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Abstract

Motivation: Analysis of protein–protein interaction (PPI) networks provides invaluable insight into

several systems biology problems. High-throughput experimental techniques together with com-

putational methods provide large-scale PPI networks. However, a major issue with these networks

is their erroneous nature; they contain false-positive interactions and usually many more false-

negatives. Recently, several computational methods have been proposed for network reconstruc-

tion based on topology, where given an input PPI network the goal is to reconstruct the network by

identifying false-positives/-negatives as correctly as possible.

Results: We observe that the existing topology-based network reconstruction algorithms suffer

several shortcomings. An important issue is regarding the scalability of their computational re-

quirements, especially in terms of execution times, with the network sizes. They have only been

tested on small-scale networks thus far and when applied on large-scale networks of popular PPI

databases, the executions require unreasonable amounts of time, or may even crash without pro-

ducing any output for some instances even after several months of execution. We provide an algo-

rithm, RedNemo, for the topology-based network reconstruction problem. It provides more accur-

ate networks than the alternatives as far as biological qualities measured in terms of most metrics

based on gene ontology annotations. The recovery of a high-confidence network modified via ran-

dom edge removals and rewirings is also better with RedNemo than with the alternatives under

most of the experimented removal/rewiring ratios. Furthermore, through extensive tests on data-

bases of varying sizes, we show that RedNemo achieves these results with much better running

time performances.

Availability and Implementation: Supplementary material including source code, useful

scripts, experimental data and the results are available at http://webprs.khas.edu.tr/~cesim/

RedNemo.tar.gz
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1 Introduction

Proteins and their interactions constitute the core of almost every

biological process. In protein–protein interaction (PPI) networks

nodes represent the proteins and the edges correspond to inter-

actions between pairs of proteins. Analysis of this specific type of

biological network is quite central in the study of several systems

biology problems that include understanding cell regulatory mech-

anisms, extracting protein functions, constructing pathways or pro-

tein complexes and predicting evolutionary patterns.

Several high-throughput experimental techniques including the

yeast two-hybrid system (Finley and Brent, 1994) and co-

immunoprecipitation coupled mass spectrometry (Aebersold and

Mann, 2003) gave rise to extraction of large-scale PPI networks for

many organisms. Although experimental techniques for the predic-

tion of PPI networks are quite useful in producing massive data,

they are usually time-consuming and expensive. Thus, many

approaches based on a wide range of computational techniques have

been suggested for the problem of PPI network construction

(Aebersold and Mann, 2003; Goh and Cohen, 2002; Marcotte

et al., 1999). Existing computational methods vary depending on

the type of information they employ for predictions. These include

methods based on genomic context, structure, domain or sequence

information; see Skrabanek et al. (2008); Xia et al. (2010) for useful

reviews.

A crucial problem with the constructed networks is that the ex-

tracted set of interactions may provide erroneous results in terms of

false-positives and false-negatives. With regards to the experimental

techniques this is mostly due to the significant levels of noise,

whereas the computational methods suffer both from the employed

heuristics that may not solve the defined computational problems

optimally and also from the noisy data, since one way or another

they all employ some kind of experimental data. Therefore several

computational methods have been developed for network recon-

structions where given an erroneous network as input, the goal is to

identify false-positive and false-negative interactions as correctly as

possible, and reconstruct a novel network.

Several network reconstruction methods are based solely on net-

work topology (Cannistraci et al., 2013; Hulovatyy et al., 2014; Lei

and Ruan, 2013). Such methods usually rely on making new inter-

action predictions or identifying spurious interactions by computing

a topology-based similarity score for all pairs of nodes of the net-

work. The topology information employed in the construction of

these similarity scores might be local or global. Appropriate meas-

ures defined on common neighborhoods or extended neighborhoods

such as CN (common neighbors), AA (Adamic/Adar) and RA (re-

source allocation) are based on local topology (Zhu and Xia, 2015),

whereas diffusion-based distances including RWR (random walk

with restart) (Tong et al., 2006), RWS (random walk with resist-

ance) (Lei and Ruan, 2013) or distances based on geometric embed-

ding (Kuchaiev et al., 2009) are sample methods employing global

topological information. A common feature of these reconstruction

methods is that once a scoring measure is determined, the network is

modified with respect to a global evaluation of all the similarity

scores. In addition to topology-based methods, PPI network recon-

struction algorithms making use of sequence information, 3D struc-

tural data, or GO term associations have also been proposed

(Mosca et al., 2014; Segura et al., 2015; Singh et al., 2006; Yerneni

et al., 2015).

