

 DEVELOPMENT OF HYBRID MPI+UPC PARALLEL

 PROGRAMMING MODEL

 Elif ÖZTÜRK

 KADIR HAS UNIVERSITY

 2011

 DEVELOPMENT OF HYBRID MPI+UPC PARALLEL

 PROGRAMMING MODEL

 ELİF ÖZTÜRK

 B.S., Computer Engineering, Kadir Has University, 2007

 M.S., Computer Engineering, Kadir Has University, 2011

 Submitted to the Graduate School of Kadir Has University

 in partial fulfillment of the requirements for the degree of

 Master of Science

 in

 Computer Engineering

 KADIR HAS UNIVERSITY

 2011

APPENDIX B

APPENDIX B

KADIR HAS UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

 DEVELOPMENT OF HYBRID MPI+UPC PARALLEL

 PROGRAMMING MODEL

ELİF ÖZTÜRK

APPROVED BY:

Asst. Prof. Dr. Zeki Bozkuş _____________________

(Thesis Supervisor)

Asst. Prof. Dr. Taner Arsan _____________________

Prof. Dr. Selim Akyokuş _____________________

APPROVAL DATE: 01/07/2011

AP

PE

ND

IX

C

APPENDIX B

APPENDIX B

DEVELOPMENT OF HYBRID MPI+UPC PARALLEL

 PROGRAMMING MODEL

 Abstract

Parallel Computing is a form of computation that divides a large set of calculations

into tasks and runs on multi-core machines simultaneously. Today, Message Passing

Interface (MPI) is the most widely used parallel programming paradigm that

provides programming both for symmetric multi-processors (SMPs) which consists

of shared memory nodes with several multi-core CPUs connected to a high speed

network and among nodes simultaneously. Unified Parallel C (UPC) is an

alternative language that supports Partitioned Global Address Space (PGAS) that

allows shared memory like programming on distributed memory systems.

In this thesis, we describe the MPI, UPC and hybrid parallel programming paradigm

which is designed to combine MPI and UPC programming models. The aim of the

hybrid model is to utilize the advantages of MPI and UPC; these are, MPI’s data

locality control and scalability strengths with UPC’s global address space, fine grain

parallelism and ease of programming to achieve multiple level parallelism. This

thesis presents a detailed description of hybrid model implementation comparing

with pure MPI and pure UPC implementations. Experiments showed that the hybrid

MPI+UPC model can significantly provide performance increases up to double with

pure UPC implementation and up to 20% increases in comparison to pure MPI

implementation. Furthermore, an optimization was achieved which improved the

hybrid performance an additional 20%.

 iii

 iv

 HİBRİD MPI+UPC PARALEL PROGRAMLAMA

 MODELİNİN GELİŞTİRİLMESİ

 Özet

Paralel Hesaplama geniş hesap kümelerini görevlere bölen ve bu görevleri çok

çekirdekli makinelerde aynı anda çalıştırmaya yarayan hesaplama biçimidir. Bugün,

Message Passing Interface (MPI - Mesaj Gönderme Arayüzü) ortak hafıza noktaları

ile birçok çok çekirdekli işlemcinin yüksek hızlı bir networke bağlanmasından oluşan

simetrik çoklu işlemciler (SMP) ve noktalar (nodes) arasında aynı anda

programlamayı sağlayan ve kullanılan en geniş paralel programlama paradigmasıdır.

Unified Parallel C (UPC) dağıtık adresli sistemleri ortak hafızalı sistemler gibi

programlamaya izin veren Bölünmüş Global Adres Alanı’nı (PGAS) destekleyen

alternatif bir dildir.

Bu tezde, MPI, UPC, MPI ve UPC programlama modellerini birleştirmek için

tasarlanan hibrid paralel programlama paradigması anlatılmıştır. Hibrid modelin

amacı MPI ve UPC' nin avantajlarından faydalanmaktır. Bunlar MPI modelin yerel

data kontrolü ve ölçeklenebilirliği ile UPC modelin global adres alanı, ince taneli

paralellik ve çoklu seviye paralellik sağlamak için programlama kolaylığı

özellikleridir. Bu çalışma hibrid model uygulamasını yalnız MPI ve yalnız UPC

uygulamaları ile karşılaştırmak suretiyle ayrıntılı açıklama sunmaktadır. Deneyler

hibrid MPI+UPC modelin önemli ölçüde yalnız UPC uygulaması ile iki kat ve yalnız

MPI uygulamasında %20’ ye kadar performans artışı sağlayabildiğini göstermiştir.

Ayrıca hibrid performansı geliştiren bir optimizasyonda ek olarak %20 iyileşme

kazanılmıştır.

APPENDIX B

 v

 Acknowledgements

I would like to present my sincere regards to those who encouraged me most to

achieve this graduation, which happens to be of great value to me.

First of all, I would like express my deep-felt gratitude to Assistant Professor Taner

Arsan, the head of Computer Engineering Department at Kadir Has University, for

all the support he provided me through out my all academic and graduate career.

Also, I would like to thank my thesis advisor Assistant Professor Zeki Bozkuş for all

his expert guidance on my project, motivation and, support and to Assistant

Professor Atilla Özmen for all his support and understanding along my

assistantship.

I would like to thank my dear friends lecturer Canan Cengiz, my Assistant friend

Ecem Sezenler and my all other colleagues who motivated and supported me at

every stage of my career.

Finally; I would like to thank to my mother and father who brought me to this day.

vii

vi

 Table of Contents

Abstract iii

Özet iv

Acknowledgements v

Table of Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1

2 Overview of MPI and UPC 4

2.1 MPI Model………………………………….…… 4

2.2 UPC Model.................………………………………………... 9

3 Hybrid MPI+UPC Model 15

4 Memory Types 18

 4.1 Shared Memory.. 18

 4.2 Distributed Memory... 19

 4.3 Distributed Shared Memory... 21

5 Cannon’s Algorithm 23

6 Codes Overview 27

 6.1 MPI Implementation.. 27

 6.2 UPC Implementation... 30

 6.3 Hybrid MPI+UPC Implementation... 32

vii

vi

 6.4 Optimized Hybrid MPI+UPC Implementation......................... 34

7 Performance Evaluation 37

8 Related Works 41

9 Conclusion 47

References 49

Curriculum Vitae 52

 vii

vii

vi

 List of Tables

Table 7.1 Comparing percentage gains of the optimized

hybrid MPI+UPC version to MPI, UPC and the plain hybrid

MPI+UPC of Figure 6.4………………………………………………………….. 39

 viii

vii

vi

 List of Figures

Figure 2.1 Shared Memory Model in UPC.. 10

Figure 2.2 upc_all_broadcast... 12

Figure 2.3 upc_all_scatter.. 12

Figure 2.4 upc_all_gather... 13

Figure 3.1 The Funneled Hybrid MPI+UPC Model.. 16

Figure 3.2 Scheme of parallel programming model on hybrid platforms............ 17

Figure 4.1 Structure of Shared Memory... 19

Figure 4.2 Structure of Distributed Memory.. 20

Figure 4.3 Structure Distributed Shared Memory.. 21

Figure 5.1 Matrix Multiplication.. 23

Figure 5.2 Broadcast and shift operations.. 24

Figure 5.3 Steps of Cannon’s Matrix Multiplication Algorithm.......................... 25

Figure 5.4 Cannon’s Algorithm.. 26

Figure 6.1 An MPI Cartesian Topology............................ 28

Figure 6.2 MPI implementation of Cannon's Algorithm…………………… . 30

 ix

vii

vi

Figure 6.3 UPC matrix multiplication with block distribution……………... 31

Figure 6.4 Hybrid MPI+UPC Cannon’s algorithm………………………… .. 33

Figure 6.5 Distribution scheme to optimize the hybrid MPI+UPC Cannon’s

algorithm... 36

Figure 7.1 The effect of varying numbers of MPI processes and UPC threads on

execution time for double 5000
2
 .. 38

Figure 7.2 Execution time of Cannon algorithm on 36 nodes

with varying problem sizes, Hybrids run 4 MPI x 8 UPC

configurations……………………………………………………………………. 39

Figure 7.3 Execution time of Cannon Algorithm on 100 CPUs

with large problem sizes…………………………………………………………. 40

 x

vii

vi

 Chapter 1

 Introduction

Recently, there is a growing demand for parallel models of High Performance

Computing (HPC) infrastructures for solving operations large data sets because of

their scalability and performance. Parallel hardware and software technologies are

serving to this demand however users had to effort to find the best suited

programming paradigm for the underlying computer architecture. Most people are

interested in hybrid models that merge the advantages of two different models. There

is many examples of models that combines MPI library with shared memory model

OpenMP.

Message Passing Interface is the most commonly used parallel programming model

for parallel computing [9]. MPI is usually used on distributed memory and this

model provides portability, good scalability and significant flexibility in parallel

programming. However, today MPI is used by many scientific applications, MPI

requires explicit communications with large granularity which renders programming

and programming problematic. Partitioned Global Address Space (PGAS) languages

supports that a single program can be able to run across the shared and distributed

memory features of the machine [1]. One of the most popular PGAS language is

Unified Parallel C (UPC) is a parallel programming language which facilitate us to

use the distributed memory as the shared memory and save us from using explicit

communication via simplified statements like read/ write to remote memory.

