 to overlap MPI communications 

with UPC computations on hybrid MPI+UPC implementations. 
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#define BLOCK (N*N)/(THREADS-1) 

#if BLOCK < 65536 

shared [BLOCK] double Aupc[N][N]; 

shared [BLOCK] double Bupc[N][N]; 

shared [BLOCK] double Cupc[N][N]; 

#else if 

shared [ 65536 ] double Aupc[N][N]; 

shared [ 65536 ] double Bupc[N][N]; 

shared [ 65536 ] double Cupc[N][N]; 

#endif 

 

Figure 6.5: Distribution scheme to optimize the hybrid MPI+UPC Cannon’s 

algorithm. 
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                                             Chapter 7 

                                  Performance Evaluation 

 

This section will illustrate the impact of our proposed hybrid MPI+UPC approach 

through several experiments by running four different implementations of the 

Cannon algorithm on a 13-node HP BL460c cluster located at Kadir Has University. 

This SMP cluster consists of 2x2.66 GHz Intel Xeon Quad Core CPUs and 24 GB 

RAM with a total of 8 processing cores per node running Linux 2.6.18 connected 

with 20 GBps Infiniband.  

 

The first experiment objective is to find an optimum UPC group for the hybrid 

MPI+UPC model. The results in Figure 7.1 show the time required to perform 5000
2
 

matrix multiplications with groups of 1, 4, 8, 16 and 64 UPC THREADS and MPI 

processes. The ideal performance is in the group of 8 UPC threads. Each node in our 

system holds 8 cores per slot, indicating that each UPC thread goes to different cores 

in the nodes. In fact, we configured UPC’s GASNET_NODEFILE such that each 

consecutive thread goes to consecutive cores in the node for the hybrid runs. 

Similarly, we ensured that each MPI process goes to different nodes by putting 

slots=1 option in the MPI’s hostfile for the best performance of the hybrid model 

with a round-robin fashion. However, during plain MPI runs, the hostfile is 

configured with slots=8 to advise consecutive processes to be in consecutive cores 

for the process affinity.   
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Figure 7.1: The effect of varying numbers of MPI processes and UPC threads on 

execution time for 5000
2
. 

 

The second experiment was designed to reveal how well the proposed hybrids 

perform compared to plain MPI and plain UPC versions. Figure 7.2 shows the total 

execution time on the vertical axis, and the horizontal axis denotes the problem size. 

The CPU times of hybrids and others for the small problem size of 2000
2
 and 3000

2
 

are almost the same.
 
For the other problem sizes, hybrids consistently obtain better 

performance than the UPC. However, the MPI outperforms hybrids for problem sizes 

of 7000
2 
and 10000

2
. 
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Figure 7.2: Execution time of Cannon’s Algorithm on 36 nodes with varying 

problem sizes, Hybrids run 4 MPI x 8 UPC configurations. 

 

Table 7.1 shows the percentage gains of the optimized hybrid compared to MPI, 

UPC and plain hybrid. For the 5000
2
 problem size, the optimized hybrid shows an 

efficency of 47.72% over MPI and 46.83% over UPC. As for the plain hybrid, the 

optimized hybrid achieved approximately 15% efficency. 

 

Table 7.1: Comparing percentage gains of the optimized hybrid MPI+UPC version to 

MPI, UPC and the plain hybrid MPI+UPC of Figure 6.4. 

 

Data Size 4000
2 

5000
2 

6000
2 

7000
2 

8000
2 

9000
2 

10000
2 

Gain Over MPI 40.95 47.72 13.4 -7.19 14.72 13.49 -12.92 

Gain over UPC 44.76 46.83 3.13 45.72 43.06 26.49 44.56 

Gain over Hybrid 10.36 13.11 13.10 15.35 12.94 17.45 19.04 
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Figure 7.3: Execution time of Cannon Algorithm on 100 CPUs with large problem 

sizes.  