We propose a novel topology-based network reconstruction

method REpeated Diffusion with NEighborhood Modifications

(RedNemo). One main novelty of RedNemo is its iterative nature.

In addition, although some version of topological similarity scoring

is employed in previous methods as well, we depart from previous

work after this point and employ a local neighborhood evaluation

of these scores for network modifications. We show that both of

these key points work with each other well and produce networks

that are biologically more relevant than or at least comparable to

those of two recent alternative topology-based reconstruction algo-

rithms, RWS (Lei and Ruan, 2013) and GDV (Hulovatyy et al.,

2014). Considering network recovery when the reconstruction is

applied on a randomly modified high-confidence network as another

performance metric, we show that RedNemo yields better results

than the alternatives in most settings. Furthermore, we show that

RedNemo not only provides higher quality networks, but also

achieves this with much better time efficiency than the benchmark

methods, due to its novel features.

2 Methods

The traditional network reconstruction algorithms can be identified

by their global-modifications (GM) nature; once a proximity matrix

denoting the closeness of pairs of nodes is computed based on the

network topology (local or global), this matrix is employed as a

whole to reconstruct the modified network globally. The choice to

add new edges or remove existing edges is based solely on how large

or small values recorded in this scoring matrix are, without any re-

gard for the localities of these achieved low/high scores. Several

issues reminiscent of the GM approaches are handled by the novel

key points of RedNemo. The pseudocode is provided in Algorithm 1

and is described in detail in the following subsections.

2.1 General framework of RedNemo
The traditional GM approaches aim at one-shot network recon-

structions; once a scoring is computed, the final network is recon-

structed accordingly once and for all. On the other hand, RedNemo

employs the simple idea that if a network reconstruction algorithm

is asserted to be successful, a succeeding execution of the same algo-

rithm on the reconstructed network should yield an even better re-

construction, which should hold after repeated executions until

convergence. Thus, the general framework of RedNemo is iterative

by nature. Interestingly, reconstruction qualities decrease consider-

ably when the GM-based benchmark algorithms RWS and GDV are

employed iteratively. At each iteration of RedNemo, a relatively

small number of adjustments on the network are made, allowing the

following iterations to work on a more reliable network and modify

it with small adjustments each time. RedNemo has two main steps,

the first of which constructs diffusion-based proximities of all pairs

of nodes. Based on these proximity scores, the second step computes

correlation scores between node pairs within local neighborhoods

and modifies the network in its localities. These steps are repeated it-

eratively by assigning the network reconstructed at the end of an it-

eration as the input for the next iteration until the final output

network is generated.

2.2 Diffusion-based proximities
Lines 5� 15 of Algorithm 1 describe the first main step of comput-

ing a diffusion-based proximity matrix M. This is implemented via

simulating the probabilistic traversal of a random walker moving

between neighboring nodes throughout several time steps. We note

that similar diffusion-based methods that mimic the flow of infor-

mation in a network via random walks have been employed in many

previous PPI network analysis studies (Cao et al., 2014; Leiserson
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et al., 2015; Wang and Qian, 2014). For v 2 V, let NþðvÞ denote the

set of neighbors of v together with v itself and deg(v) denote the de-

gree of v in G, that is degðvÞ ¼ jNþðvÞj � 1. Assuming the origin of

the walk is node u, let M0½u; v� denote the probability that the ran-

dom walker is at node v after a certain number of time steps and M½
u; v� denote the same probability after one more time step. Initially,

M0½u; u� ¼ 1, M0½u; v� ¼ 0 for v 6¼ u. M½u; v� is computed from M0½u;
s� for s 2 NþðvÞ. Moving from a node through any incident edge in

the next time step has the same probability. Thus, the contribution

of a neighbor s of v to M½u; v� is M0 ½u;s�
degðsÞþ1. Similar to the teleportation

idea of the random walk with restart (Lei and Ruan, 2013; Tong

et al., 2006), a small constant � is decremented from this contribu-

tion to increase the chances of the walker remaining close to the ori-

gin. Once M½u; v� is computed for every v, each such probability is

normalized by dividing it with
P

v2V M½u; v�. This process of com-

puting the probability of random walker being at node v after the

current time step, from the probabilities of the walker being at the

neighboring nodes in the previous time step is repeated until the

total difference of the computed probabilities converge, that is the

sum of the differences of probabilities with those of the previous

time step does not exceed a predefined constant threshold. The con-

stants � and threshold are set to jVj
ð2jEjÞ2 and jVj

2jEj, respectively.