This study aimed to exploit the complementary strengths of both models by

providing a hybrid model that combines MPI and UPC models. This hybrid model

reduces the communications overhead by lowering data movements within nodes. In

addition the goal of this hybrid model is to offer the fine granularly parallelism of the

 1

vii

vi

UPC, partitioned address space and it’s benefit of simplified programming. Hybrid

model adds the strengths of the MPI’s good scalability, portability and coarse grain

parallelism with a larger message size. The recent trend in high performance

computer architecture is to increase cores on nodes and hence decrease the memory

per core at nodes, consequently encouraging us to explore different programming

paradigms such as an MPI+UPC hybrid on a large scale distributed platform.

In this study, we presented and described a new hybrid parallel programming model

that combines advantages of MPI and UPC model to increase the performance and

scalability of operations comparing with pure MPI and pure UPC implementations.

We selected a funneled approach for our hybrid model, meaning that all interactions

between the MPI and UPC are controlled by a master thread and only the master

thread calls MPI routines. In this manner, all communication process between nodes

is made by a single thread-master thread- of the node, so we can say all

communication is funneled to the master thread.

In this thesis, we developed three codes to probe the efficiency and scalability of the

models on distributed multi-core systems with the Cannon matrix multiplication

algorithm, which was chosen to exploit some of the advanced features of MPI. We

used MPI virtual topology to benefit from regional locality, as the UPC has only

local or shared (global) objects and in this way the hybrid model will enhance UPC

program performance with regional locality. In addition, we utilized an optimization

to overlap MPI communications with UPC computations on the hybrid model and

this optimized benchmark performance up to 30% on some data sets.

The rest of the thesis organized as follows. Chapter 2 presents an overview of MPI

and UPC parallel programming models on parallel platforms, briefly describing their

strengths, weaknesses and most known implementations, and Chapter 3 examines

hybrid models and describes the funneled model in further detail by the

 2

vii

vi

implementation. In Chapter 4 we give an overview of memory types that parallel

programming is being utilizing and we used for this study and Chapter 5 presents

detailed explanation of Cannon matrix multiplication with a sample example of

multiplication with figures. Chapter 6 explains four different implementations of the

Cannon’s Algorithm that we used for our experiments in Chapter 7. Related Work

and Conclusion are presented in Chapter 8 and 9 respectively.

 3

vii

vi

 Chapter 2

 Overview of MPI and UPC

This chapter provides an overview of MPI and UPC parallel programming model and

examines the advantages and disadvantages of each model for the construction of a

hybrid programming model.

2.1 MPI Model

A group of computer vendors, computer science researchers, application scientists

from government laboratories, universities and industry came together at a workshop

and decided to cooperate for the message passing model about parallel computing in

April 1992. Sixty people from forty organizations attended MPI standardization

effort and these people were mainly from United States and Europe. As a result of

this workshop MPI Forum is emerged and accepted a primary model of high

performance computing environment. MPI (Message Passing Interface) is resulted

from these deliberations and now it is synonymous with the parallel computing

model itself. In June of 1995, the first product of these efforts MPI 1.1 released [2].

Membership of the MPI Forum has been open to all high performance community

members.

Message Passing Interface specification has been used for a wide range of compute

systems from general purpose operating systems such as Windows NT and UNIX, to

high performance computer systems such as Intel Paragon, IBM SP1.

MPI is not a language, operations of MPI are called as functions, methods according

to language features for example C, C++ and Fortran-77 and 95.

 4

vii

vi

MPI Standard is developed for people (application developers that studies on parallel

machines) who want to write high level portable programs in C++, C and Fortran.

For world wide usage, the standard must present a simple and easy to use interface

for advanced machines. 2D finite difference, molecular dynamics and atmosphere-

modeling problem are examples of parallel programming model.

Until today, MPI had several extensions. These are provided in remote-memory

access operations, process creation, collective operations and parallel I/O.

Also, MPI is not an implementation, it is a specification and there are several MPI

implementations. One of these implementations is MPICH, developed by Argonne

National Laboratory and Mississippi State University. The MPICH implementation

is well-known world-wide used implementation that provides high portability and

efficient usage and serves as a basis for several other MPI implementations. After

passing several revisions and improvements it became a good message passing

implementation. Layered software architecture is the foundation of its portability [3].

There are three layers of MPICH: API, ADI and Device. MPI standard provides

threads that user can call API, ADI functions and device threads. The first layer API

provides high level message passing logic and helps for implementing abstractions

such as topologies and data types. The second layer ADI (Abstract Device Interface),

consists of three queues of pointers that handles communication processes.

The third layer of MPICH is the device layer that consists of communication

modules and provides three threads: Sender, Receiver and Terminator.

Sender and receiver threads are responsible for making sure that data can be sent or

received. Terminator threads are waiting states for the signal to terminate the process

[4].

Portability and ease of use are the main advantages of using message passing

standard (MPI). This is important for application developers to benefit these

specifications in a distributed memory communication environment because of this

 5

vii

vi

architecture includes higher level routines and lower level message passing routines.

In addition to this, MPI provides clearly defined routines that can be implemented

efficiently. Main goal of MPI is developing a widely used message passing standard

for parallel programming. Therefore MPI should be portable, efficient, practical and

flexible.

Designing MPI, developers considered some issues:

 For heterogeneous environment, it’s allowed for implementations can be used

in.

 To provide efficient communication, avoid memory-to-memory copying.

 Fortran-77, Fortran-95, C and C++ are allowed for the developed interface.

 For a reliable communication interface, communication failures are handled

by communication subsystem, so the user need not make an effort to solve

these problems.

 Without changes in system software and related communication, the interface

can be implemented on many vendors’ platforms.

 The interface should support thread safety.

 The interface is designed to be language independent.

MPI is designed for parallel machines and workstation clusters to get high

performance and portability. It is widely and freely available. Programs which are

including high performance message passing operations may run on shared memory

architectures, hybrid architectures and particularly on distributed memory

architectures.

To provide multiple application level threads, MPI implementation must be thread

safe.

 6

vii

vi

In multithreaded programming, thread - safety is a critical issue. If code can be used

in multithreaded application, it can be called as thread safe. In order to provide

parallelism by multithreading, thread safety allows code to run in multithreaded

environments and process synchronization [6].

MPI provides the processes communicate with other processes by calling library

routines with send and receive messages. To collaborate and communicate processes

with each other, MPI-1 provides library routines and includes two-sided send/receive

operation for exchanging data between process pairs. MPI functions are called by

threads. Some basic functions that are being used in MPI are defined below:

MPI_Init: A function that helps the system to do need setups for other calls for MPI

library. It’s not necessary to use this call in the first executable statement but it must

be used before any other MPI function.

MPI_Finalize: If the functions are completed, the function MPI_Finalize is called.

This free ups the allocated resources for MPI.

MPI_Reduce: This collective communication MPI function is responsible for

reduction operations. Reduction operations are finding minimum/maximum, and/or,

multiplication and summation [7].

MPI_Barrier: This function is one of the collective communication functions that

allows barrier synchronization.

MPI_Bcast: A collective communication function that provides to broadcast one

process to other processes in a communicator.

MPI_Gather: A collective communication function that performs gathering

operation.

MPI_Scatter: A function that delivers data to different processes.

MPI_Isend: Collective communication operation that performs transmission of the

message. Computation thread sends a request using this function for accessing

remote memory [5].

 7

vii

vi

MPI_Irecv: The MPI_Isend request that is sent by computation thread is received

by a communication thread with MPI_Irecv in the remote node.

MPI-2 standard is developed to support one sided communication, parallel I/O and

dynamic process management. Three one sided communication operations, PUT,

GET and ACCUMULATE are supported by MPI-2. These operations are used for

writing to remote memory, reading from remote memory and a reduction operation

on the same memory across a number of processes. MPI-2 is similar to UPC’s global

address space programming model because MPI-2 model supports remote process

access to data without help from the user. But it’s more inhibitive than UPC’s global

address space model because o cache coherence and synchronization features.

The advantages of MPI model are:

 Process synchronization

 User’s complete control of data distribution

 Allowing the optimization of data locality

 Clear (explicit) communication

These characteristics give MPI standard scalability and high performance.

Unfortunately these are also made MPI difficult to program and debugging skills.

The disadvantages of MPI model are:

 Not allow incremental development

 Difficult to write program

 Difficult to debug

Developer efforts to reconfigure the existing sequential applications to adapt MPI

parallelization.

 8

vii

vi

2.2 UPC Model

There is a growing demand for parallel runtime systems with multi-core processors.

Scalable, efficient multi-core systems are increasing their popularity. To meet the

growing demand of new programming models that supports these architectures, UPC

is shown an alternative to parallel programming models. UPC adds global memory

access, parallelism and keeps characteristics of C provides ability to read and write

remote memory with simple statements and understanding of what is remote and

local for memory access.

