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Sharp two- and three-dimensional phase transitional magnetization curves are obtained by an iter-
ative renormalization-group coupling of Ising chains, which are solved exactly. The chains by them-
selves do not have a phase transition or non-zero magnetization, but the method reflects crossover
from temperature-like to field-like renormalization-group flows as the mechanism for the higher-
dimensional phase transitions. The magnetization of each chain acts, via the interaction constant,
as a magnetic field on its neighboring chains, thus entering its renormalization-group calculation.
The method is highly flexible for wide application.

I. INTRODUCTION: CONNECTIONS ACROSS

SPATIAL DIMENSIONS

It is well-known and quickly shown that one-
dimensional models (d = 1) with finite-range interactions
are exactly solvable and do not have a phase transition at
non-zero temperature [1]. Nevertheless, the phase tran-
sitions of the d > 1 models can be distinctively recovered
from the correlations in the exactly solved d = 1 chains,
as we show in the present study. Specifically, using the
exact renormalization-group solution of the d = 1 Ising
chain (which at non-zero temperatures has no phase tran-
sition and zero magnetization), the finite-temperature
phase transitions and entire magnetization curves of the
d = 2 and d = 3 Ising models are sharply recovered
quantitatively and distinctively (Fig. 1). The method is
general and flexible, and thus can be applied to a wide
range of systems.
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FIG. 1. From left to right, magnetizations for d = 2 and d = 3
Ising models obtained by coupling exact solutions of Ising
chains. The magnetization of each chain acts, via the coupling
constant J , as a magnetic field entering the renormalization-
group calculation of its neighboring chains. This procedure is
iterated until the magnetization curve converges, as seen in
Fig. 2, in fact creating order out of the renormalization-group
flows within a disordered phase, reflecting a crossover from
field-like (at lower temperatures) to temperature-like flows.
The magnetization curves on this figure are actually smooth
on reaching zero, but this cannot be seen on the scale of figure.

FIG. 2. Iterations in the magnetization calculations. Start-
ing with a small seed of M=0.00001 and proceeding with the
renormalization-group calculated magnetizations, after each
iteration, each site applies a magnetic field of JM to its neigh-
bors on the neighboring chains. The chains are arrayed to give
a d > 1 dimensional system. The leftmost curve is the result
of the first iteration. Distinctly for both d = 2 and 3, the
magnetizations quickly converge (to the rightmost curve) and
give the higher-dimensional phase transitions.

The systems that we study are defined by the Hamil-
tonian

− βH = J
∑

〈ij〉

sisj + h
∑

i

si, (1)

where at each site i, the spin is si = ±1 and the first
sum is over all pairs of nearest-neighbor sites < ij >. We
obtain the phase transitions and magnetizations of these
Ising systems in spatial dimensions d = 2, 3 at magnetic
field H = 0, based on the renormalization-group solution
of the d = 1 system with H 6= 0, as given in Eq.(2).
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FIG. 3. Lower panel: Renormalization-group flows (Eq.(2))
of the d = 1 Ising model (Eq.(1)). Trajectories originating
at the small H = 0.001 and the entire breadth of tempera-
ture are given, all terminating at different locations on the
fixed line of the renormalization-group flows at J = 0. Upper
panel: The derivative of the renormalized magnetic field H ′

with respect to the unrenormalized H , at H = 0. Its values
dip around temperatures 1/J = 3 and, as seen in the lower
panel, the renormalization-group flows cross over from being
field-like (at lower temperatures) to temperature-like. The
renormalization-group trajectories originating at higher tem-
peratures acquire minimal H before ending on the fixed line.
This mechanism thwarts the lateral couplings of the chains
and ushers the high-temperature disordered phase. The cal-
culated transition temperatures for d = 2 (on left) and d = 3
are consistently shown on the middle axis.

II. RENORMALIZATION-GROUP FLOWS OF

THE d = 1 ISING MODEL WITH MAGNETIC

FIELD

The Ising model of Eq. (1) with non-zero magnetic
field can be subjected, in d = 1, to exact renormalization-
group transformation [2, 3] by effecting the sum over ev-
ery other spin (aka, decimating, actually a misnomer).
The couplings of the remaining spins (of the thus renor-

malized system) are given by the recursion relations:

J ′ =
1

4
ln[R(++)R(−−)/R(+−)R(−+)] ,

H ′ =
1

4
ln[R(++)/R(−−)] ,

G′ =bdG+
1

4
ln[R(++)R(+−)R(−−)R(−+)] ,

R(σ1σ3) =
∑

s2=±1

exp[−βH(s1, s2)− βH(s2, s3)],

(2)

where the primes refer to the quantities of the renormal-
ized system, b = 2 is the length rescaling factor, d = 1
is the dimensionality, σi is the sign of si and, for calcu-
lational convenience, the Hamiltonian of Eq.(1) has been

rewritten in the equivalent form of

− βH =
∑

〈ij〉

−βH(si, sj) =
∑

〈ij〉

[Jsisj +H(si + sj) +G],

(3)
where G is the additive constant per bond, unavoid-
ably generated by the renormalization-group transforma-
tion, not entering the recursion relations as an argument
(therefore a captive variable), but crucial to the calcula-
tion of all the thermodynamic densities, as seen in Sec.
III below.[4, 5]

Typical calculated renormalization-group flows of
(J,H) are given in the lower panel of Fig. 3. All flows
are to infinite temperature 1/J = ∞ (with the exception
of the unstable critical fixed point at zero temperature,
zero field (1/J = 0, H = 0)). At infinite temperature
(zero coupling, J = 0) a fixed line occurs in the H di-
rection and is the sink of the disordered phase, which
attracts everything in (J,H) except for the single critical
point. However, we shall see in Sec. IV below that this
disordered phase engenders the ordered phases of d = 2
and 3.

