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ABSTRACT

Discriminating native-like complexes from false-positives with high
accuracy is one of the biggest challenges in protein-protein docking.
The relationship between various favorable intermolecular interac-
tions (e.g., Van der Waals, electrostatic, desolvation forces, etc.) and
the similarity of a conformation to its native structure is commonly
agreed, though the precise nature of this relationship is not known
very well. Existing protein-protein docking methods typically for-
mulate this relationship as a weighted sum of selected terms and
tune their weights by introducing a training set with which they
evaluate and rank candidate complexes. Despite improvements in
recent docking methods, they are still producing a large number of
false positives, which often leads to incorrect prediction of complex
binding. Using machine learning, we implemented an approach that
not only ranks candidate complexes relative to each other, but also
predicts how similar each candidate is to the native conformation.
We built a Support Vector Regressor (SVR) using physico-chemical
features and evolutionary conservation. We trained and tested the
model on extensive datasets of complexes generated by three state-
of-the-art docking methods. The set of docked complexes was gen-
erated from 79 different protein-protein complexes in both the rigid
and medium categories of the Protein-Protein Docking Benchmark
v.5. We were able to generally outperform the built-in scoring func-
tions of the docking programs we used to generate the complexes,
attesting to the potential of our approach in predicting the correct
binding of protein-protein complexes.
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1 INTRODUCTION

Proteins play a major role in nearly any vital biological function [14,
21]. Proteins often bind to other proteins as part of their function,
to form protein complexes [13]. In order to understand many of the
important roles proteins play, we must have good understanding
of their structure and function [14, 17, 24].

Computational docking methods aim to compute the correct
bound form of two or more molecules. Protein-protein docking
methods take two (or more) protein structures and try to predict
the structure of the complex formed by them. This is a highly
challenging task because even for rigid body docking, the search
space spans the three translational and three rotational degrees of
freedom for the other protein. Therefore, the search space grows
exponentially with the size of the input proteins [25]. To make the
problem more tractable, some docking programs allow the user to
add a-priori knowledge like interacting residues [9, 11] or an initial
conformation which is the basis for a local search [22].

Protein-Protein Scoring Functions: Most docking algorithms apply
a geometric search for the correctly bound complex, followed by a
ranking/scoring stage where a scoring function aims to distinguish
native-like candidates from false positives. Scoring functions are
designed to favor conformations with low binding energy, good geo-
metric fit, clusters of conserved residues on the binding interfaces,
and more. Over the past 20 years several scoring functions have
been developed for ranking putative docked complexes. These scor-
ing functions combine geometric complementarity with physical
and chemical interactions [9, 11, 15, 20, 22]. These functions often
use a combination of Van der Waals (VAW) energy, electrostatic
interactions and desolvation terms. The combination and weighing
of the terms differs among different methods. A recent docking
refinement method by our group [2, 3] uses a scoring function that
also includes an evolutionary traces (ET) term [30]. The assump-
tion is that binding interfaces tend to be conserved due to their
evolutionary importance.

Modern docking algorithms are often successful in predicting
the correctly bound complex of their input proteins but many times
the highest ranking docking candidates are still often false posi-
tives [15, 16]. A recent large-scale benchmarking of many current
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docking methods revealed that most physics-based scoring func-
tions still fail to accurately predict the binding affinity of complexes
[17]. In other words, the top scoring candidates are not always the
closest ones to the native complex. Furthermore, even the most
accurate scoring functions cannot always accurately estimate the
least RMSD (IRMSD) of a docked structure with respect to its native
conformation, since their aim is to provide relative ranking of a set
of docked structures. Therefore, more work is needed to improve
the existing scoring functions or design new methods.

It is generally agreed that there is a relationship between various
scoring terms (e.g., Van der Waals, electrostatic, desolvation forces,
etc.) and the similarity of a docked complex to its native struc-
ture [4]. However, the exact form of this relationship is unknown.
Therefore, docking algorithms often formulate this relationship as a
weighted sum of selected energetic, biochemical or geometric terms
and adjust their weights against a training set [24]. Yet, the general
inaccuracy of the rankings may suggest that the relationship be-
tween the scoring function terms and IRMSD of a conformation
may be more complex than a weighted sum. For this reason, many
docking algorithms provide an additional, sometimes optional, re-
finement stage, where selected putative complexes are being refined
and re-ranked in order to improve the geometric fit and the binding
energy of the candidate complexes.