High computing vendors and users are interested for the simplicity, usability and

performance of UPC and they spend effort to develop and commercialize UPC

compilers. Through the efforts of a consortium of industry, government an academia,

the first product, UPC specification V1.0 is released in February 2001. In Michigan

Technical University and University of California Berkeley, there are available open

source implementations such as MuCP and BUPC [8].

UPC (Unified Parallel C) is an extension of C programming language that provides

support to application development on distributed, shared and hybrid architectures

and simplifies the programmers’ problems with logically partitioned address space

(PGAS) also known as the distributed shared memory model. This memory model

allocates to partitions the memory into available memory domains and also is similar

to shared memory model in terms of data locality. Languages which support PGAS,

showed that in demonstrations, they provide increased productivity, better

performance and high level control over data locality. However, UPC model

provides memory coherence, fine -grained, asynchronous communication and

dynamic distributed data structures. Every shared data element has affinity (logical

association) to a thread by means of UPC. This data locality information is denoted

to the user. By this way user can get increased performance.

 9

vii

vi

P0 P1 P2 P3 Pn-1

Th0 Th1 Th2 Th3 Thn-1...

Memory Partitions

 Figure 2.1 Shared Memory Model in UPC

Memory is divided into partitions where each partition Pi has affinity to thread Thi,

shown in Figure 2.1. UPC memory is divided into two partitions: Private and Shared.

For accessing private part of the memory is similar in C language. To access the

shared part, the user should use “shared” qualifier

As we mentioned, UPC has two kinds of data; shared and private. Private Memory

space is allocated for an object by UPC when a private object declared. Private

objects that are created by a thread is accessible only by this thread. In addition to

this, shared memory space is partitioned for shared objects which have affinity with a

thread and all data in the global address space can be reached by all operations

without help from user.

It’s important for data locality to utilize data distribution and work sharing in UPC.

This model provides work sharing by upc_forall function for distributing tasks to

each thread.

Usage of distributed shared memory model simplifies data distribution in UPC. This

model provides sharing data by unsophisticated statements. For example to share an

 10

vii

vi

array of size N equally in UPC, user declares the array as “shared” and UPC

distributes array in round robin fashion among threads.

UPC has a library that provides parallel programming functions that supports

collective (that means data is sent and received from many nodes synchronously)

operations such as broadcast, gather, scatter etc. for user to access and manipulate

shared and private data by threads in a collective way. This library is also called as

UPC Collective Library.

Some basic keywords that are being used in UPC are defined below:

THREADS : THREADS keyword is const int variable that can be signified at

compile time or runtime. It defines the number of threads which the current UPC

program is used.

MYTHREAD : MYTHREAD keyword is const int variable that used for signify the

current thread number that is currently being executed and initialized between 0 and

THREADS-1 indexes.

upc_forall : upc_forall statement is a collective parallel statement and looks similar

to a traditional for loop but adds a fourth parameter, that defines the affinity. This

field determines the current iteration of the loop should be run by thread.

upc_barrier : upc_barrier is the parallel statement that makes all threads to wait at

barrier until all threads has reached it. It provides synchronizing of the threads when

data dependency appears between threads.

 11

vii

vi

upc_all_broadcast : This function is used to copy a block of memory which has

assigned to a thread, to a block of shared memory on each thread as shown in Figure

2.2.

 Figure 2.2 upc_all_broadcast

upc_all_scatter : This operation is used for copying an ith block of shared memory

which has an affinity with a thread, to a block of shared memory which has affinity

with ith thread as shown in Figure 2.3.

 Figure 2.3 upc_all_scatter

upc_all_gather : This operation is used to copy a block of shared memory with

affinity to ith thread, to ith block of shared memory which has affinity to a thread

[10] as shown in Figure 2.4.

 12

vii

vi

 Figure 2.4 upc_all_gather

upc_all_reduce : The upc_all_reduce function is a computation operation which is

used to execute a user specified operation such as upc_add on the threats and return

the result to a single thread.

upc_all_sort : The upc_all_sort function is a computation operation which is used to

perform a sorting operation of a taken shared array in ascending order.

In UPC model requirements of the user to develop application is, analyzing the

association of programming model and making effort for data locality and memory

consistency.

User don’t need to handle complex language structures for high level programming

because UPC provides user an easy mapping with low level instructions and also this

model presents to user a common syntax for parallel programming in C.

Providing of converting a sequential program to a simple shared- memory

implementation easily, performing incremental parallelization of applications, ability

and efficient mapping to machine architecture, minimization of thread

communication, usage of simple statements are the key features of UPC model. Also

pointers and arrays can easily tied to addresses and provides easy usage to

 13

vii

vi

programmer. But like other systems UPC has disadvantages too. UPC does not

support thread groups and distributions on arrays do not provide flexibility.

 14

vii

vi

 Chapter 3

 Hybrid MPI+UPC Model

Hybrid programming model is preferred because of offering reduced communication,

improved load balance, memory consumption and also improved level of parallelism.

MPI is an API based library that provides flexible and efficient programming

environment the programmer and it can be linked C, C++ or Fortran languages. On

the other hand, UPC is an extension of C programming language and supports

distributed, shared memory systems for parallel programming. Both MPI and UPC

use a Single Program Multiple Data (SPMD) model. SMPD is a high level

programming model that provides a single program is executed by all tasks. This

model also allows to execute different data on all tasks. Thus, the UPC program calls

MPI libraries to form a hybrid program with an SPMD model.

The objective of the hybrid MPI+UPC programming model is to combine the

strengths of MPI’s locality control and scalability with UPC’s fine grain parallelism

and ease of programming and UPC's partitioned global address space features. The

hybrid model consists of UPC - an extension of C language - , MPI library, so we can

say the model is simply a UPC program that calls MPI library and program is

compiled with the UPC compiler and linked with MPI libraries [16].

MPI demands large granularity and small messages are expensive because every

communication has a fixed startup overhead latency. Thus, the hybrid model will

use MPI for the outer parallelism and UPC for inner parallelism.

 15

vii

vi

UPC Group 0 UPC Group 1

UPC Group 2 UPC Group 3

MPI0 MPI1

MPI2 MPI3

0

2

1

3

1 0

3 2

2 3 2

01

3

0 1

MPI Group

 Figure 3.1 The Funneled Hybrid MPI+UPC Model

Figure 3.1 shows a hybrid model in which multiple UPC groups are combined with

one outer MPI group. In this figure, gray circles represent the hybrid MPI+UPC

master thread and white circles represent UPC threads. UPC threads can

communicate with each other within their group while MPI is used for intergroup

communication. There is only one master thread in each UPC group, such as the last

thread (MYTHREAD == THREADS-1) which can participate in MPI

communication; i.e., responsibility of all communication is on the master thread. Our

model is very similar to MPI_THREAD_FUNNELED support in which MPI

implementation may be multithreaded but only one of those threads (main thread)

makes MPI calls [17,18]. We can call this hybrid model as the funneled model.

 16

vii

vi

Pure MPI
One MPI process

per group

Hybrid
MPI+UPC

MPI: intergroup
communication

UPC: inner group
communication

Pure UPC
Distributed global

address space

Funneled Model
One process in every UPC group

that participates in MPI
communication

 Figure 3.2: Scheme of parallel programming model on hybrid platforms.

As shown in Figure 3.2, hybrid model offers more acceptable model than MPI one

sided communication because it’s able to utilize UPC’s programming features and

tunable performance model. Also this model enables the processing of larger

problems by using shared global address space for memory constrained MPI codes.

For locality constrained UPC codes, this model can provide locality through MPI

connections between UPC groups.

 17

vii

vi

 Chapter 4

 Memory Types

There are three fundamental memory types which multi-processors have been using.

 Shared Memory

 Distributed Memory

 Distributed Shared Memory

We believe it is important to understand these memory types for parallel

programming especially, hybrid parallel programming which combines the

programming paradigms of different memory types.

4.1 Shared Memory

Shared Memory expression defines a computer architecture that all CPU's can access

to a common main memory where the physical memory actually exists [12]. This

means addresses of different CPU's are located in same memory location. Also we

can call this architecture as Uniform Memory Access (UMA) Multiprocessor or

Symmetric Multiprocessor (SMP).

As usual in a uni-processor, CPU is connected to a primary memory and I/O device

by a bus. As an extension to this architecture, in shared memory, multiple CPUs are

connected to a bus and they share same primary memory. All CPUs have the same

access time to memory. A CPU can write a value into the primary memory easily and

all other CPUs can read the value. CPU is kept busy by cache memory while data is

taken from memory. The architecture is showed below in Figure 4.1 :

 18

vii

vi

Bus

CPU Cache Memory CPU Cache Memory CPU Cache Memory CPU Cache Memory

Primary
Memory

I/O Devices

 Figure 4.1 Structure of Shared Memory

There are some advantages and disadvantages of this architecture. Having a single

primary memory provides a user friendly programming environment and data

sharing between processors are fast and uniform. On the other hand, when user wants

to add more CPUs, the traffic on the shared memory - CPU bus increases and

becomes bottleneck so, to design and produce machines that have increasing number

of CPUs is expensive and difficult. Most of shared memory machines have ten or

fewer processors because of scalability problem [13].