2.3 Neighborhood modifications
The proximity scores matrix M computed in the previous step is em-

ployed in scoring and selecting bad pairs among existing edges and

good pairs among non-existing edges in this step. The bad pairs are

candidates for deletion whereas the good pairs are candidates for in-

sertion as new edges. Although the proximity computations of the

previous step are global in the sense that the proximity between a

pair of nodes is affected by all nodes of the network that are in the

same connected component as the pair, the candidate modifications

computed in this step are restricted to local neighborhoods.

Lines 17� 33 of Algorithm 1 provide a description of this step.

Corresponding to each node u 2 V, first a neighborhood set Nu is

created. It consists of the nodes with a graph-theoretical distance of

at most r to u in G, that is v 2 Nu if and only if the shortest path dis-

tance of u to v in G is less than or equal to r. Next the subgraph Gu

¼ ðNu;EuÞ of G induced by the node set Nu is created. From Gu and

the proximity matrix M computed in the previous step, we construct

insertion candidates list, Iu, and deletions candidates list, Du. The

former consists of the best k node pairs p; q 2 Nu such that ðp;qÞ
62 Eu whereas the latter consists of the worst k pairs p;q 2 Nu such

that ðp; qÞ 2 Eu. The goodness of a pair p, q is proportional to the

average of the proximities in both directions, that is M½p;q�þM½q;p�
2 .

Here k is a user-defined parameter that controls the maximum num-

ber of modifications (insertions/deletions) allowed in a neighbor-

hood Nu. Although our implementation is general so that any value

can be assigned for r, k the default values employed in all the experi-

mental evaluations are 1, 2, respectively.

Next, the lists Iu, Du are sorted with respect to the average prox-

imity values, the former in descending and the latter in ascending

order, respectively. The indices of the pairs in these sorted lists pro-

vide a matching between the pairs in Iu, Du such that the highest

proximity pair in Iu matches the lowest proximity pair in Du, so on

and so forth. Thus, the best non-edge (insertion candidate) is

matched with the worst edge (deletion candidate). Starting with the

smallest index and traversing the two lists simultaneously we create

a candidate list R of replacement pairs. For ðp; qÞ 2 Iu and the

matching pair ðp0;q0Þ 2 Du at the same index, we place � ðp;qÞ; ðp0;
q0Þ � into R if Pðp;qÞ > 0 and Pðp;qÞ > Pðp0; q0Þ, where P denotes

the Pearson correlation coefficient of the column vectors of M cor-

responding to the input node pair. In other words, the replacement,

that is deletion of the existing edge ðp0; q0Þ and insertion of new edge

(p, q) is a candidate modification, if the proximity vectors of p, q

yield a positive correlation and they are better correlated than the

proximity vectors of p0; q0. Once candidate replacements from all

neighborhoods are collected in R, the replacements are sorted in

descending order of their priorities, where the priority of a replace-

ment in the form of an insertion/deletion pair � i; d � is

PðiÞ � PðdÞ. Among all replacements in R we commit the best jRjr�k

replacements. User provided X determines the desired ratio of the

number of committed insertions to the number of committed dele-

tions at each iteration. An appropriate number of committed inser-

tions or deletions are undone to preserve this ratio. We note that

Algorithm 1. RedNemo

1: Input: Network G ¼ ðV;EÞ, positive integer values r, k,

positive insertion/deletion ratio X
2: Output: Reconstructed network G

3: repeat

4: //Diffusion-based Proximities

5: for 8u 2 V do

6: initialize M0½u; v� for 8v 2 V

7: repeat

8: for 8v 2 V do

9:

M½u; v� ¼
X

s2NþðvÞ
maxð0; M0½u; s�

degðsÞ þ 1
� �Þ

10: end for

11: normalize M½u; v� for 8v 2 V

12:
totaldiff ¼

X

v2V

�� jM½u; v� �M0½u; v�j

13: M0½u; v� ¼M½u; v� for 8v 2 V

14: until totaldiff< threshold

15: end for

16: //Neighborhood Modifications

17: R ¼1

18: for 8u 2 V do

19: Create subgraph Gu ¼ ðNu;EuÞ
20: Construct sorted lists Iu, Du

21: for corresponding ðp; qÞ 2 Iu; ðp0;q0Þ 2 Du do

22: if Pðp; qÞ > 0 and Pðp;qÞ > Pðp0; q0Þ then

23: add pair � ðp;qÞ; ðp0; q0Þ � into R
24: end if

25: end for

26: end for

27: sort � i; d � pairs in R in descending order of

PðiÞ � PðdÞ
28: commit first jRjr�k modifications of R on G

29: if jinsertionsj = jdeletionsj>X
30: undo final insertions to balance

31: else if jinsertionsj = jdeletionsj<X
32: undo final deletions to balance

33: cc¼ ccþmin of committed insertions or deletions

34: until convergence or cc � modification amount
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even if X¼1, due to possible neighborhood subgraph overlaps the

number of committed insertions may not be equal to the number of

deletions. Thus, the excess insertions or deletions committed last

may need to be uncommitted at a certain iteration in this setting as

well.

Although we do not provide a theoretical proof of convergence,

at which point no further modifications are committed, we note that

the algorithm, when forced to execute until convergence, converges

for all the networks under study. With the exception of very few in-

stances, the number of modifications committed at each iteration de-

creases monotonically; a large portion of all the modifications are

committed during the first few iterations of the algorithm.

Moreover, the time spent for the rest of the iterations does not seem

to be justified by the biological qualities of the produced networks.

In contrast, the networks produced when the algorithm is executed

until convergence are slightly worse than those produced when the

iterations are stopped after the first few iterations. Therefore, we

introduce an extra heuristic stopping condition; the iterations stop

when the algorithm converges or when the total number of replace-

ments committed throughout all iterations, denoted with cc in the

algorithm, exceeds the modification amount set by the algorithm.

This amount is the size of the replacement set R computed right

after the first iteration. Further details regarding this discussion can

be found at the Supplementary Material.

Note that the traditional GM approaches may lead to insertions/

deletions cluttered in certain parts of the network; an interaction

might be predicted at the expense of an existing interaction at a

completely unrelated part of the network. With RedNemo, every

committed interaction insertion (deletion) has a corresponding dele-

tion (insertion) within some locality; if an existing interaction is con-

sidered highly false-positive, it is replaced with a novel interaction

predicted to be highly false-negative within the same local neighbor-

hood. Nevertheless, this locality-based modifications approach does

not necessarily imply blind one-to-one insertion/deletion modifica-

tions within defined neighborhoods. Overlaps between the inter-

actions of the constructed neighborhoods provide an indirect voting

scheme. A given neighborhood subgraph may end up with a single

insertion and several deletions at the end of an iteration for instance;

see Figure 1(i). Furthermore with the traditional GM approaches,

there is no control over the distance of newly connected pairs of

nodes; predictions between pairs of nodes that are too far apart in

the original network are quite possible. RedNemo handles this issue

by allowing modifications to be committed only within neighbor-

hood subgraphs. However, this is not a hard constraint. Due to the

iterative nature of the algorithm, the neighborhood subgraphs are

not static and may grow or shrink throughout iterations which pro-

vides an opportunity to make novel predictions between distant

pairs as well, only with smaller chances; see Figure 1(ii). Finally, it

should be emphasized that the locality-based modifications of

RedNemo provide huge gains in terms of the required execution

times as compared to the traditional GM approaches. A compara-

tive evaluation of the running times can be found at the end of the

following section.

3 Discussion of results

We implemented the RedNemo algorithm in Cþþ using the LEDA

library (Mehlhorn and Naher, 1999). The source code, executables,

useful scripts for evaluations and all the input data are freely avail-

able as part of the supplementary material. We employ PPI networks

of several databases for a comparative evaluation of RedNemo

against the benchmark methods RWS and GDV. For RWS, we use

the suggested parameter settings of � ¼ jVj=jEj2 and b ¼ 1=jEj, and

for GDV we use the default settings provided by the executables of

Hulovatyy et al. (2014). Note that for a given input network, both

of these benchmark algorithms produce a matrix of similarity scores

and extract the desired number of top scoring pairs from this matrix

as edges in the reconstructed network. The databases are categorized

as small, medium and large. First, as part of small-scale networks,

we evaluate the algorithms on three yeast datasets: one produced via

Y2H (Solava et al., 2012; Yu et al., 2008), one via AP/MS (Solava

et al., 2012; Yu et al., 2008) and one obtained from multiple sources

(Collins et al., 2007). Note that these are the datasets used by GDV

(Hulovatyy et al., 2014). The medium-sized networks involve those

obtained from the IsoBase database (Park et al., 2011). This dataset

has recently been used in many PPI network analysis studies (Alada�g

and Erten, 2013; Alkan and Erten, 2014, 2015; Park et al., 2011;