 

Figure 7.3 shows the behavior of MPI, UPC and optimized hybrid MPI+UPC codes 

on the large data size with a fixed number of CPUs.  The optimized hybrid achieved 

around 20% and 15% efficiency compared to MPI and UPC, respectively. However, 

UPC code outperforms MPI in this scenario. As MPI requires copying data on shared 

memory, when the data size increases and CPU size stays the same this increases the 

number of the direct access of shared memory of UPC, and therefore MPI could be 

considered less efficient unless the number of CPUs increases along with data sizes. 
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                                           Chapter 8 

                                       Related Works 

 

 

Hybrid parallel programming is a model of combining multiple models within a 

single application. The general objective of these studies is to merge strengths of 

different kinds of models for increasing performance, scalability and also cost. 

Hybrid programming with MPI and OpenMP studies are very popular. In these 

studies MPI takes the responsibility of outer level parallelism and OpenMP makes 

inner communication.  

 

Hybrid programming is shown as a model that is utilized to provide more efficient 

use of memory, improving load balance and performance. In the literature, there are 

lots of papers about hybrid programming that shows hybrid model and we mentioned 

some of them below. 

 

One of the studies on SMP nodes is Rabenseifner et al. [18] discussed benefits of 

MPI+ OpenMP hybrid programming model, comparing with the main strengths and 

weaknesses of pure MPI model and pure OpenMP model. This study also describes 

solutions of possible problems that can be occur in hybrid programming model. 

 

The hybrid model which is discussed in this study is a masteronly model and 

combines distributed memory parallelization on the node interconnect with shared 

memory parallelization inside each node. This model uses one MPI process (main 

thread) per node with no MPI calls inside the node. OpenMP makes calls inside the 

node. MPI provides this model with MPI_THREAD_FUNNELED. And in addition 

to this MPI supports MPI_THREAD_SINGLE which has only one thread to execute, 

MPI_THREAD_SERIALIZED which provides multiple threads to make MPI calls, 
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only one at a time and MPI_THREAD_MULTIPLE that provides multiple threads 

can make MPI calls with no restrictions. 

 

We mentioned that MPICH is the most known MPI implementation used worldwide. 

Prototov and Skjellum [3] explain layers, capabilities and deficiencies of MPICH 

implementation in the study. One of the main deficiencies is known that nonthread 

safety of this implementation this means all communication and computation 

activities run in a single thread. They generate a portable, thread safe and 

multithreaded MPICH design that allows multithreaded applications to take 

advantage of MPI.  

 

Skjellum et al. [4] describe the requirements for thread safe MPI implementation. 

The study mentions that it should use thread safe run time libraries and the design of 

the model should call multiple threads and services of them for execution. The paper 

also defines features of non-thread-safe MPICH design and improved model of 

thread safe so multithreaded MPICH design, named MPICH_MT. (Polling, pushing 

and busy waiting operations are eliminated for gaining performance.) Designing new 

model, portability and efficiency remained, performance added to the current design. 

This new model is developed for the Windows NT operating system using Win32 

API.   

 

Ojima et al. designed and implemented a software distributed shared memory system 

named SCASH-MPI [20] by using MPI as the communication layer by utilizing 

features of OpenMP such as incremental parallelization and shared memory feature. 

 

Jost et al. [21] compare different parallelization approaches on clusters of SMP 

(symmetric multi-processors) nodes for the selected benchmark application. These 

approaches are; pure MPI, pure OpenMP and two hybrid (MPI+OpenMP) strategies 

and selected benchmark Block Tridiagonal (BT) solution of the CFD (computational 
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fluid dynamics) benchmark. BT benchmark solves system in three dimensional 

equations.  

 

For this comparative study three sun fire cluster environments running on Solaris are 

used. Four Sun Fire 6800 nodes are connected by a Sun Fire Link (SFL), Four Sun 

Fire 6800 nodes are connected by a Gigabit Ethernet (GE) and one Sun Fire 15K 

node are used for implementations. Fortran 95 compiler was used. They report the 

best timings for the hybrid implementations. The pure MPI model shows the best 

scalability. In spite of the pure OpenMP shows good scalability, it has disadvantages 

when compared to MPI implementation. These disadvantages are reported that; 

OpenMP requires shared address space and this limits scalability of the number of 

CPUs in the node, because of the usage of OpenMP directives on the outer loops, it 

restricts the scalability the number of inner grids in one dimension. As conclusion, 

this study shows hybrid parallelization is suitable for large applications.   

