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1. Introduction

Let (X, Y ) be a bivariate random vector given in probability space {Ω,𭟋, P} having joint distribution function F (x, y) =

P{X ≤ x, Y ≤ y} and marginal distribution functions FX (x) and FY (y) of X and Y , respectively. Denote the joint survival
unction of X and Y by F̄ (x, y), and the marginal survival functions by F̄X (x) and F̄Y (y), respectively. Let B be an event from
, and Bc be the complement of B. Define a new random variable W as follows:

W (ω) =

{
max(X, Y ), ω ∈ B
min(X, Y ), ω ∈ Bc (1)

The random variable W (ω) can also be written as W (ω) = IB(ω)max(X, Y )+ IB(ω)min(X, Y ), where IB(ω) = 1 if ω ∈ B
and IB(ω) = 0 if ω ∈ Bc , is an indicator function of event B.

The motivation for studying the random variable W (ω) emerges from some models of reliability engineering and
bivariate insurance claims in actuarial sciences.

In reliability engineering we often encounter systems with two subcomponents per component. Assume that the
system may consist of two types of components: type I and type II components. Each type I component has parallel
connected subcomponents and each type II component has series connected subcomponents. In other words, type I
component is intact if at least one of the components is functioning, and type II component is intact if both of the
components are working.

For example, if the lifetime of the subcomponents of the system are both less than given t , then we connect them
with parallel structure, if not, with series structure. A practical example may be an electrical system of n components
each consisting of two lamps (bulb, ampule, knocker) (subcomponents) of different quality. Assume that the lifetimes of
some lumps are detected as to be less than t (for example t = 2 months) and the lifetime of others are greater than t .
Then we connect the components with parallel or series structure depending on the quality of subcomponents (lamps).
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Therefore, the lifetime of the component will be modeled with the random variable Wt which is the maximum of lifetimes
f lumps if both lifetimes are less than t , and minimum of lifetimes of subcomponents if at least one of the lifetimes is

greater than t . To formalize this model mathematically we consider a probability space {Ω,𭟋, P} and the lifetimes of the
subcomponents will be random variables defined in this probability space. The random variable Wt is actually a model
for the lifetime of a system consisting of two dependent components with lifetimes X and Y . If event B occurs, then the
components are connected with parallel structure, if Bc occurs then they are connected with series structure. It is not
difficult to imagine that event B in general is connected with the random variables X and Y . For example, it may be
B = {ω : X(ω) < Y (ω)} or B = {ω : X(ω) ≤ t, Y (ω) ≤ t}, t ≥ 0.

In another example, we may consider an insurance portfolio in which the main interest is the investigation of the
random variable which represents the losses based on two types of claims. Let (X, Y ) be a bivariate random vector of
losses corresponding to two types of claims. This problem can also be modeled with random variable W (ω) defined by
(1).

This paper investigates the distribution of order statistics Wr:n, r = 1, 2, . . . , n constructed from dependent random
variables W1,W2, . . . ,Wn in a max–min model. For evaluating the distribution of Wr:n we use an approach to reduce the
joint probabilities to fourfold scheme and bivariate binomial distribution. The paper is organized as follows. We consider
the bivariate random sequence (X1, Y1), (X2, Y2), . . . , (Xn, Yn) and the random variables Wi(ω), i = 1, 2, . . . , n defined as
(1) and study the distribution of order statistics of W1,W2, . . . ,Wn under condition that there are a total of m (m ≤ n)
occurrences of B. The results are applied to reliability analysis of coherent systems consisting of components each having
two dependent subcomponents and to insurance models where the losses correspond to two types of claims. In Section 3
we provide some simple particular examples of random variable W , to understand the structure of the model and study
the distribution of W for some special events B and different underlying bivariate distributions.

This model can be represented in more general form considering any random variables ξ1(ω) and ξ2(ω) defined in the
same probability space instead of min(X, Y ) and max(X, Y ) as it is mentioned in Remark 2 of this paper.