Sahraeian and Yoon, 2013). The networks under study from this

database are those of C. elegans, D. melanogaster, H. sapiens and S.

cerevisiae. Finally, as part of large-scale networks, we employ those

of the same species from the October, 2015 version of the IntAct

database (Orchard et al., 2014). The networks are filtered to include

only protein–protein interactions. Note that the results presented in

Sections 3.1 and 3.2 apply to the scenario where the input networks

and the corresponding reconstructions are of the same size in terms

of the number of edges, that is X is set to 1.

3.1 Analysis of network properties
Table 1 provides network properties of the original networks and

those that are reconstructed by the three algorithms. The columns j
Vj; jEj respectively indicate the number of nodes (those with degree

more than 0) and edges in the network. Since the number of edges of

a reconstructed network is the same as the corresponding original

network, jEj is not shown for a reconstructed network. Instead we

provide DP (difference percentage) value, which is the percentage of

the edges of the network that are different from those of the corres-

ponding original network. The CC column indicates the number of

connected components and the BCC column indicates the number

of biconnected components of a network. An interesting comparison

is regarding the DP values of the networks reconstructed by GDV,

RWS and RedNemo. Note that the amount of change proposed by

each algorithm is determined internally and thus each algorithm not

only reconstructs a network but also indirectly provides a measure

ac

d

e

b

c e

d

a b

(i) (ii)

f

f

Fig. 1. Let r¼ k¼1. (i) Depiction of the neighborhood overlaps. Nf consists of

white nodes. Let � ða;bÞ; ðd ; f Þ � be the replacement pair of Gf. (c, d) or (e, d)

may also be eliminated from Gf if the black node on the left (or right) assigns

it as a deletion in the replacement pair of its own neighborhood graph. (ii)

Depiction of predictions between distant pairs via the iterative nature of

RedNemo. a; c 2 Nb , thus (a, c) may be inserted in Gb after iteration 1. Now

a;d 2 Nc , thus (a, d) may be inserted in Gc after iteration 2, so on and so forth.

After four iterations, it is possible to connect a, f which originally had a dis-

tance of 5.
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of its prediction of false-positive rates through the amount of change

it suggests. Both GDV and RWS provide large DP values; even for

each of the relatively high-confidence yeast data of APMS and

Collins networks, GDV predicts 60%, RWS predicts almost 35% of

the original network interactions to be false. Respective values of

the RedNemo reconstructions of APMS and Collins networks are

7%. Although yeast is a well-studied organism and thus yeast net-

works in general are assumed to have higher confidence than those

of the other species, considering the multi species databases of

IsoBase and IntAct, RWS reconstructions provide the largest DP val-

ues for the S. cerevisiae networks: 88% for the IsoBase network and

85% for the IntAct network. Respective DP values of the RedNemo

reconstructions are the smallest among networks of all species, 2

and 3.

The issue of clustering in certain areas at the expense of discon-

necting various unrelated regions of the network discussed at the

end of the previous section becomes evident with a simultaneous in-

spection of jVj, CC, and BCC values. Comparing the jVj values of

the original networks and those of the GDV, it is clear that in most

of the cases GDV appears to distribute all the network edges at only

one fifth of the nodes, disconnecting all the rest. Although not as

drastic, RWS also suffers from this issue, especially for the Isobase S.

cerevisiae network and the Intact H. Sapiens and S. cerevisiae net-

works. The same problem affects the CC and BCC values as well;

since a large portion of the network becomes very sparse the number

of connected components increases dramatically, whereas edge con-

centration in certain regions which were previously less densely

populated decreases the number of biconnected components. Note

that although CC seems to be 1 for the GDV networks, considering

the differences in jVj values of the reconstructions and those of the

originals, the actual CC values are much larger. For instance the ac-

tual CC values for the Y2H networks are 1280 and 384, for the

GDV and RWS reconstructions respectively. The difference between

the topological properties of the network reconstructions of RWS

and GDV may be due to several design choices the two approaches

have. However, it is worth noting that one of the main differences

between RWS and GDV is that the former, similar to RedNemo, has

a scoring computation based on global topology, whereas the latter

constructs the scoring matrix based on local topological informa-

tion. The correlation of a pair of vectors, each recording random

walk-based distances from a node to all network nodes, is an indica-

tion of ‘similarity’ in RWS. For GDV, on the other hand, the

similarity is sought in the correlation of vectors that record local in-

formation in the form of existence/absence of subgraphs isomorphic

to predetermined structures in local neighborhoods of the nodes.