 

Parks [22] studied on comparison of process networks and MPI. The process network 

model is a communication model that is used applications of embedded signal 

processing, image processing for geographical information systems and sonar beam 

forming. In this paper it’s shown that, send/receive, broadcast and gather/scatter 

primitives of MPI can be emulated in process networks. Also benchmark 

performances are made using java library for MPI and process network model. 

 

He et al. define the MPI+OpenMP model and implements the row-wise and column-

wise block-striped decomposition based matrix multiplication with hybrid (MPI + 

OpenMP) programming model in the multi-core cluster system [23]. To compare the 

performance of hybrid model also pure MPI implementation is generated too. 

Programs are executed with the 1400x1400 and 2100x2100 size of matrixes and 

compilers are Windows XP Visual Studio 2005 and GCC (compiler system of Unix 

Compatible Operating System-GNU-),and the compiler on Linux is GCC. 
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Performance tests are made using visual studio compiler on windows, GCC compiler 

on Linux and GCC compiler on Windows. 

 

Experimental results are shown in the paper that running time of hybrid 

implementation is shorter than pure MPI implementation and Windows is better than 

Linux for parallel environment. The study is resulted that MPI + OpenMP makes 

good use of CPU computing resources and optimizes the parallel algorithm which is 

based on pure MPI implementation. 

 

Another study that evaluates MPI performance against UPC and OpenMP written by 

Mallon et al.[24]. UPC is defined as a PGAS language that allows shared memory 

like programming on distributed memory systems with utilizing the advantage of 

MPI's data locality. Additionally features of MPI, OpenMP and hybrid model are 

shown in the paper. 

 

Smith and Bull [25], discuss implementation, development, performance and benefits 

of MPI/ OpenMP applications on single and clustered SMPs in their study. Before 

the case studies benefits and deficiencies of OpenMP, MPI and hybrid model are 

reviewed. For the case study, Game of Life code parallelized and MPI, OpenMP and 

MPI+OpenMP versions are developed and performance results are shown. Game of 

Life consists a collection of 2D cells that have only two states alive or dead, based on 

some mathematical rules. Result of this implementation is reported as; OpenMP code 

offers potential for MPI/ OpenMP codes to give a better performance than pure MPI 

implementations. Another case is a real application code named Quantum Monte 

Carlo code (QMC). This consists of large class of computer algorithms to simulate 

quantum systems. 

 

In this study pure MPI version and OpenMP version of mixed mode QMC code are 

implemented and results of the implementations are shown. As conclusion it's 
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reported that, a hybrid model of programming may provide more effective 

performance for an SMP cluster because of hybrid model merges different 

characteristics of both paradigms to give the best performance. However, it doesn't 

mean that it will always be the most effective and ideal model for all clusters. It must 

be considered for the nature of the code.  

 

Blagojevic et al.[1] designed and implemented Process Shared Memory (PSHM), an 

implementation of Berkeley UPC runtime, to provide shared memory among 

processes and allows hybrid execution models. UPC tasks are mapped to a mix of 

processes and pthreads (POSIX-thread programming library Portable Operating 

System Interface- shared memory segments). This is the first PGAS implementation 

that provides hybrid mapping of threads to both processes and pthreads using shared 

memory.  Fine grained benchmarks, GUPS, MCOP and Sobel are discussed. GUPS 

is a benchmark which operates read/write and modifies accesses to random locations 

in large arrays. MCOP benchmark performs solution of matrix chain problem by 

distributing columns across UPC threads and communication occurs between these 

threads. Sobel performs edge detection by partitioning source image across threads. 

this study combines PHSM with pthreads and fine grained benchmarks, more than 

%60 increment of performance is reported.    