The derivatives of the renormalized magnetic field H ′

with respect to the unrenormalized H , at H = 0, are
shown in the upper panel of Fig. 3. Its values dip around
temperatures 1/J = 3 and, as seen in the lower panel,
the renormalization-group flows cross over from being
mainly in the field direction (field-like) at lower temper-
atures to temperature-like at higher temperatures. The
renormalization-group trajectories originating at higher
temperatures therefore acquire minimal H before ending
on the fixed line. This mechanism thwarts the lateral
couplings of the chains and ushers the high-temperature
disordered phase.
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FIG. 4. Phase boundaries for the isotropic/anisotropic Ising
models: From left to right, the d = 2 exact boundary
exp(−2J) = tanh(Jz) (Ref. [6]), the d = 2 and d = 3 bound-
aries calculated by our method. Jz is the nearest-neighbor
interaction along the chains and J is the nearest-neighbor in-
teraction lateral to the chains. The exact phase transition
points for the isotropic systems, J = Jz, are given by the
circle (d = 2) and square (d = 3) (Ref. [7]) data points.
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III. RENORMALIZATION-GROUP

CALCULATION OF THERMODYNAMIC

DENSITIES

The thermodynamic densities M ≡ [1, < sisj >,<
(si + sj) >], which are the densities conjugate to the
interactions J ≡ [G, J,H ] of Eq.(3), obey the density re-
cursion relation

M = b−dM’ ·T, (4)

where the recursion matrix is T = ∂J’/∂J. The densi-
ties at the starting interactions of the renormalization-
group trajectory are calculated by repeating Eq.(4) until
the fixed-line is quasi-reached and applying the fixed-line
densities, variable with respect to the terminus H , on the
right side of the repeated Eq.(4):

M(0) = b−ndM(n) ·T(n) ·T(n-1)... ·T(1) , (5)

where M(n) are the densities at the (J,H) location
of the trajectory after the (n)th renormalization-group
transformation and T(n) is the recursion matrix of the
(n)th renormalization-group transformation.[4, 8] Thus,
M(0) are the densities of the (J,H) location where
the renormalization-group trajectory originates and the
aim of the renormalization-group calculation. Note that
M(0) is obtained by doing a calculation along the entire
length of the trajectory. As seen in Fig. 3, the tra-
jectory closely approaches, after a few renormalization-
group transformations, a point (J = 0, H) on the fixed
line and M(n) ≃ M*(H), where the latter magnetiza-
tion is calculated on the fixed line.
The magnetizations M*(H) on the fixed line are,

by Eq.(4), the left eigenvector of the recursion matrix
T*(H) at the fixed line with eigenvalue bd. (Since the
recursion matrix is always non-symmetric, the left and
right eigenvectors are different with the same eigenvalue.)
In the present case, on the fixed line,

T*(H) =





2 0 2 tanh(2H)
0 0 0
0 tanh(2H) 1





and the left eigenvector with eigenvalue bd = 2 is
M*(H) = [1, < sisj >= (tanh(2H))2, < (si + sj) >=
2 tanh(2H)].

IV. SHARP MAGNETIZATION CURVES AND

PHASE DIAGRAMS

The phase diagrams (Fig. 4) for the anisotropic and
isotropic Ising models in d = 2 and 3 are obtained by
repeating our calculation for different values of the inter-
actions Jz along the chains and J lateral to the chains,
and compare well with the exact results also given in
the figure. Critical exponents are obtained by power-law
M ∼ (TC − T )β fitting simultaneously the exponent and
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FIG. 5. Power-law M ∼ (TC − T )β fit to our d = 2 result.
A fit over 6 decades, with a quality of fit R = 99.6, gives the
critical exponent β = 0.43, lower than the mean-field value of
1/2.
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FIG. 6. Power-law M ∼ (TC − T )β fit to our d = 3 result.
A fit over 6 decades, with a quality of fit R = 99.5, gives the
critical exponent β = 0.40, lower than the mean-field value of
1/2.

the critical temperature to the curves in Fig. 1. As seen
in Figs. 5 and 6, in both cases fitting over 6 decades
with a quality of fit of R = 99.6 and 99.5, the criti-
cal exponents β = 0.43 and 0.40 are obtained, perhaps
meaningfully lower than the mean-field value of 1/2.

V. CONCLUSION

We believe that our method could be easily and widely
implemented, since complex systems (as long as the in-
teractions are non-infinite ranged) can be solved in d = 1
[2, 3] and applied to the higher dimensions as demon-
strated here. Furthermore, random local densities can
be obtained for quenched random systems [9], in d = 1
using renormalization-group theory, and applied with
our method to a variety of quenched random systems
in d > 1. It would also be interesting to apply to
systems which show chaos under direct renormalization-
group theory, obtaining an alternate path to study such
chaos [5, 10, 11].
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