2. A general model and order statistics

In this section we consider a model of the random variable (1) and derive the distribution of order statistics constructed
from the sample of dependent random variables in this model using bivariate binomial distribution.

2.1. Auxiliary material. The bivariate binomial distribution

To derive the main result we need the short description of bivariate binomial model. The bivariate binomial model was
first introduced in [1] and it assumes that in conducted experiment event A may occur either with B or Bc and also B may
occur either with A or Ac . The corresponding probabilities are p11 = P(AB), p12 = P(ABc), p21 = P(AcB) and p22 = P(AcBc).
Let ζ1 and ζ2 be the number of occurrences of A and B in n times repeating of the experiment, respectively. The fourfold
scheme is:

A \ B B Bc

A AB ABc

Ac AcB AcBc

Then

P{ζ1 = i, ζ2 = k}

=

min(i,k)∑
j=max(0,i+k−n)

n!
j!(i − j)!(k − j)!(n − i − k + j)!

pj11p
i−j
12 p

k−j
21 pn−i−k+j

22 (2)

This distribution introduced first by Aitken and Gonin [1] and its properties have been studied in [2–4]. Some modifications
are considered in [5,6].

2.2. The distributions of order statistics

Let (X, Y ) be a bivariate random vector given in probability space {Ω,𭟋, P} having a joint distribution function
F (x, y) = P{X ≤ x, Y ≤ y}, where FX (x) and FY (y) denote the marginal distribution functions of X and Y , respectively. Let
B be any event in 𭟋 and let Bc be a complement of B. Define a new random variable W as follows:

W (ω) =

{
max(X, Y ), ω ∈ B
min(X, Y ), ω ∈ Bc .
2
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Consider events A = {W ≤ x} and B in fourfold bivariate binomial model. From the definition of W it can be easily
observed that

p11 = P(AB) = P{W ≤ x, B} = P{max(X, Y ) ≤ x, B}

p12 = P(ABc) = P{W ≤ x, Bc
} = P{min(X, Y } ≤ x, Bc

}

p21 = P(AcB) = P{W > x, B} = P{max(X, Y ) > x, B}

p22 = P(AcBc) = P{W > x, Bc
} = P{min(X, Y ) > x, Bc

} (3)

Equalities (3) hold, because if B occurs then W = max(X, Y ) and if Bc occurs then W = min(X, Y ).
Assume now that

Wi =

{
max(Xi, Yi), ω ∈ B
min(Xi, Yi), ω ∈ Bc , i = 1, 2, . . . , n

and

ξi =

{
1, ω ∈ B
0, ω ∈ Bc , i = 1, 2, . . . , n,

ηi =

{
1, ω ∈ A
0, ω ∈ Ac , i = 1, 2, . . . , n.

i.e. ξi = 1 (ηi = 1) if event B (A) occurs in ith trial and ξi = 0 (ηi = 0) if event Bc (Ac) occurs in ith trial. Let ζ2 =
∑n

i=1 ξi
and ζ1 =

∑n
i=1 ηi be the number of occurrences of events B and A, in n times repeating of the experiment, respectively.

It is important to note that the random variables W1,W2, . . . ,Wn are dependent. Let W1:n ≤ W2:n ≤ · · · ≤ Wn:n be the
order statistics of W1,W2, . . . ,Wn. (For order statistics see [7]). Theorem 1 finds the distribution of order statistic Wr:n.

Theorem 1. If W1:n,W2:n, . . . ,Wn:n are order statistics of W1,W2, . . . ,Wn then

P{Wr:n ≤ x | ζ2 = k}

=
1(n

k

)
(P(B))k(1 − P(B))n−k

n∑
i=r

min(i,k)∑
j=max(0,i+k−n)

n!
j!(i − j)!(k − j)!(n − i − k + j)!