4.2 Distributed Memory

Shared memory has limits for existence of processors in the architecture. We

mentioned that if the user adds more processors to the existing system, there can

occur bottleneck problem. To overcome this problem, distributing primary memory

builds an alternative architecture called as distributed memory and also called

nonuniform memory access (NUMA) micro-processor. In distributed memory, each

CPU has its own local memory and I/O. Distributed memories work independently.

 19

vii

vi

Changes in the local memory don't effect other processor's memories. Memory

access time changes from process to process whether address is located in that

processors local memory or remote processors local memory. If a processor is

needed to accessed by an another processor for getting data from it, user must define

the communication. In addition to this, synchronization of processes is one of the

users responsibilities.

Distributed memory architecture is scalable. User can increase the number of CPUs

and memories. Each processor can easily compute with its own memory. However

user is responsible for many skills about data communication when programming

and converting an existing structure that is mapped with shared memory architecture

can be difficult. Distributing data over memories is an important point in

programming. Distributed Memory architecture is showed in Figure 4.2 :

High Speed Network

CPU
Cache

Memory
CPU

Cache
 Memory

CPU
Cache

Memory
CPU

Cache
Memory

Memory

I/O
Device

Memory

I/O
Device

Memory

I/O
Device

Memory

I/O
Device

 Figure 4.2 Structure of Distributed Memory

 20

vii

vi

4.3 Distributed Shared Memory

Distributed shared memory (DSM) also known as distributed global address space

(DGAS) or partitioned global address space (PGAS). This hybrid architecture

combines shared memory architecture and distributed memory architecture. This

system utilizes both distributed memory and shared memory architectures and

improves flexibility and performance.

The architecture is designed by dividing memory into shared parts among nodes as

shown in Figure 4.3.

CPU CPU

CPU CPU

CPU CPU

CPU CPU

Shared
Memory

Shared
Memory

CPU CPU

CPU CPU

CPU CPU

CPU CPU

Shared
Memory

Shared
Memory

 Figure 4.3 Structure of Distributed Shared Memory

 21

vii

vi

Distributed shared memory reduces cost and complexity of developing a program

and it becomes easier to integrating different architectures to this architecture [14].

MPI and UPC allow programming on these memory types. However, we targeted our

hybrid programming model runs on the distributed shared model. The high

performance computer at Kadir Has University has the distributed shared memory

model.

 22

vii

vi

 Chapter 5

 Cannon’s Algorithm

Many scientific and engineering problems such as in signal processing and chemistry

need to use large matrices and matrix multiplication can be required for solution.

There are many matrix multiplication algorithms. One of them is Cannon’s algorithm

also it can be called Fox's algorithm [11].

Cannon algorithm is first described in 1969 by Lynn Elliot Cannon and this

algorithm provides memory efficiency in parallel programming and less

communication between processes.

We are interested in performing C = A x B multiplication where C, A, B are n x n

square matrices. We assume that these three matrices are decomposed into 2

dimensional square sub blocks. Let P is a square number and n will be the multiple of

 𝑷 .

In Cannon algorithm, a processor is responsible for (n / 𝑷) x (n / 𝑷) block of C.

The steps of matrix multiplication are explained for the case of 4x4 matrices as an

example below in Figure 5.1 .

 C = A x B

 Figure 5.1 Matrix Multiplication

𝑪 0,0 𝑪0,1 𝑪0,2 𝑪0,3

𝑪1,0 𝑪1,1 𝑪1,2 𝑪1,3

𝑪2,0 𝑪2,1 𝑪2,2 𝑪2,3

𝑪3,0 𝑪3,1 𝑪3,2 𝑪3,3

𝑩0,0 𝑩0,1 𝑩0,2 𝑩0,3

𝑩1,0 𝑩1,1 𝑩 1,2 𝑩1,3

𝑩2,0 𝑩2,1 𝑩2,2 𝑩2,3

𝑩3,0 𝑩3,1 𝑩3,2 𝑩3,3

𝑨 0,0 𝑨 0,1 𝑨0,2 𝑨0,3

𝑨1,0 𝑨1,1 𝑨 1,2 𝑨1,3

𝑨 2,0 𝑨 2,1 𝑨 2,2 𝑨 2,3

𝑨 3,0 𝑨 3,1 𝑨3,2 𝑨3,3

x

x

x

X

=

x

x

X

 23

vii

vi

 Figure 5.2 (a) Figure 5.2 (b)

 Figure 5.2 Broadcast and shift operations

First, starting from the diagonal sub blocks (Figure 5.2 (a)) of matrix A, 𝑨𝟎,𝟎 is

broadcasted to all processes in the first row. In the second row 𝑨𝟏,𝟏 is broadcasted

to all processors. For the other rows this process occurs similarly.

Then broadcasted A sub blocks are multiplied with sub blocks of B matrix in each

processor and stored in the sub blocks of C matrix.

After each multiplication sub blocks of B matrix are shifted to the upper sub block

and replaced with the lower sub block (Figure 5.2 (b)). This replacement is

continuously done and become a circular movement. And the results of the product

of sub blocks are added to the partial results of C sub blocks. Matrix multiplication

operation continues until sub blocks of B matrix are retuned to their original places.

Matrix multiplication steps are showed below in Figure 5.3 :

 C = T x B

𝑨 0,0

 𝑨1,1

 𝑨 2,2

 𝑨3,3

𝑩0,0 𝑩0,1 𝑩0,2 𝑩0,3

𝑩1,0 𝑩1,1 𝑩 1,2 𝑩1,3

𝑩2,0 𝑩2,1 𝑩2,2 𝑩2,3

𝑩3,0 𝑩3,1 𝑩3,2 𝑩3,3

𝑨0,0

𝑩0,0

𝑨0,0

𝑩0,1

𝑨0,0

𝑩0,2

𝑨0,0

𝑩0,3

𝑨1,1

𝑩1,0

𝑨1,1

𝑩1,1

𝑨1,1

𝑩1,2

𝑨1,1

𝑩1,3

𝑨2,2

𝑩2,0

𝑨2,2

𝑩2,1

𝑨2,2

𝑩2,2

𝑨2,2

𝑩2,3

𝑨3,3

𝑩3,0

𝑨3,3

𝑩3,1

𝑨3,3

𝑩3,2

𝑨3,3

𝑩3,3

𝑩0,0 𝑩0,1 𝑩0,2 𝑩0,3

𝑩1,0 𝑩1,1 𝑩 1,2 𝑩1,3

𝑩2,0 𝑩2,1 𝑩2,2 𝑩2,3

𝑩3,0 𝑩3,1 𝑩3,2 𝑩3,3

𝑨 0,0 𝑨 0,0 𝑨0,0 𝑨0,0

𝑨1,1 𝑨1,1 𝑨 1,1 𝑨1,1

𝑨 2,2 𝑨 2,2 𝑨 2,2 𝑨 2,2

𝑨 3,3 𝑨 3,3 𝑨3,3 𝑨3,3

X

x

x

=

=

x

=

 24

vii

vi

 C = T x B

 C = T x B

 Figure 5.3 Steps of Cannon’s Matrix Multiplication Algorithm

T matrix is the A matrix that is utilized at the current operation.

For the element of 𝑪𝟏,𝟐 is equal to 𝑨𝟏,𝟏 * 𝑩𝟏,𝟐 + 𝑨𝟏,𝟐 * 𝑩𝟐,𝟐 + 𝑨𝟏,𝟑 * 𝑩𝟑,𝟐 +

𝑨𝟏,𝟎 * 𝑩𝟎,𝟐 .