3.2 Analysis of biological qualities
Two databases are employed in setting up the evaluation metrics;

the Gene Ontology (GO) database (Ashburner et al., 2000) and the

STRING database (Szklarczyk et al., 2015). The GO database anno-

tates proteins from several species with appropriate GO categories

organized as a directed acyclic graph (DAG) (Ashburner et al.,

2000). In order to standardize the GO annotations of proteins, simi-

lar to the evaluation methods of Singh et al. (2008), Liao et al.

(2009) and Alada�g and Erten (2013), we restrict the protein annota-

tions to level 5 of the GO DAG by ignoring the higher-level annota-

tions and replacing the deeper-level category annotations with their

ancestors at the restricted level. Note that only experimentally deter-

mined annotations are employed. For a node u 2 V, let GO(u) indi-

cate the set of experimentally determined GO annotations of the

protein corresponding to u. An edge (x, y) is considered annotated,

if GOðxÞ 6¼1 and GOðyÞ 6¼1. Our GO-based evaluations con-

sider only the annotated edges. An annotated edge (x, y) is con-

sidered consistent if GOðxÞ \GOðyÞ 6¼1. As part of the GO-based

evaluations we employ three metrics. NCE represents the number of

consistent edges, whereas CER denotes the ratio of number of con-

sistent edges to the number of all annotated edges. Finally, GOC is

defined as the sum of jGOðxÞ \GOðyÞj=jGOðxÞ [GOðyÞj over all

annotated edges (x, y). The GO-based evaluations of the algorithms

on all the networks are shown in Figure 2. For the Y2H network,

RedNemo provides the largest NCE while being able to provide a

quite large ratio in terms of CER. It also provides the largest GOC

value for this instance. For the APMS and Collins datasets, both

RWS and RedNemo provide the largest NCE values accompanied

with quite large CER values, although GOC value of RWS is slightly

better than that of RedNemo. For all these three network instances,

GDV performs quite poorly in all metrics. Note that among the

three networks Y2H is the low confidence one and RedNemo recon-

struction performing even better than the original network in all

metrics is notable. For the Isobase C. elegans network RedNemo

performs the best in terms of NCE accompanied with a large CER,

whereas RWS is better in terms of the GOC score. GDV performs

the poorest. On the other hand, for the IntAct network of the same

Table 1. Properties of networks under consideration

Original Network GDV Output RWS Output RedNemo Output

DB Net jVj jEj CC BCC jVj DP CC BCC jVj DP CC BCC jVj DP CC BCC

Various Y2H 1647 2518 1 925 368 95 1 122 1534 45 271 693 1647 18 29 792

Yeast APMS 1004 8319 1 155 203 60 1 16 916 35 90 128 999 7 36 162

Databases Collins 1004 8323 1 155 202 60 1 15 916 36 90 131 999 7 36 161

ce 2974 4827 123 1682 496 92 1 70 2597 55 472 1030 2974 16 140 1296

dm 7387 24937 57 2229 1446 91 1 229 7224 65 234 1063 7387 20 57 924

IsoBase hs 10296 54654 62 2219 9099 73 567 1833 10296 16 62 1295

sc 5523 82656 1 170 1348 88 111 217 5523 2 1 171

ce 5102 11829 123 2547 415 84 1 46 4304 65 862 1692 5102 16 135 1833

dm 11213 40813 67 3430 9412 76 792 2809 11213 15 68 2129

IntAct hs 16434 99379 97 4156 10539 85 1385 2656 16434 11 97 2955

sc 6055 76742 6 479 3829 85 210 713 6055 3 6 477

Columns DB and Net provide the name of the database and the network, respectively. The abbreviations ce, dm, hs, sc stand, respectively, for the C.elegans,