× pj11p
i−j
12 p

k−j
21 pn−i−k+j

22 (4)

nd the distribution of order statistic Wr:n, 1 ≤ r ≤ n is

P{Wr:n ≤ x}

=

n∑
k=0

n∑
i=r

min(i,k)∑
j=max(0,i+k−n)

(
n
j

)(
n − j
i − j

)(
n − i
k − j

)
pj11p

i−j
12 p

k−j
21 pn−i−k+j

22 , (5)

here p11, p12, p21, p22 are as in (3).

roof. Follows from obvious interpretation of fourfold model and bivariate binomial distribution (2) for events B ∈ 𭟋
nd A = {ω : W (ω) ≤ x} ∈ 𭟋. We have

P{Wr:n ≤ x,
n∑

i=1

ξi = k}

=

n∑
i=r

P{exactly i of W1,W2, . . . .,Wn are less than

or equal to x and event B occurs k times }

=

n∑
i=r

P{ζ1 = i, ζ2 = k}

=

n∑
i=r

min(i,k)∑
j=max(0,i+k−n)

(
n
j

)(
n − j
i − j

)(
n − i
k − j

)
pj11p

i−j
12 p

k−j
21 pn−i−k+j

22 .

Therefore, the conditional distribution of Wr:n given ζ2 = k is as in (4) and the distribution of Wr:n is as in (5). ■
3
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2.2.1. Special case 1
Let B = {X ≤ t, Y ≤ t}, t > 0. Consider first a special case r = n. Then from (4) we have

P{Wn:n ≤ x |

n∑
i=1

ξi = k}

=
pk11p

n−k
12

(P(B))k(1 − P(B))n−k =
(P(AB))k (P(ABc))n−k

(P(B))k(1 − P(B))n−k .

Then

P(AB) = P{X ≤ x, Y ≤ y, X ≤ t, Y ≤ t}

= P{X ≤ min(x, t), Y ≤ min(x, t)}

= F (min(x, t),min(x, t)) (6)

and

P(ABc) = P{min(X, Y ) ≤ x, Bc
}

= P(Bc) − P{min{X, Y } > x, Bc
}

= 1 − P(B) − [P{min(X, Y ) > x} − P{min(X, Y ) > x, B}]

= 1 − F (t, t) − F̄ (x, x) + P{x < X ≤ t, x < Y ≤ t}. (7)

Therefore,

P{Wn:n ≤ x |

n∑
i=1

ξi = k}

=
(F (min(x, t),min(x, t)))k (1 − F (t, t) − F̄ (x, x) + P{x < X ≤ t, x < Y ≤ t})n−k

(F (t, t))k(1 − F (t, t))n−k

Hence, taking into account that F̄ (x, x) = 1 − FX (x) − FY (x) + F (x, x) and P{x < X < t, x < Y ≤ t} = 0, if x > t ,
P{x < X ≤ t, x < Y ≤ t} = F (x, x) − F (x, t) − F (t, x) + F (t, t), if x ≤ t , we have

P{max(W1,W2, . . . ,Wn) ≤ x |

n∑
i=1

ξi = k}

=
F k(min(t, x),min(t, x))
F k(t, t)(1 − F (t, t))n−k (FX (x) + FY (x)

−F (t, t) − F (x, x) + P{x < X < t, x < Y < t})n−k

=

{
(FX (x)+FY (x)−F (t,t)−F (x,x))n−k

(1−F (t,t))n−k , x > t
Fk(x,x)(FX (x)+FY (x)−F (t,x)−F (x,t))n−k

Fk(t,t)(1−F (t,t))n−k , x ≤ t.
(8)

It is clear that limt→∞ FWt (x) = F (x, x) = P{max(X, Y ) ≤ x} and limt→0 FWt (x) = 1 − F̄ (x, x) = P{min(X, Y ) ≤ x}.