𝑨0,1

𝑩1,0

𝑨0,1

𝑩1,1

𝑨0,1

𝑩1,2

𝑨0,1

𝑩1,3

𝑨1,2

𝑩2,0

𝑨1,2

𝑩2,1

𝑨1,2

𝑩2,2

𝑨1,2

𝑩2,3

𝑨2,3

𝑩3,0

𝑨2,3

𝑩3,1

𝑨2,3

𝑩3,2

𝑨2,3

𝑩3,3

𝑨3,0

𝑩0,0

𝑨3,0

𝑩0,1

𝑨3,0

𝑩0,2

𝑨3,0

𝑩0,3

𝑩1,0 𝑩1,1 𝑩1,2 𝑩1,3

𝑩2,0 𝑩2,1 𝑩 2,2 𝑩2,3

𝑩3,0 𝑩3,1 𝑩3,2 𝑩3,3

𝑩0,0 𝑩0,1 𝑩0,2 𝑩0,3

𝑨 0,1 𝑨 0,1 𝑨0,1 𝑨0,1

𝑨1,2 𝑨1,2 𝑨 1,2 𝑨1,2

𝑨 2,3 𝑨 2,3 𝑨 2,3 𝑨 2,3

𝑨 3,0 𝑨 3,0 𝑨3,0 𝑨3,0

𝑨0,2

𝑩2,0

𝑨0,2

𝑩2,1

𝑨0,2

𝑩2,2

𝑨0,2

𝑩2,3

𝑨1,3

𝑩3,0

𝑨1,3

𝑩3,1

𝑨1,3

𝑩3,2

𝑨1,3

𝑩3,3

𝑨2,0

𝑩0,0

𝑨2,0

𝑩0,1

𝑨2,0

𝑩0,2

𝑨2,0

𝑩0,3

𝑨3,1

𝑩1,0

𝑨3,1

𝑩1,1

𝑨3,1

𝑩1,2

𝑨3,1

𝑩1,3

𝑩2,0 𝑩2,1 𝑩2,2 𝑩2,3

𝑩3,0 𝑩3,1 𝑩 3,2 𝑩3,3

𝑩0,0 𝑩0,1 𝑩0,2 𝑩0,3

𝑩1,0 𝑩1,1 𝑩1,2 𝑩1,3

𝑨 0,2 𝑨 0,2 𝑨0,2 𝑨0,2

𝑨1,3 𝑨1,3 𝑨 1,3 𝑨1,3

𝑨 2,0 𝑨 2,0 𝑨 2,0 𝑨 2,0

𝑨 3,1 𝑨 3,1 𝑨3,1 𝑨3,1

𝑨0,3

𝑩3,0

𝑨0,3

𝑩3,1

𝑨0,3

𝑩3,2

𝑨0,3

𝑩3,3

𝑨1,0

𝑩0,0

𝑨1,0

𝑩0,1

𝑨1,0

𝑩0,2

𝑨1,0

𝑩0,3

𝑨2,1

𝑩1,0

𝑨2,1

𝑩1,1

𝑨2,1

𝑩1,2

𝑨2,1

𝑩1,3

𝑨3,2

𝑩2,0

𝑨3,2

𝑩2,1

𝑨3,2

𝑩2,2

𝑨3,2

𝑩2,3

𝑩3,0 𝑩3,1 𝑩3,2 𝑩3,3

𝑩0,0 𝑩0,1 𝑩 0,2 𝑩0,3

𝑩1,0 𝑩1,1 𝑩1,2 𝑩1,3

𝑩2,0 𝑩2,1 𝑩2,2 𝑩2,3

𝑨 0,3 𝑨 0,3 𝑨0,3 𝑨0,3

𝑨1,0 𝑨1,0 𝑨 1,0 𝑨1,0

𝑨 2,1 𝑨 2,1 𝑨 2,1 𝑨 2,1

𝑨 3,2 𝑨 3,2 𝑨3,2 𝑨3,2

=

x

=

x

x

=

=

x

=

x

x

=

x

x

=

=

x

=

C

=

T

x

=

B

x

=

x

x

=

 25

vii

vi

The Cannon’s algorithm is showed below:

The Cannon matrix multiplication algorithm.

for i = 0 to (𝑷 − 𝟏) do // P is the total number of processors

 broadcast_A(T ← appropriate 𝑨𝒔𝒖𝒃 along rows)

 𝑪𝒔𝒖𝒃 ← T x 𝑩𝒔𝒖𝒃

 cshift_B (𝑩𝒔𝒖𝒃 upward along colums)

end for

 Figure 5.4 Cannon’s Algorithm

As shown in Figure 5.4, algorithm has three fundamental steps. The first step

broadcasts the diagonal Asub sub-blocks along each row of tiles. The broadcast

source will be shifted to the right of the rows for the next iteration. The second

step performs sub matrix multiplication. The final step performs an upward

circular shift along to each column of B matrix.

 26

vii

vi

 Chapter 6

 Codes Overview

In this chapter we developed four different implementations of the same parallel

program. This parallel program is matrix multiplication with Cannon’s algorithm and

MPI, UPC, hybrid MPI+UPC and optimized hybrid MPI+UPC version respectively.

6.1 MPI Implementation

Our MPI implementation of Cannon’s algorithm is based upon a two -

dimensional block decomposition, in which there are two collective

communication operations involving a subset of the processes such as rows of

processes and columns of processes. In order to involve only a subset of the

original process group in a collective operation, we need to create a Cartesian

topology, a two-dimensional virtual grid of processes as shown in Figure 6.1

 27

vii

vi

Figure 6.1: An MPI Cartesian Topology: a two-dimensional virtual grid of

MPI processes with wraparound connections.

In order to involve only a subset of the original process group in a collective

operation we need to utilize Cartesian virtual topology. Virtual topologies in

MPI, define a mapping of processes into a geometric shape [15]. This is not a

physical implementation, a logical implementation that should be programmed

by software developer. Generally virtual topologies are used for simplifying

writing code and optimizing communications.

Each process is connected to its neighbors virtually and shifting operation can

be cyclic [19]. As we used in our MPI implementation, this topology might used

for decomposing a matrix into two dimensional logical grid of processes and

providing communication that user defined row wise or column wise

communication as shown in Figure 6.1 above.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Row 0

Row 1

Row 2

Row 3

Column 0 Column 1 Column 2 Column 3

 28

vii

vi

MPI supports and provides Cartesian topology and has Cartesian topology

functions. Basics are:

 MPI_Cart_Coords

 MPI_Cart_Create

 MPI_Cart_Rank

MPI_Cart_Coords function is used to handle and process a Cartesian

communicator. This function returns the coordinates of the process in the

Cartesian topology as a result.

MPI_Cart_Create function is used to create a new communicator which

includes topology information.

MPI_Cart_Rank function is used to return process rank in given Cartesian

communicator.

Figure 6.2 shows the Cannon’s algorithm implementation written for the MPI

model. The code has two major parts, the first of which is to construct the

Cartesian topology. The second part is to implement the algorithm in three

steps. In the first step, the processes in the rows of the virtual process grid

participate in the broadcast communication. The second step performs the sub

matrix multiplication. In the last step, each column of processes in the grid

performs the send/receive operations for executing a circular shift operation

across a chain of processes in the grid column. The MPI program has explicit

control of data locality. Regional data locality is provided among rows and

columns by using the advance feature of MPI’s Cartesian virtual topology. MPI

can enhance UPC by providing explicit control over data locality in the hybrid

programming model, and Cannon’s algorithm is an ideal selection to

demonstrate the importance of regional data locality.

 29

vii

vi

 // PART 1: Construct a Cartesian topology

 MPI_Init (&argc, &argv);

 MPI_Comm_rank (MPI_COMM_WORLD, &id);

 MPI_Comm_size (MPI_COMM_WORLD, &p);

 MPI_Dims_create (p, 2, grid_size);

 MPI_Cart_create (MPI_COMM_WORLD, 2, grid_size, periodic, 1, &grid_comm);

 MPI_Comm_rank (grid_comm, &grid_id);

 MPI_Cart_coords (grid_comm, grid_id, 2, grid_coords);

 MPI_Comm_split (grid_comm, grid_coords[0], grid_coords[1], &row_comm);

 MPI_Comm_split (grid_comm, grid_coords[1], grid_coords[0], &col_comm);

 // PART 2: Cannon Algorithm

 int S = (int) sqrt(p);

 for(k = 0; k < S; k++) {

 MPI_Bcast(Atmp, N*N, mpitype, src, row_comm); // STEP 1: Broadcast A

 matmul(Atmp,B,C); // STEP 2: C = A x B

 MPI_Sendrecv(B, N*N, mpitype, left, tag, // STEP 3: CSHIFT B

 btmp, N*N, mpitype, right, tag, col_comm, &status);

 }

 Figure 6.2: MPI implementation of Cannon's Algorithm.

6.2 UPC Implementation

Figure 6.3 shows the UPC implementation of matrix multiplication with a block

distribution. The UPC code for the matrix multiplication is almost the same size

as the sequential code. This makes UPC easy to program and it allows for

incremental parallelization of sequential codes. The global (shared) array

declaration has the keyword shared [block-size] to distribute shared arrays in a

block per thread in a round-robin fashion.

 30

vii

vi

shared [N] double Aupc[N][N], Bupc[N][N], Cupc[N][N];

void matmul_upc() {

 int i,j,k;

 double sum;

 upc_forall(i=0; i<N; i++; &Aupc[i][0])

 for (j=0; j<N; j++) {

 sum = 0;

 for(k=0; k< N; k++)

 sum +=Aupc[i][k]*Bupc[k][j];

 Cupc[i][j] = sum;

 }

}

 Figure 6.3: UPC matrix multiplication with block distribution.

The UPC does not provide a two-dimensional virtual topology to make a group

of threads for regional data locality such as the row-wise or column-wise

grouping as presented in Section 6.1. The UPC only differentiates between two

different kinds of data, shared (global) and private (local) for threads. UPC

partitions parallel works by using the upc_forall construct, which distributes

iterations of the loop according to the affinity expression, &Aupc[i][0]. The

UPC will assign each iteration to the thread that has affinity to the

corresponding element of Aupc. Berkeley UPC distribution version 2.10.2

provides a matrix multiplication for the Cannon algorithm and that is the code

we utilized for UPC matrix multiplication benchmarking. However, our

MPI+UPC hybrid uses the block matrix multiplication (Figure 6.3) for the sub

matrix multiplication.