D.melanogaster, H.sapiens, and the S.cerevisiae networks. Each row provides the measured values for the network under the Net column. No results could be ob-

tained for GDV on instances where values are left blank.
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species GDV performs the best, followed by RedNemo which has

slightly better scores than RWS. Same holds for the IsoBase D.

melanogaster network; GDV is the best and RWS is the worst per-

former. For all the rest of the networks, namely the IntAct D.

melanogaster network, the IsoBase and IntAct H. sapiens networks,

and the Isobase and IntAct S. cerevisiae networks RedNemo per-

forms the best by a fair margin in all metrics. We note that we imple-

mented one additional GO-based metric, cGOC (complementary

GOC), with a definition similar to that of GOC on the complement

of the output network. The performances of the reconstructions by

alternative methods were more or less similar to those obtained via

GOC. Details regarding these tests can be found in the

Supplementary Material.

Regarding the STRING-based evaluations, we make use of the

metrics neighborhood (Ngh), fusion (Fus), cooccurence (Coo), coex-

pression (Coe), experimental (Exp), database (Dat), textmining

(Txt) and combined (Com) as defined in von Mering et al. (2005).

Given a protein–protein interaction, the STRING database provides

for each metric a confidence score for the interaction. For a PPI net-

work, for each metric we compute an average of the scores over all

interactions. Due to space limitations the STRING-based evalu-

ations of the algorithms can be found in the Supplementary

Material. With respect to three important metrics, Exp, Dat and

Com, RedNemo provides the best scores in all network instances.

To summarize the complete results with all of the eight metrics, for

the Y2H network, RWS yields best scores in two metrics, RedNemo

in four metrics and they have a tie in two, whereas GDV provides

the worst scores in all metrics. Considering the APMS and Collins

networks together, GDV yields the best scores in four instances,

RWS is the best in two, and RedNemo is the best in ten instances.

Considering the IsoBase and IntAct databases together for four net-

works of each database and eight different metrics we have 32 in-

stances in total. For all these 32 instances, RWS networks provide

the best scores in 12 and RedNemo scores the best in the remaining

20 instances.

3.3 Analysis of network growth qualities
In addition to network reconstructions aiming at producing a net-

work with the same number of edges, we employed tests to evaluate

the success of the algorithms when the network size increased by

setting X to certain values greater than one. For all the networks

under consideration, the relative performances of the algorithms in

terms of GO-based and STRING-based scores are the same as those

of the same-size reconstructions to a large extent. Due to space limi-

tations, detailed results are given in the Supplementary Material.

3.4 Recovery of random removals/rewirings
In another evaluation context, we performed random removals and

rewirings on the high confidence Collins network and we compared

the performances of the alternative methods in recovering the ori-

ginal Collins network. We compared the methods using three evalu-

ation metrics, area under ROC curve (AUROC) and area under

precision-recall curve (AUPR) for the performances of reconstruc-

tions on networks with different levels of edge removals, and true

positive rate (TPR) for the evaluations of same size reconstructions

on networks with different levels of random rewirings. AUROC and

AUPR measures are employed in Hulovatyy et al. (2014) as well for

benchmarking purposes. However, since RedNemo does not aim to

provide a scoring matrix as output, we used a slightly different ap-

proach for a fair comparison between alternative methods. For each

removal ratio (from 0.05 to 0.5 with increments of 0.05) and ran-

domization (total of 10), we generated the corresponding input net-

works from high confidence Collins network. For each network, we

performed 16 network reconstructions with RedNemo and GDV-

scored-RedNemo setting the X parameter to 0.4, 0.6, 0.8, 1, 1.1,

1.25, 1.5, 2, 2.5, 3, 5, 10, 15, 20, 25, 50 and 100. At each instance,

the size of the RedNemo output network is set as the reference size;

that many of the best scoring entries of the GDV and RWS scoring

matrices constitute the output networks of GDV and RWS. Using

the original Collins network as ground data, we determined the

TPR, false-positive rate (FPR) and positive predictive value (PPV)

statistics for all resulting networks and we averaged these statistics

over ten randomizations. At the end, for each alternative method

and removal ratio, we plotted the ROC (FPR versus TPR),

precision-recall (TPR versus PPV) curves and we computed the area

under them which correspond to AUROC and AUPR, respectively;

see Figures 3 and 4. RedNemo clearly outperforms RWS and GDV

when reconstructing the Collins network with randomly removed

edges. Due to space limitations, the original curves are presented in

the Supplementary Material.
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Fig. 2. GO-based evaluations of the reconstructed networks. O, G, W, R, respectively, stand for the original network and the network reconstructions of GDV,