Example 1. Let X and Y be independent random variables having uniform (0,1) distribution (see Fig. 1). Then

P{Wn:n ≤ x | ζ2 = k}

= P{max(W1,W2, . . . ,Wn) ≤ x |

n∑
i=1

ξi = k}

=

⎧⎨⎩
(2x−t2−x2)n−k

(1−t2)n−k , x > t
x2k(2x−2tx)n−k

t2k(1−t2)n−k , x ≤ t.
(9)

For an illustration we provide a graph of (9) for n = 5, k = 3, t = 0.5 :

.2.2. Special case 2
Let B = {X ≤ t, Y ≤ t}, t > 0, 1 ≤ r ≤ n
4
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Fig. 1. The graph of P{Wn:n ≤ x | ζ1 = k} for n = 5, k = 3, t = 0.5.

Then

P{Wr:n ≤ x |

n∑
i=1

ξi = k}

=

∑n
i=r

∑min(i,k)
j=max(0,k+i−n)

(n
j

)(n−j
i−j

)(n−i
k−j

)
pj11p

i−j
12 p

k−j
21 pn−k−i+j

22(n
k

)
F k(t, t)(1 − F (t, t))n−k

, (10)

here

p11 = P{max(X, Y ) ≤ x, B}

= P{X ≤ t, Y ≤ t, X ≤ x, Y ≤ x}

= F (min((t, x),min(t, x)))

=

{
F (t, t), x > t
F (x, x), x ≤ t. (11)

p12 = P{min(X, Y ) ≤ x, Bc
}

= 1 − F̄ (x, x) − F (t, t) + P{x < X < t, x < Y < t}

=

{
1 − F̄ (x, x) − F (t, t) x > t

FX (x) + FY (x) − F (t, x) − F (x, t), x ≤ t (12)

p21 = P{max(X, Y ) > x, B}

= P{(X, Y ) ∈ B} − P{(X, Y ) ∈ B,max(X, Y ) ≤ x}

= F (t, t) − F (min(t, x),min(t, x))

=

{
0, x > t

F (t, t) − F (x, x), x ≤ t (13)

p22 = P{min(X, Y ) > x, Bc
}

= P{min(X, Y ) > x} − P{(X, Y ) ∈ B,min(X, Y ) > x}

= F̄ (x, x) − P{x < X ≤ t, x < Y ≤ t}

=

{
F̄ (x, x), x > t

1 − FX (x) − FY (x) + F (x, t) + F (t, x) − F (t, t), x ≤ t. (14)

Remark 1. It can be observed that if the random variable W would be defined as

W (ω) =

{
min(X, Y ), ω ∈ B

c
max(X, Y ), ω ∈ B

5
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then the conditional distribution and the correspondent probabilities (11)–(14) would be as follows:

P{Wr:n ≤ x |

n∑
i=1

ξi = k}

=

∑n
i=r

∑min(i,k)
j=max(0,k+i−n)

(n
j

)(n−j
i−j

)(n−i
k−j

)
π

j
11π

i−j
12 π

k−j
21 π

n−k−i+j
22(n

k

)
F k(t, t)(1 − F (t, t))n−k

, (15)

π11 = P(ABc) = P{max(X, Y ) ≤ x, Bc
} = P{max(X, Y ) ≤ x} − p11

π12 = P(AB) = P{min(X, Y ) ≤ x, B} = P{min(X, Y ) ≤ x} − p12

π21 = P(AcB) = P{max(X, Y ) > x, Bc
} = P{max(X, Y ) > x} − p21

π22 = P(AcB) = P{min(X, Y ) > x, B} = P{min(X, Y ) > x} − p22 (16)

Remark 2 (More General Scheme). In general, assume that ξ1(ω) and ξ2(ω), ω ∈ Ω are two random variables defined in
the same probability space {Ω,𭟋, P} and G ∈ 𭟋.