Machine Learning for Docking: In recent years there has been an
increasing use of machine learning based methods in bioinformat-
ics. Support Vector Machines (SVM) are one of supervised learning
methods that are widely used in solving classification problems. An
SVM model is a representation of the training samples as points in
space that are mapped so that different classes are separated by a
gap that is as wide as possible. To classify new samples, features of
the new data is used to map the samples into the same space and
their class label is determined based on which side of the gap they
fall on. SVMs can also be used to do nonlinear classification by us-
ing a kernel, where the samples are mapped into high-dimensional
feature spaces to achieve separation of the target classes [10]. SVMs
can be modified to suit regression problems, where they are referred
to as Support Vector Regression (SVR) methods. Inspired by statisti-
cal learning theory, support vector methods aim at minimizing the
training error while trying to keep the complexity of the function
to be learned under control. SVR learns the nonlinear mapping be-
tween the feature values and the output values of the given training
set in the form of a function, and this function can be later used
to do prediction of target values. SVMs, SVRs and other similar
kernel methods have been successfully used in bioinformatics ap-
plications including protein interaction prediction in the context of
interaction networks [6], ranking of predicted protein structures
[28], protein function classification [8] and protein ligand docking
[18]. To the best of our knowledge, there are not many machine
learning methods applied to protein-protein docking. In this work
we use an SVR model as our scoring function in protein complex
similarity prediction.

This Contribution: The objective of this paper is two-fold: first,
based on our previous work [1, 5, 12], we describe a new SVR
based machine learning approach, to predict the IRMSD of a set of
candidate complexes with respect to their native conformation. Our
method includes evolutionary conservation information in addition
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to physico-chemical interactions. Through a set of cross validation
experiments, the SVR model showed comparable performance with
the best performing method from our previous work, a multilayer
neural network, while being much faster (The comparisons are not
shown in this paper). Additionally, our SVR prediction model shows
comparable and often better performance than the built-in scoring
functions of three well-known docking methods, which were used
to produce the protein complexes.

Second, in our previous work we used smaller sets of protein
complexes including mostly near-native complexes of IRMSD range
(0-7A) [12]. That set provided only a partial sampling of the confor-
mational space of docking candidates, which often span a very wide
range of RMSDs from the native complex. In this paper, in order to
conduct a more extensive analysis, we used complexes with much
wider RMSD ranges. We also used a larger and more diverse set
of 79 complexes from both the easy and medium categories of the
Protein-Protein Docking Benchmark v.5 [29]. Our experiments can
be used as a guiding tool for building the right training dataset and
employing an accurate model in the studies that rely on identifying
the best docking candidate complexes.

2 METHODS

2.1 Generating the Complexes

We initially selected 81 protein-protein dimers from the easy (rigid)
and medium categories in the Protein-Protein Docking Benchmark
v.5 [29] for which the corresponding evolutionary trace files were
available in the ET Server [23]. Then, we generated docking results
for each of these input complexes with PyDock [9], coarse Roset-
taDock [22] (without refinement) and a version of ClusPro [20]
which generates the candidate complexes using the PIPER scor-
ing function [19], without the clustering phase (S. Vajda, personal
communication). For each protein, we retained the top-ranking 100
complexes generated by each one of the three docking algorithms,
as ranked by that docking program’s built-in scoring function. The
IRMSD distribution of the generated candidates with respect to the
native complex is shown in Table 1 and Figures 1-2.

To generate VAW and electrostatic values for our scoring func-
tion, we added hydrogen atoms using CHARMM [7] followed by
500 steps of energy minimization using NAMD [27] to resolve col-
lisions without creating large changes to the complexes. Following
these stages, two complexes were excluded due to problems in
the calculation of the evolutionary trace values. The remaining 79
complexes were used to produce the results below.

2.2 Training Dataset

The training datasets contain 6,400 complexes (100 complexes for
each protein) generated for the following 44 proteins from the
easy category and 20 proteins from the medium category of the
Protein-Protein Docking Benchmark v.5 [29]. The easy complexes
are: 1Z5Y, 2AJF, 1GLA, 1JTD, 1YVB, 2GTP, 1IEWY, 3A4S, 1J2], 1T6B,
1US7, 10C0, 1ZHI, 10YV, 1H9D, 2125, 2VDB, 1ZHH, 2HLE, 1EFN,
1B6C, 200B, 208V, 1Z0K, 1PVH, 4H03, 3BIW, 3VLB, 1GL1, 2YV],
2A9K, 2AYO, 2FJU, 2G77, 2J0T, 2SNI, 3PC8, 1RO0R, 4M76, 7CEL, 2GAF,
2B42, 1GXD, 2A5T
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Figure 1: RMSD (A) distribution with respect to the native
complex of training datasets generated by (a) RosettaDock,
(b) pyDock and (c) ClusPro.