RWS and RedNemo. The abbreviations ce, dm, hs, sc are the same as those in Table 1 (Color version of this figure is available at Bioinformatics online.)
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In the random rewiring case, we evaluated the same size recon-

struction performances of all methods by only looking at the TPR

measure. From the high confidence Collins network, we generated

10 randomly rewired networks for each rewiring ratio and we re-

constructed them by applying the three methods. Using the original

Collins network as ground data, we plotted the TPRs for each

method and rewiring ratio in box plot format to show the distribu-

tions over 10 randomizations; see Figure 5. RedNemo succeeded in

reconstructing the original network for all rewiring ratios above 0.1

and it performed much better than other methods for rewiring ratios

under 0.4.

3.5 Required execution times
A major drawback of the benchmark algorithms GDV and RWS is

in terms of the execution times they require. We note that GDV

could not be executed until completion on the medium-sized IsoBase

H. sapiens, S. cerevisiae networks and the large-scale IntAct D.

melanogaster, H. sapiens, S. cerevisiae networks. The program

crashed before completion after several weeks of execution. Note

that the tests for computation times were conducted on powerful

cluster node with eight dedicated CPUs (x86_64, GenuineIntel) and

120 GB of memory. The largest network for which GDV provides

reconstructions is the IsoBase D. melanogaster network. We note

that for this network GDV required 408 min, RWS required

124 min, whereas RedNemo executed in just 8 min. For the largest

dataset of the IntAct, H. sapiens network RWS execution took

1415 min whereas RedNemo execution took 111 min. We note that

the number of iterations of RedNemo is usually a small constant

and for the employed r, k values, the running time of RedNemo is

bounded by OðjVjðD2 þ log jVjÞÞ, where D denotes the maximum

degree of G. A detailed running time analysis together with execu-

tion times on all the network instances can be found in the

Supplementary Material.

4 Conclusion

We provided an algorithm, RedNemo, for the topology-based recon-

struction of PPI networks. The novelties of RedNemo include itera-

tive network refinements and the modifications localized in small

neighborhoods. Associating a proposed edge prediction with an

edge deletion and the indirect voting mechanism via neighborhood

overlaps provides a balance between the number of proposed modi-

fications and their concentrations in different network regions. We

showed that RedNemo provides better performances than the alter-

natives in most cases when metrics based on GO or STRING data

are considered. It also outperforms the alternatives in reconstructing

the original network when random rewirings/removals are intro-

duced under most rewiring/removal ratio settings. Furthermore, it

has much better running time performance than the alternatives. For

the construction of the proximity scores, we tested different

diffusion-based scorings including random walk, random walk with

restart and random walk with resistance (also employed in RWS).

The results were more or less similar with those of the restart version

slightly better than the others. To further put the neighborhood

modifications concept of RedNemo into test, we implemented a ver-

sion of RedNemo where the scores employed in this step are taken

from scoring matrix produced by GDV. In almost all the cases, it

outperformed the original GDV algorithm and in some cases it even

performed better than all algorithms including the original

RedNemo which is based on random walks-based scoring.
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Fig. 3. AUROC performances of GDV, RWS and RedNemo when recovering

the original networks from flawed networks with different edge removal

ratios (Color version of this figure is available at Bioinformatics online.)
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Fig. 4. AUPR performances of GDV, RWS and RedNemo when recovering the

original networks from flawed networks with different edge removal ratios

(Color version of this figure is available at Bioinformatics online.)
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Fig. 5. True positive rates when reconstructing the randomly rewired Collins

networks with different noise ratios. Results are given in box plots showing

the distribution of TPR over 10 different randomizations (Color version of this

figure is available at Bioinformatics online.)
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However, a limitation of employing GDV-scoring within the overall

RedNemo framework is the absence of the iterative improvements

step, due to the large computational requirements of GDV-scoring.

This further limits the network growth scenario as the RedNemo

framework depends on iterative improvements for network growth.

Results in the Supplementary material include those obtained with

this GDV-scoring based RedNemo version when applicable.

Employing proximity scorings from different genres such as those

based on graph-theoretical distances or on geometric embeddings

within the general framework of RedNemo is part of future work.
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