M(ω) =

{
ξ1(ω), ω ∈ G
ξ2(ω), ω ∈ Gc

and let M1(ω),M2(ω), . . . ,Mn(ω) be the sample values of the random variable M(ω). Let Mr:n(ω), 1 ≤ r ≤ n be the
rth order statistic of M1(ω),M2(ω), . . . ,Mn(ω). Let C = {M(ω) ≤ x}, T1 and T2 be the number of occurrences of C and G,
respectively. Considering fourfold scheme and bivariate binomial distribution with probabilities q11 = P(C G) = P{ξ1(ω) ≤

x,G}, q12 = P(CGc) = P{ξ2(ω) ≤ x,Gc
}, q21 = P(C cG) = P{ξ1(ω) > x,G}, q22 = P(C cGc) = P{ξ2(ω) > x,Gc

}. Then

P{Mr:n ≤ x} =

=

n∑
k=0

n∑
i=r

min(i,k)∑
j=max(0,i+k−n)

(
n
j

)(
n − j
i − j

)(
n − i
k − j

)
qj11q

i−j
12 q

k−j
21 qn−i−k+j

22 .

Example 2. Assume that a technical system consists of n components and each component has two subcomponents.
Therefore, the lifetime of ith component is defined by a random vector (Xi, Yi), i = 1, 2, . . . , n, where Xi and Yi are the
lifetimes of first and second subcomponents of ith component, respectively. Assume that the subcomponents of each
component may be connected by two ways, parallel or series ways, depending on whether the event B occurs or not. If
the lifetimes of the components are (X1, Y1), (X2, Y2), . . ., (Xn, Yn), where Xi and Yi are the lifetimes of the first and second
subcomponents of ith component, respectively. The lifetime of ith component will then be

Wi(ω) =

{
min(Xi, Yi), ω ∈ B
max(Xi, Yi), ω ∈ Bc .

Assume that the system is a coherent system with (n − r + 1)−out-of-n structure, i.e. the lifetime of the system is Wr:n.
Then the reliability of the system will be

P{Wr:n > t}

= 1 −

n∑
k=0

n∑
i=r

min(i,k)∑
j=max(0,i+k−n)

(
n
j

)(
n − j
i − j

)(
n − i
k − j

)
pj11p

i−j
12 p

k−j
21 pn−i−k+j

22 .

We can use (10) to compute the system reliability in the case where B = {X ≤ t, Y ≤ t}, t > 0.

Example 3. Consider an insurance portfolio in which the random variable which represent the losses based on two types
of claims is of interest. Let (X, Y ) be a bivariate random vector of losses corresponding to two types of claims. We assume
that these losses are associated. In health insurance we can consider the data that are the measured size of drug claims and
other claims paid by the insurance company and the distribution of losses may depend on age, gender and other auxiliary
variables. (see [8]). Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be the predefined losses corresponding to two types of claims and
insurance company pays the amount Wi(ω) = IB(ω)max(Xi, Yi) + IB(ω)min(Xi, Yi) to ith insured. Then the right tail risk
is the expected average of the n − i largest claims, given by 1

n−i

∑n
j=i+1 E(Wj:n). (see [9]). Since insureds may not claim

both types of benefits the frequency probabilities are defined as P{X = 0, Y = 0}, P{x = 0, Y > 0}, P{X > 0, Y = 0},
P{X > 0, Y > 0}. We assume that B = {X ≤ t, Y ≤ t}, t > 0, i.e. B occurs if the amount of payment to the insured for
drag claims X is less than t and the amount of payment for other claims Y is less than t . If B occurs the insurer’s loss
6
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is max(X, Y ), otherwise min(X, Y ). For n portfolios the insurer maximum loss then will be Wn:n and the probability of
maximum loss given that B occurs, k times can be calculated as

P{Wn:n > x |

n∑
i=1

ξi = k}

=
pk11p

n−k
12

(F̄ (t, t))k(1 − F̄ (t, t))n−k

where p11 = F (min(x, t),min(x, t)), p12 = 1 − F (t, t) − F̄ (x, x) + P{x < X ≤ t, x < Y ≤ t} as in (6) and (7).