The complexes from the medium category are: 1GRN, 2HRK,
1LFD, 3CPH, 2Z0E, 1XQS, 1R6Q, 3DAW, 4177, 1WQ1, 2CFH, 1CGlI,
112M, 1ZM4, INW9, 1HES8, 1IMQ8, 20ZA, 359D, 4FZA.

2.3 Test Dataset

The test set includes 1,000 complexes (100 complexes for each pro-
tein) from the following 10 proteins in the easy category: 3D5S,
3K75, 2HQS, 1JTG, 1GPW, 1XD3, 2A1A, 4CPA, 1FFW, 1S1Q, and 500
complexes from the following 5 proteins in the medium category:
1SYX, 1JIW, 1M10, 3BX7, 3AAD.

Table 1: Training and test datasets statistics summary: min-
imum, mean, maximum and standard deviation of the least
RMSD (IRMSD) values of the samples in each dataset and
the methods used to generate the samples (Tr=Training,
Te=Testing, N=Number of proteins in each set)

Set Range | Mean | Std Method N
Tr1 | 1.1-14.41 4.2 1.49 Rosetta 64
Tr 2 | 0.74-51.78 | 17.05 | 7.59 pyDock 64
Tr3 | 0.75-44.37 | 1491 | 7.79 Cluspro 64
Tr4 | 0.74-51.78 | 15.98 | 7.77 | pyDock-Cluspro | 64
Tel | 0.77-11.44 | 3.84 | 1.38 Rosetta 15
Te2 | 1.47-31.55 | 14.85 | 5.71 pyDock 15
Te 3 | 0.66-27.67 | 12.71 | 6.76 Cluspro 15
Te 4 | 0.66-31.55 | 13.78 | 6.25 | pyDock-Cluspro | 15
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Figure 2: RMSD (A) distribution with respect to the native
complex of the test datasets generated by (a) RosettaDock,
(b) pyDock, and (c) ClusPro.

2.4 Features

Our prediction methods approximate the relationship between 16
different features and the IRMSD of a protein complex with respect
to its native structure. The majority of these features are used as
scoring function terms by multiple docking and refinement methods
[9, 19]. Additionally, we have an evolutionary conservation based
feature (ICAR) [4]. The features are as follows:

e Van der Waals (VAW): The VAW force for interface atoms
(defined as the atoms within at most 6A to the adjacent
chain atoms) is computed using a soft Lennard-Jones po-
tential [2].

o FElectrostatic: Computed for interface atoms, based on Coulomb’s

law as explained in [2].

o Interface Conserved Atom Ratio (ICAR): the ratio of the
evolutionarily conserved interface atoms to the total inter-
face size, see [4].

e Complex Category: The numeric representation of the pro-
tein category, as defined in the Protein-Protein Docking
Benchmark v.5 [29].

e The fraction of interface atoms belonging to a residue type:
Hydrophobic (A, C, G, I, L, M, P, V); Positively Charged
(H, K, R); Negatively Charged (D, E); Polar (N, Q, S, T);
Aromatic (F, H, W, Y).

2.5 Prediction Method: SVR

We used the training complexes represented with the above 16
features to train the SVR model. Eight of these features consist of
continuous values and were initially scaled to the range of [0..1].
The remaining eight features, that are used to represent the eight
different protein categories, have been used as binary categorical
features. The IRMSD values of the training samples have been scaled
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to the range of [0..1] as well. After several exploratory rounds of
parameter tuning and cross validation (exhaustive grid search), we
chose RBF (Radial Basis Function) as the kernel for the SVR model
with kernel coefficient (gamma) equal to 0.01. The penalty term for
the error was chosen to be 0.9. After the model was implemented
using the module provided by Scikit-learn [26] and trained using
the training sets, the models were then used to predict the output
value of the given test structures, where the resulting values were
re-scaled to represent the final predicted IRMSD value.