 31

vii

vi

6.3. Hybrid MPI+UPC Implementation

In Figure 6.4, the funneled hybrid MPI+UPC is formed with the careful

combination of the MPI program of Figure 6.2 and the UPC program of Figure

6.3. Here again, we presented the simplified hybrid code however, the main

algorithm of the code should be clear. The hybrid program consists of one MPI

group and each MPI process has one UPC group as shown in Figure 3.1. There

is only one master thread in each UPC group such as the last thread

(MYTHREAD == THREADS-1) which can participate in MPI operations as an

MPI process. The master thread initializes MPI and is able to construct an MPI

Cartesian topology at Part 1 of the code. Part 2 performs Cannon’s algorithm

with two explicit levels of parallelism. MPI manages the outer parallelism by

bringing the appropriate sub-blocks to the master threads of each UPC group.

Master threads copy their private sub-blocks to the shared sub-blocks by a

copy_from_master_to_upc() routine which performs simple copy operations and

synchronizes each UPC thread group with upc_barrier(). The shared sub-blocks

are in the global address space of each UPC group. Each UPC participates in the

inner level parallelization of sub-block matrix multiplication with a block

distribution which is given by matmul_upc() in Figure 6.3.

 32

vii

vi

shared [N] double Aupc[N][N], Bupc[N][N], Cupc[N][N];

Boolean MASTER = (MYTHREAD == THREADS – 1);

int main (int argc, char *argv[]) {

 if(MASTER) { // PART 1: Construct a Cartesian topology

 MPI_Init (&argc, &argv);

 MPI_Comm_rank (MPI_COMM_WORLD, &id);

 MPI_Comm_size (MPI_COMM_WORLD, &p);

 . . .

 MPI_Comm_split (grid_comm, grid_coords[0], grid_coords[1], &row_comm);

 MPI_Comm_split (grid_comm, grid_coords[1], grid_coords[0], &col_comm);

 }

 for(k = 0; k < S; k++) { // PART 2: Cannon Algorithm

 if(MASTER)MPI_Bcast(Atmp,N*N,type,src,row_comm); // STEP 1:Broadcast A

 copy_from_master_to_upc(Atmp,B); // Copy to shared

 matmul_upc(); // STEP 2: C = A x B

 if(MASTER) MPI_Sendrecv(B,N*N,type,left,tag, // STEP 3: CSHIFT B

 btmp, N*N, mpitype, right, tag, col_comm, &status);

 }

}

Figure 6.4: Hybrid MPI+UPC Cannon’s algorithm. The sub-block

multiplication is with UPC block distribution.

The hybrid program is compiled with the UPC compiler and linked with the

MPI libraries. The -fupc-threads-NUM option generates code for a fixed number

NUM of UPC threads. The MPI launcher is used to start the hybrid program.

 33

vii

vi

Below is an example UPC compilation and an example MPI launcher in which 4

MPI processes are created and each process creates a UPC group with 4 threads.

The total parallel thread number is 4MPI x 4UPC = 16 threads, as shown in

Figure 3.1.

$ upcc –o matmul_hybrid matmul_hybrid.upc -fupc-threads-4 –O

$ mpiexec --mca btl self,openib –np 4 –hostfile hosts

matmul_hybrid

6.4. Optimized Hybrid MPI+UPC Implementation

Although overlapping communication with computation provides the

opportunity to improve the execution time of a parallel program, this parallel

programming style is not widely used due to its complexity. However, the

hybrid Cannon’s algorithm presents a good opportunity for overlapping

communications with computation. In this algorithm, we only need the full

synchronization of each UPC group before performing the sub-block matrix

multiplication. The computation of sub-block UPC multiplication can be

overlapped with the MPI’s communication. However, the upc_forall construct

distributes iterations of the loop according to the affinity expression at the

fourth parameter of the construct. The UPC will assign each iteration to the

thread that has affinity to the corresponding element of the shared array. This

implies that assignment statements of upc_forall involving shared arrays are

executed exclusively by those threads which are owners of the shared array

elements. We structured our hybrid code such that the master thread will not

spend excessive much time on upc_forall computations, but rather dedicate time

to MPI communication, since the master thread is both the UPC thread and the

MPI process.

 34

vii

vi

If the hybrid code partitions the shared arrays such that the master thread does

not have shared array elements or has much less than the other threads, the

master will finish upc_forall earlier than the others and reach the MPI

communication operations while the other threads are still executing their

portion of upc_forall iterations. Figure 6.4 shows a distribution scheme in

which fewer shared array elements reside on the master thread’s memory space.

The shared array declaration has the keyword shared [block-size] to distribute

shared arrays in a block per thread in a round-robin fashion. The shared array

size is NxN in the sub-block of Cannon’s algorithm, and in this way the master

thread should have no data. The block size must be (N*N)/(THREADS-1) so

that the last thread will have no data in a round-robin fashion. However, the

Berkeley UPC implementation has a limit for the block size of 64k. Even if the

problem size reaches the limit, the solution in Figure 6.4 still provides less

shared array elements to the last thread (master thread) because of the round-

robin fashion distribution. The addition of the code in Figure 6.5 optimizes the

hybrid MPI+UPC implementation of Figure 6.4 to overlap MPI communications

with UPC computations on hybrid MPI+UPC implementations.

 35

vii

vi

#define BLOCK (N*N)/(THREADS-1)

#if BLOCK < 65536

shared [BLOCK] double Aupc[N][N];

shared [BLOCK] double Bupc[N][N];

shared [BLOCK] double Cupc[N][N];

#else if

shared [65536] double Aupc[N][N];

shared [65536] double Bupc[N][N];

shared [65536] double Cupc[N][N];

#endif

Figure 6.5: Distribution scheme to optimize the hybrid MPI+UPC Cannon’s

algorithm.

 36

vii

vi

 Chapter 7

 Performance Evaluation

This section will illustrate the impact of our proposed hybrid MPI+UPC approach

through several experiments by running four different implementations of the

Cannon algorithm on a 13-node HP BL460c cluster located at Kadir Has University.

This SMP cluster consists of 2x2.66 GHz Intel Xeon Quad Core CPUs and 24 GB

RAM with a total of 8 processing cores per node running Linux 2.6.18 connected

with 20 GBps Infiniband.

The first experiment objective is to find an optimum UPC group for the hybrid

MPI+UPC model. The results in Figure 7.1 show the time required to perform 5000
2

matrix multiplications with groups of 1, 4, 8, 16 and 64 UPC THREADS and MPI

processes. The ideal performance is in the group of 8 UPC threads. Each node in our

system holds 8 cores per slot, indicating that each UPC thread goes to different cores

in the nodes. In fact, we configured UPC’s GASNET_NODEFILE such that each

consecutive thread goes to consecutive cores in the node for the hybrid runs.

Similarly, we ensured that each MPI process goes to different nodes by putting

slots=1 option in the MPI’s hostfile for the best performance of the hybrid model

with a round-robin fashion. However, during plain MPI runs, the hostfile is

configured with slots=8 to advise consecutive processes to be in consecutive cores

for the process affinity.

 37

vii

vi

Figure 7.1: The effect of varying numbers of MPI processes and UPC threads on

execution time for 5000
2
.

The second experiment was designed to reveal how well the proposed hybrids

perform compared to plain MPI and plain UPC versions. Figure 7.2 shows the total

execution time on the vertical axis, and the horizontal axis denotes the problem size.

The CPU times of hybrids and others for the small problem size of 2000
2
 and 3000

2

are almost the same.

For the other problem sizes, hybrids consistently obtain better

performance than the UPC. However, the MPI outperforms hybrids for problem sizes

of 7000
2
and 10000

2
.

0

50

100

150

200

64x1 16x4 9x8 4x16 1x64

Ex
e

cu
ti

o
n

 ti
m

e
 (

se
c)

MPI Processes x UPC Threads

Cannon Algorithm on 64 CPUs

Hbrid

Optimized Hybrid

 38

vii

vi

Figure 7.2: Execution time of Cannon’s Algorithm on 36 nodes with varying

problem sizes, Hybrids run 4 MPI x 8 UPC configurations.

Table 7.1 shows the percentage gains of the optimized hybrid compared to MPI,

UPC and plain hybrid. For the 5000
2
 problem size, the optimized hybrid shows an

efficency of 47.72% over MPI and 46.83% over UPC. As for the plain hybrid, the

optimized hybrid achieved approximately 15% efficency.

Table 7.1: Comparing percentage gains of the optimized hybrid MPI+UPC version to

MPI, UPC and the plain hybrid MPI+UPC of Figure 6.4.

Data Size 4000
2

5000
2

6000
2

7000
2

8000
2

9000
2

10000
2

Gain Over MPI 40.95 47.72 13.4 -7.19 14.72 13.49 -12.92

Gain over UPC 44.76 46.83 3.13 45.72 43.06 26.49 44.56

Gain over Hybrid 10.36 13.11 13.10 15.35 12.94 17.45 19.04

0

100

200

300

400

500

600

2000 3000 4000 5000 6000 7000 8000 9000 10000

Ex
e

cu
ti

o
n

 ti
m

e
 (

se
c)

Problem Size

MPI,UPC (36 Cpus)
Hybrids(4x8=32Cpus)

MPI

UPC

Hybrid

Optimize Hybrid

 39

vii

vi

Figure 7.3: Execution time of Cannon Algorithm on 100 CPUs with large problem

sizes.