3. Examples on distributions of the random variable W for some particular cases

In this section we provide some examples for distribution of the random variable W considering some special cases
f underlying distribution F (x, y) and events B.
Consider the random variable W defined as in (1).

xample 4. Let B = {X < Y } and the joint pdf of (X, Y ) is f (x, y). Then,

W =

{
max(X, Y ), X < Y
min(X, Y ), X ≥ Y =

{
Y , X < Y
X, X ≥ Y .

The cdf of W can be found as follows:

FW (t) ≡ P{W ≤ t} = P{Y ≤ t, X < Y } + P{X ≤ t, X ≥ Y }

=

∫ t

−∞

∫ y

−∞

f (x, y)dxdy +

∫ t

−∞

∫ x

−∞

f (x, y)dydx.

For a particular choice of joint distribution function of X and Y as

F (x, y) = xy{1 + α(1 − x)(1 − y)}, −1 ≤ α ≤ 1

which is a classical bivariate Farlie–Gumbel–Morgenstern (FGM) joint distribution function with uniform(0,1) marginals
and joint pdf f (x, y) = 1 + α(1 − 2x)(1 − 2y), 0 ≤ x, y ≤ 1, then the cdf of W is

FW (t) = P{W ≤ t}

= αt4 − 2αt3 + (1 + α)t2, 0 ≤ t ≤ 1,

and the pdf of W is

fW (t) = 4αt3 − 6αt2 + 2(1 + α)t, 0 ≤ t ≤ 1.

Example 5. Let t > 0 and B = {ω ∈ Ω : X ≤ t, Y ≤ t} and let Bc be a complement of B. Then

Wt (ω) ≡ W (ω) =

{
max(X, Y ), X ≤ t, Y ≤ t
min(X, Y ), otherwise

If there is no need to point out that Wt depends on t we will use just W instead of Wt .

The distribution function of W can be found as follows.
We have

FW (x) ≡ P{Wt ≤ x} = P{max(X, Y ) ≤ x, B} + P{min(X, Y ) ≤ x, Bc
}

= P{X ≤ x, Y ≤ x, X ≤ t, Y ≤ t} + P(Bc) − P{min{X, Y } > x, Bc
}

= P{X ≤ min(x, t)} + 1 − P(B) − [P{min(X, Y ) > x} − P{min(X, Y ) > x, B}]

= F (min(x, t),min(x, t)) + 1 − F (t, t) − F̄ (x, x) + P{x < X ≤ t, x < Y ≤ t}. (17)

Therefore, taking into account that F̄ (x, x) = 1 − FX (x) − FY (x) + F (x, x) and P{x < X ≤ t, x < Y ≤ t} = 0, if x > t ,
P{x < X ≤ t, x < Y ≤ t} = F (x, x) − F (x, t) − F (t, x) + F (t, t), if x ≤ t . We have

FW (x) ≡ P{W ≤ x}

=

{
FX (x) + FY (x) + F (x, x) − F (x, t) − F (t, x), x ≤ t

FX (x) + FY (x) − F (x, x), x > t. (18)

It is clear that lim F (x) = F (x, x) = P{max(X, Y ) ≤ x} and lim F (x) = 1 − F̄ (x, x) = P{min(X, Y ) ≤ x}.
t→∞ Wt t→0 Wt

7
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d

E
0

Fig. 2. The graph of FWt (x) given in (19) for t = 0.3.

Hereafter we assume that X and Y are independent random variables. Let us write FW (x) for some special marginal
istributions.

xample 5A (Uniform(0,1) Distribution). Let X and Y be independent and FX (x) = x, FY (x) = x, 0 < x < 1. Then for
< t < 1, from (18) we have

FWt (x) ≡ P{W ≤ x}

=

⎧⎪⎨⎪⎩
0, x < 0

2x + x2 − 2xt, 0 ≤ x ≤ t
2x − x2, t < x ≤ 1

1 x > t.