 

A mixed mode MPI+OpenMP version of the CGWAVE [26] code have developed 

by The DoD High Performance Computing Modernization Program (HPCMP) 

Waterways Experiment Station (WES). The CGWAVE code is used for forecasting 

and analysis of harbor conditions. To distribute the wave components MPI is used 

and for parallelization of the code OpenMP is used. The mixed code won the "Most 

Effective Engineering Methodology Award” at SC98.                  

 

A new hybrid model that combines MPI and UPC was explored first by [16] Dinan et 

al. and this model is improved to allow incremental access to greater amount of 
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memory and utilizes MPI's data locality and UPC's partitioned global address space 

features. Hybrid MPI+ UPC programming model is defined in terms of sub models 

that vary the level of nesting and the number of instances of the model. They classify 

the hybrid model into three categories then compare and explain these models with 

calculating dot product of two vectors using hybrid model. The flat model permits all 

processes to participate in both UPC and MPI communication. In the nested- 

funneled model only one member of each UPC group can participate in MPI 

communication. Another hybrid model is the nested-multiple model, the most 

powerful, allowing MPI to span to all UPC processes in all groups. But, this added 

flexibility causes greater complexity. Each process participates in communication so 

all processes in each group initializes MPI. Authors have demonstrated its 

effectiveness and performance gains with Barnes-Hut n-body simulation which 

simulates gravitational interactions and motion of astronomical bodies over time. Our 

funneled model is similar to the nested-funneled model in that only one member of 

each UPC group is able to make MPI calls. However, in our funneled model, every 

UPC group has its own shared variables which are only distributed at that UPC 

group; they are not distributed across all groups to enlarge the MPI memory. This 

study calculates lower and upper bounds of upc_forall by using MPI id and UPC 

group id. In contrast, our approach simply uses the shared array index upc_forall for 

lower and upper bounds in each UPC group. In addition, we implemented the 

Cannon algorithm with advanced MPI features to show the importance of regional 

locality in comparison with UPC implementation of the same algorithm. We also 

exploited some of the advanced features of MPI and UPC programming to overlap 

MPI communications with UPC computations on the hybrid MPI+UPC 

implementations. 
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                                           Chapter 9 

                                          Conclusion 

 

In this thesis, we have researched advantages, disadvantages, strengths, weaknesses 

and various implementations with giving examples in real life of MPI model, UPC 

model. And hybrid MPI+UPC model is discussed to increase performance and 

scalability with combining two different models features. Also memory types that are 

being used in parallel programming are introduced with figures and a matrix 

multiplication algorithm called Cannon’s algorithm is discussed and used with MPI 

virtual topology in our implementations.  

  

We have developed a hybrid parallel programming model that is formed by 

combining strength of MPI's data locality control and coarse grain parallelism style 

with taking advantage of strengths of UPC's fine grain approach, global address 

space and easy programming features. 

 

We provided four different implementation codes of Cannon's algorithm employing 

four different parallelization paradigms, pure MPI, pure UPC, the hybrid MPI+UPC 

and the optimized hybrid MPI+UPC model on a cluster of SMP nodes. Each 

implementation employed the advance features of the underlining programming 

model to have the best performance gains. 

 

We evaluated the performance and scalability of the purposed hybrid MPI+UPC 

model on the Cannon matrix multiplication benchmark by comparing the baseline 

pure MPI and pure UPC implementations on up to 100 cores. We also utilized MPI 

Cartesian topology and recognize that hybrid MPI+UPC implementation with MPI 

Cartesian topology can provide the locality control in which UPC needs and hence, 

improved the performance 2X comparing to UPC only. 
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Similarly the hybrid implementation demonstrated %20 performance gain on some 

configurations in comparison to MPI-only implementation by reducing intra-node 

communication overhead and also providing a larger message size since the UPC 

part of the hybrid handles the fine grain parallelism. Furthermore, overlapping UPC 

computations with MPI communications optimizes the hybrid code with an 

additional 20% performance enhancement over the benchmark.         
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