Figure 7.3 shows the behavior of MPI, UPC and optimized hybrid MPI+UPC codes

on the large data size with a fixed number of CPUs. The optimized hybrid achieved

around 20% and 15% efficiency compared to MPI and UPC, respectively. However,

UPC code outperforms MPI in this scenario. As MPI requires copying data on shared

memory, when the data size increases and CPU size stays the same this increases the

number of the direct access of shared memory of UPC, and therefore MPI could be

considered less efficient unless the number of CPUs increases along with data sizes.

0

2000

4000

6000

8000

10000

12000

10000 20000 30000 40000

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
.)

Comparing large data size at 100 Cpus

MPI

UPC

Optimize Hybrid

 40

vii

vi

 Chapter 8

 Related Works

Hybrid parallel programming is a model of combining multiple models within a

single application. The general objective of these studies is to merge strengths of

different kinds of models for increasing performance, scalability and also cost.

Hybrid programming with MPI and OpenMP studies are very popular. In these

studies MPI takes the responsibility of outer level parallelism and OpenMP makes

inner communication.

Hybrid programming is shown as a model that is utilized to provide more efficient

use of memory, improving load balance and performance. In the literature, there are

lots of papers about hybrid programming that shows hybrid model and we mentioned

some of them below.

One of the studies on SMP nodes is Rabenseifner et al. [18] discussed benefits of

MPI+ OpenMP hybrid programming model, comparing with the main strengths and

weaknesses of pure MPI model and pure OpenMP model. This study also describes

solutions of possible problems that can be occur in hybrid programming model.

The hybrid model which is discussed in this study is a masteronly model and

combines distributed memory parallelization on the node interconnect with shared

memory parallelization inside each node. This model uses one MPI process (main

thread) per node with no MPI calls inside the node. OpenMP makes calls inside the

node. MPI provides this model with MPI_THREAD_FUNNELED. And in addition

to this MPI supports MPI_THREAD_SINGLE which has only one thread to execute,

MPI_THREAD_SERIALIZED which provides multiple threads to make MPI calls,

 41

vii

vi

only one at a time and MPI_THREAD_MULTIPLE that provides multiple threads

can make MPI calls with no restrictions.

We mentioned that MPICH is the most known MPI implementation used worldwide.

Prototov and Skjellum [3] explain layers, capabilities and deficiencies of MPICH

implementation in the study. One of the main deficiencies is known that nonthread

safety of this implementation this means all communication and computation

activities run in a single thread. They generate a portable, thread safe and

multithreaded MPICH design that allows multithreaded applications to take

advantage of MPI.

Skjellum et al. [4] describe the requirements for thread safe MPI implementation.

The study mentions that it should use thread safe run time libraries and the design of

the model should call multiple threads and services of them for execution. The paper

also defines features of non-thread-safe MPICH design and improved model of

thread safe so multithreaded MPICH design, named MPICH_MT. (Polling, pushing

and busy waiting operations are eliminated for gaining performance.) Designing new

model, portability and efficiency remained, performance added to the current design.

This new model is developed for the Windows NT operating system using Win32

API.

Ojima et al. designed and implemented a software distributed shared memory system

named SCASH-MPI [20] by using MPI as the communication layer by utilizing

features of OpenMP such as incremental parallelization and shared memory feature.

Jost et al. [21] compare different parallelization approaches on clusters of SMP

(symmetric multi-processors) nodes for the selected benchmark application. These

approaches are; pure MPI, pure OpenMP and two hybrid (MPI+OpenMP) strategies

and selected benchmark Block Tridiagonal (BT) solution of the CFD (computational

 42

vii

vi

fluid dynamics) benchmark. BT benchmark solves system in three dimensional

equations.

For this comparative study three sun fire cluster environments running on Solaris are

used. Four Sun Fire 6800 nodes are connected by a Sun Fire Link (SFL), Four Sun

Fire 6800 nodes are connected by a Gigabit Ethernet (GE) and one Sun Fire 15K

node are used for implementations. Fortran 95 compiler was used. They report the

best timings for the hybrid implementations. The pure MPI model shows the best

scalability. In spite of the pure OpenMP shows good scalability, it has disadvantages

when compared to MPI implementation. These disadvantages are reported that;

OpenMP requires shared address space and this limits scalability of the number of

CPUs in the node, because of the usage of OpenMP directives on the outer loops, it

restricts the scalability the number of inner grids in one dimension. As conclusion,

this study shows hybrid parallelization is suitable for large applications.

Parks [22] studied on comparison of process networks and MPI. The process network

model is a communication model that is used applications of embedded signal

processing, image processing for geographical information systems and sonar beam

forming. In this paper it’s shown that, send/receive, broadcast and gather/scatter

primitives of MPI can be emulated in process networks. Also benchmark

performances are made using java library for MPI and process network model.

He et al. define the MPI+OpenMP model and implements the row-wise and column-

wise block-striped decomposition based matrix multiplication with hybrid (MPI +

OpenMP) programming model in the multi-core cluster system [23]. To compare the

performance of hybrid model also pure MPI implementation is generated too.

Programs are executed with the 1400x1400 and 2100x2100 size of matrixes and

compilers are Windows XP Visual Studio 2005 and GCC (compiler system of Unix

Compatible Operating System-GNU-),and the compiler on Linux is GCC.

 43

vii

vi

Performance tests are made using visual studio compiler on windows, GCC compiler

on Linux and GCC compiler on Windows.

Experimental results are shown in the paper that running time of hybrid

implementation is shorter than pure MPI implementation and Windows is better than

Linux for parallel environment. The study is resulted that MPI + OpenMP makes

good use of CPU computing resources and optimizes the parallel algorithm which is

based on pure MPI implementation.

Another study that evaluates MPI performance against UPC and OpenMP written by

Mallon et al.[24]. UPC is defined as a PGAS language that allows shared memory

like programming on distributed memory systems with utilizing the advantage of

MPI's data locality. Additionally features of MPI, OpenMP and hybrid model are

shown in the paper.

Smith and Bull [25], discuss implementation, development, performance and benefits

of MPI/ OpenMP applications on single and clustered SMPs in their study. Before

the case studies benefits and deficiencies of OpenMP, MPI and hybrid model are

reviewed. For the case study, Game of Life code parallelized and MPI, OpenMP and

MPI+OpenMP versions are developed and performance results are shown. Game of

Life consists a collection of 2D cells that have only two states alive or dead, based on

some mathematical rules. Result of this implementation is reported as; OpenMP code

offers potential for MPI/ OpenMP codes to give a better performance than pure MPI

implementations. Another case is a real application code named Quantum Monte

Carlo code (QMC). This consists of large class of computer algorithms to simulate

quantum systems.

In this study pure MPI version and OpenMP version of mixed mode QMC code are

implemented and results of the implementations are shown. As conclusion it's

 44

vii

vi

reported that, a hybrid model of programming may provide more effective

performance for an SMP cluster because of hybrid model merges different

characteristics of both paradigms to give the best performance. However, it doesn't

mean that it will always be the most effective and ideal model for all clusters. It must

be considered for the nature of the code.

Blagojevic et al.[1] designed and implemented Process Shared Memory (PSHM), an

implementation of Berkeley UPC runtime, to provide shared memory among

processes and allows hybrid execution models. UPC tasks are mapped to a mix of

processes and pthreads (POSIX-thread programming library Portable Operating

System Interface- shared memory segments). This is the first PGAS implementation

that provides hybrid mapping of threads to both processes and pthreads using shared

memory. Fine grained benchmarks, GUPS, MCOP and Sobel are discussed. GUPS

is a benchmark which operates read/write and modifies accesses to random locations

in large arrays. MCOP benchmark performs solution of matrix chain problem by

distributing columns across UPC threads and communication occurs between these

threads. Sobel performs edge detection by partitioning source image across threads.

this study combines PHSM with pthreads and fine grained benchmarks, more than

%60 increment of performance is reported.

A mixed mode MPI+OpenMP version of the CGWAVE [26] code have developed

by The DoD High Performance Computing Modernization Program (HPCMP)

Waterways Experiment Station (WES). The CGWAVE code is used for forecasting

and analysis of harbor conditions. To distribute the wave components MPI is used

and for parallelization of the code OpenMP is used. The mixed code won the "Most

Effective Engineering Methodology Award” at SC98.