(19)

The graph of the function FW (x) in (19) for t = 0, 3 (see Fig. 2).
The pdf of W is

fW (x) ≡
d
dx

FW (x)

=

{ 0, x < 0 or x > t
2 + 2x − 2t, 0 ≤ x ≤ t

2 − 2x, t < x ≤ 1.
(20)

The mean residual life function of W can be found as follows:

ΨWt (s) ≡ E{W − s | W > s}

=
1

F̄W (s)

∫ 1

s
xfW (x)dx − s

=

⎧⎪⎪⎨⎪⎪⎩
1

1−(2s+s2−2st)

∫ t
s x(2 + 2x − 2t)dx

+
1

1−(2s−s2)

∫ 1
s x(2 − 2x)dx − s, s < t

1
1−(2s−s2)

∫ 1
s x(2 − 2x)dx − s s ≥ t

=

{
t3−3t2+3ts2−1+3s−3s3

3(1−2s−s2+2ts)
s < t

1
3 −

s
3 s ≥ t.

Below for t = 0.4 (left) and t = 0.8 (right) we provide comparative graphs of MRL functions ΨF1 (s) ≡ MRL1, ΨF2 (s) =MRL2
and ΨWt (s) = MRL3 of the lifetime distributions F1(x) = 1 − (1 − x)2, F2(x) = x2, and FW (x), 0 ≤ x ≤ 1, respectively. Note
that F1(x) is a cdf of min(X, Y ), F2(x) is a cdf of max(X, Y ) and FW (x) is a cdf of W (see Fig. 3).

For a definition and further results on MRL functions see e.g. [10–13].

Example 5B (Exponential Distribution). If FX (x) = 1 − e−λx, x ≥ 0, λ > 0, then we have

FW (x) ≡ P{W ≤ x}

=

⎧⎪⎨⎪⎩
0, x < 0

2 − 2e−λx
+ (1 − e−λx)2−

−2(1 − e−λx)(1 − e−λt ) 0 ≤ x ≤ t
−λx −λx 2

(21)
2 − 2e − (1 − e ) , x > t.
8
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Fig. 3. The graph of MRL functions for F1(x), F2(x) and. FW (x) ΨF1 (s) = MRL1, ΨF2 (s) = MRL2 and ΨWt (s) = MRL3 for t = 0.4 and t = 0.8.

Fig. 4. The graphs of FW (x) given in (21) for t = 0.3 (left) and t = 0.8 (right)

The graphs of (21) for λ = 0.5 and for t = 0.3, t = 0.8 are given in Fig. 4.
The pdf of (21) is

fW (x) =

⎧⎨⎩ 0, x < 0
2λe−λx(1 − e−λx

+ e−λt ) 0 ≤ x ≤ t
2λe−2λx, x > t.

4. Conclusion

We consider a sequence of bivariate random vectors (X1, Y1), (X2, Y2), . . ., (Xn, Yn) defined in probability space {Ω,𭟋, P}

and an event B ∈ 𭟋. Depending on occurrence of B, we consider the model of the sequence of random variables as
Wi(ω) = IB(ω)max(Xi, Yi) + IB(ω)min(Xi, Yi), i = 1, 2, . . . , n, where IB(ω) = 1 if ω ∈ B and IB(ω) = 0 if ω ∈ Bc , is an
indicator function of event B. Then we study distributions of order statisticsWr:n, 1 ≤ r ≤ n constructed from the sequence
of dependent random variables W1,W2, . . . ,Wn. To derive the distribution of Wr:n we use bivariate binomial distribution.
Some particular cases and distributions are considered, examples are provided. We also provide some examples for
distribution of random variable W in special cases. The results can be applied to reliability analysis of the systems having
n components, with two subcomponents per component. The model can also find applications in actuarial sciences.
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