A new hybrid model that combines MPI and UPC was explored first by [16] Dinan et

al. and this model is improved to allow incremental access to greater amount of

 45

vii

vi

memory and utilizes MPI's data locality and UPC's partitioned global address space

features. Hybrid MPI+ UPC programming model is defined in terms of sub models

that vary the level of nesting and the number of instances of the model. They classify

the hybrid model into three categories then compare and explain these models with

calculating dot product of two vectors using hybrid model. The flat model permits all

processes to participate in both UPC and MPI communication. In the nested-

funneled model only one member of each UPC group can participate in MPI

communication. Another hybrid model is the nested-multiple model, the most

powerful, allowing MPI to span to all UPC processes in all groups. But, this added

flexibility causes greater complexity. Each process participates in communication so

all processes in each group initializes MPI. Authors have demonstrated its

effectiveness and performance gains with Barnes-Hut n-body simulation which

simulates gravitational interactions and motion of astronomical bodies over time. Our

funneled model is similar to the nested-funneled model in that only one member of

each UPC group is able to make MPI calls. However, in our funneled model, every

UPC group has its own shared variables which are only distributed at that UPC

group; they are not distributed across all groups to enlarge the MPI memory. This

study calculates lower and upper bounds of upc_forall by using MPI id and UPC

group id. In contrast, our approach simply uses the shared array index upc_forall for

lower and upper bounds in each UPC group. In addition, we implemented the

Cannon algorithm with advanced MPI features to show the importance of regional

locality in comparison with UPC implementation of the same algorithm. We also

exploited some of the advanced features of MPI and UPC programming to overlap

MPI communications with UPC computations on the hybrid MPI+UPC

implementations.

 46

vii

vi

 Chapter 9

 Conclusion

In this thesis, we have researched advantages, disadvantages, strengths, weaknesses

and various implementations with giving examples in real life of MPI model, UPC

model. And hybrid MPI+UPC model is discussed to increase performance and

scalability with combining two different models features. Also memory types that are

being used in parallel programming are introduced with figures and a matrix

multiplication algorithm called Cannon’s algorithm is discussed and used with MPI

virtual topology in our implementations.

We have developed a hybrid parallel programming model that is formed by

combining strength of MPI's data locality control and coarse grain parallelism style

with taking advantage of strengths of UPC's fine grain approach, global address

space and easy programming features.

We provided four different implementation codes of Cannon's algorithm employing

four different parallelization paradigms, pure MPI, pure UPC, the hybrid MPI+UPC

and the optimized hybrid MPI+UPC model on a cluster of SMP nodes. Each

implementation employed the advance features of the underlining programming

model to have the best performance gains.

We evaluated the performance and scalability of the purposed hybrid MPI+UPC

model on the Cannon matrix multiplication benchmark by comparing the baseline

pure MPI and pure UPC implementations on up to 100 cores. We also utilized MPI

Cartesian topology and recognize that hybrid MPI+UPC implementation with MPI

Cartesian topology can provide the locality control in which UPC needs and hence,

improved the performance 2X comparing to UPC only.

 47

vii

vi

Similarly the hybrid implementation demonstrated %20 performance gain on some

configurations in comparison to MPI-only implementation by reducing intra-node

communication overhead and also providing a larger message size since the UPC

part of the hybrid handles the fine grain parallelism. Furthermore, overlapping UPC

computations with MPI communications optimizes the hybrid code with an

additional 20% performance enhancement over the benchmark.

 48

vii

vi

 References

[1] F. Blagojevic, et al., “Hybrid PGAS Runtime Support for Multicore

Nodes,” Fourth Conference on Partitioned Global Address Space

Programming Model (PGAS10), Oct 2010.

[2] M. Forum, “MPI: A Message-Passing Interface Standard,” University of

Tennessee Knoxville, TN, USA UT-CS-94-230, 1994.

[3] B. V. Protopopov and A. Skjellum, “A multithreaded message passing

interface (MPI) architecture: performance and program issues,” J. Parallel

Distrib. Comput., vol. 61, pp. 449-466, 2001.

[4] A. Skjellum, et al., “A Thread Taxonomy for MPI,” presented at the

Proceedings of the Second MPI Developers Conference, 1996.

[5] Y. Ojima, et al., “Design of a Software Distributed Shared Memory System

using an MPI communication layer,” presented at the Proceedings of the 8th

International Symposium on Parallel Architectures,Algorithms and Networks,

2005.

[6] F. Trahay, et al., “An analysis of the impact of multi-threading on

communication performance,” in Parallel & Distributed Processing, 2009.

IPDPS 2009. IEEE International Symposium on, 2009, pp. 1-7.

[7] M. J. Quinn, Parallel programming in C with MPI and openMP. Dubuque,

Iowa: McGraw-Hill, 2004.

[8] S. Chauvin, et al., “UPC Manual, v1.2” High Performamnce Computing

Laboratory, The George Washington University, May 2005.

[9] E. Lusk, “MPI in 2002: has it been ten years already?,” in Cluster

Computing, 2002. Proceedings. 2002 IEEE International Conference on,

2002, p. 435.

[10] D. G. Elizabeth Wiebel, Steve Seidel, “UPC Collective Operations

 Specifications, V1.0,” UPC Consortium, December 12, 2003.

[11] G. Fox, Hey, A. J. G, Otto, S, “Matrix Algorithms on the Hypercube I: Matrix

Multiplication,” Parallel Computing, vol. 4, 1987.

 49

vii

vi

[12] https://computing.llnl.gov/tutorials/parallel_comp/#HybridMemory/

 Accessed: 10.04.201

[13] K. A. Robbins, S. Robbins, “UNIX systems programming: communication,

 concurrency, and threads (2 ed.),” Prentice Hall PTR, 2003

 [14] Multiprocessing Cots Technology Feature

 “ Distributed memory or shared memory? By Doug Clarke”

 http://pdf.cloud.opensystemsmedia.com/vmecritical.com/Synergy. Jun04.pdf

[15] https://computing.llnl.gov/tutorials/mpi/#Virtual_Topologies/

 Accessed: 10.05.2011

[16] J. Dinan, et al., “Hybrid parallel programming with MPI and unified parallel

C,” presented at the Proceedings of the 7th ACM international conference on

Computing frontiers, Bertinoro, Italy, 2010.

[17] W. Gropp and R. Thakur, “Issues in developing a thread-safe MPI

implementation,” in Recent Advances in Parallel Virtual Machine and

Message Passing Interface. vol. 4192, B. Mohr, et al., Eds., ed, 2006, pp. 12-

21.

[18] R. Rabenseifner, et al., “Hybrid MPI/OpenMP Parallel Programming on

Clusters of Multi-Core SMP Nodes,” presented at the Proceedings of the

2009 17th Euromicro International Conference on Parallel, Distributed and

Network-based Processing, 2009.

[19] Ohio Supercomputer Center, Parallel Programming with MPI

http://www.osc.edu/supercomputing/training/mpi/Feb_05_2008/mpi_0802_m

od_ topologies.pdf

[20] Y. Ojima, et al., “Design of a Software Distributed Shared Memory System

using an MPI communication layer,” presented at the Proceedings of the 8th

International Symposium on Parallel Architectures,Algorithms and Networks,

2005.

[21] Jost, G., Jin, H., Mey, D. a., & Hatay, F. F. “Comparing the OpenMP,

 MPI, and Hybrid Programming Paradigms on an SMP Cluster”. Germany:

 NAS Technical Report, 2003.

 50

https://computing.llnl.gov/tutorials/parallel_comp/#HybridMemory/
https://computing.llnl.gov/tutorials/mpi/#Virtual_Topologies/
http://www.osc.edu/supercomputing/training/mpi/Feb_05_2008/mpi_0802_mod_%20topologies.pdf
http://www.osc.edu/supercomputing/training/mpi/Feb_05_2008/mpi_0802_mod_%20topologies.pdf

vii

vi

[22] T. M. Parks, “A Comparison of MPI and Process Networks,” presented at the

Proceedings of the 19th IEEE International Parallel and Distributed

Processing Symposium (IPDPS'05) - Workshop 5 - Volume 06, 2005.

[23] L. He, et al., “MPI+OpenMP Implementation and Results Analysis of Matrix

Multiplication Based on Rowwise and Columnwise Block-Striped

Decomposition of the Matrices,” presented at the Proceedings of the 2010

Third International Joint Conference on Computational Science and

Optimization - Volume 02, 2010.

[24] D. A. Mallon, et al., “Performance Evaluation of MPI, UPC and OpenMP on

Multicore Architectures,” in Recent Advances in Parallel Virtual Machine

and Message Passing Interface, Proceedings. vol. 5759, M. Ropo, et al., Eds.,

ed, 2009, pp. 174-184.

[25] L. Smith and M. Bull, “Development of mixed mode MPI / OpenMP

applications,” Sci. Program., vol. 9, pp. 83-98, 2001.

[26] US DoD High Performance Computing Modernization Program (HPCMP)

 Waterways Experiment Station (WES), Dual-level parallel analysis of

 Harbor Wave response using MPI and OpenMP,

 http://www.wes.hpc.mil/news/SC98/HPCchallenge4a.htm and

 http://www.wes.hpc.mil/news/SC98/awardpres.pdf

 51

vii

vi

 Curriculum Vitae

Elif Öztürk was born on 21 September 1985, in Istanbul. She received her BS degree

in Computer Engineering in 2007 from Kadir University. She worked as System

Analyst in IngBank from 2008 to 2009 and then she worked as a research assistant at

the department of Computer Engineering of Kadir Has University from 2009 to

2011. During her master education she has been affiliated with the Parallel

Programming. Her research interests include data mining and computer networks.

 52