3 RESULTS AND DISCUSSIONS

In this section, we discuss the prediction accuracy of the models by
comparing predicted and actual IRMSDs of the samples in our test
datasets, as well as describing our cross-validation experiments for
comparing different datasets that we used to train the SVR models.
Last but not least, we compared the performance of SVR with the
scoring functions of Rosetta, pyDock and ClusPro using two objec-
tive metrics that will be described in next subsections. We mainly
aimed at comparing the predictive power of SVR in protein complex
ranking with other well-known methods. We first conducted a set
of experiments to compare the prediction accuracy of the models
when trained using each of our datasets. In these experiments we
measured the errors and Pearson correlations of the actual and pre-
dicted RMSD values. Then, a set of 5-fold cross validation tests were
conducted to unbiasedly examine the accuracy of the models using
randomly selected training and testing sets. Finally, we examined
how SVR stands in ranking the top 100 structures for each of the
candidate complexes generated by Rosetta, pyDock and ClusPro
when compared to those methods’ rankings.

3.1 Performance Testing

We tested the performance of our method against complexes from
the easy and medium category of the protein-protein benchmark
[29]. The medium difficulty complexes are harder to predict, since
they model possible conformational changes upon binding. Each
of the test sets had a total of 1,500 candidates from 15 proteins that
we had randomly selected for testing (see Test Datasets above). The
Pearson correlation coefficients of the predicted and actual IRMSD
values and the error of these experiments for each test protein is
listed in Table 2. The lowest average prediction error of 1.15A was
observed with the structures generated by RosettaDock and the
highest average error of 6.09A was returned by the ClusPro dataset.
Despite having proteins with medium difficulty, we were able to
obtain prediction errors within less than one standard deviation
of the IRMSD distribution, and the correlation coefficients were all
above 0.33.

Finally, our goal is to make our method agnostic to the dock-
ing method used to generate the complexes. We trained the model
using the dataset that we built by combining the structures gen-
erated by pyDock and ClusPro. We kept the RosettaDock out of
this experiment since it is a local search method as opposed to the
FFT-based search used by both ClusPro and PyDock, and hence the
IRMSD range is much lower, which would result in a vastly differ-
ent conformational space. The test results using this 4th dataset
are shown in Table 2. The average prediction error of 5.82A was
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returned, which not surprisingly is approximately midway between
the ClusPro and pyDock separate predictions.

Looking at the prediction results, it is worth highlighting that the
correlation coefficients of the actual and predicted RMSD values as
well as the prediction accuracy of models vary from case to case for
a given protein due to the diversity of the distribution of features
and RMSD values for each protein. Also, a general observation
worth noting is that the prediction errors of the models trained
with samples generated using RosettaDock were on average smaller
compared to the models trained with samples generated by pyDock
and ClusPro. We attribute this to having considerably more samples
with lower IRMSD values in training and test datasets generated by
RosettaDock due to its local sampling nature, while the complexes
obtained by pyDock and ClusPro had a much wider spread over
the higher ranges of IRMSD values.

Table 2: SVR Prediction errors and Pearson correlations us-
ing complexes from the rigid+medium category generated
by Rosetta, pyDock and ClusPro and a combined set of
pyDock and ClusPro(Err=Error, Co=Pearson correlation, C.
and D.=ClusPro and pyDock)

Rosetta pyDock ClusPro C.andD.
PDB | Err | Co | Err | Co | Err | Co | Err | Co
3D5S | 0.87 | 0.58 | 6.53 | 0.33 | 13.07 | 0.3 | 10.43 | 0.08
3K75 | 0.79 | 0.25 | 59 | 0.34 | 2.87 | 0.15 | 4.68 | 0.04
2HQS | 1.47 | 0.64 | 6.68 | 0.17 | 5.99 | 0.23 | 6.11 | 0.17
1JTG | 191 | 0.01 | 57 | 0.23 | 835 | 0.08 | 7.11 | 0.27
1GPW | 0.99 | 0.44 | 4.65 | 0.57 | 8.92 0.2 6.86 0.6
1XD3 | 0.71 | 0.38 | 7.45 | 0.63 | 12.43 | 0.19 | 10.28 | 0.6
2A1A | 142 | 04 | 6.16 | 0.67 | 535 | 0.74 | 5.73 | 0.76
4CPA | 0.7 | 037 | 48 | 0.77 | 2.57 | 0.49 | 3.01 | 0.65
1FFW | 0.64 | 0.16 | 4.71 | 0.34 | 3.98 | 0.13 | 4.19 0.3
1S1Q | 0.96 | 0.21 | 2.82 | 0.53 | 2.58 | 0.64 | 2.82 | 0.67
1SYX | 0.51 | 04 | 3.67 | 0.07 | 2.71 | 0.63 | 3.46 | 0.21
1JIW 0.9 0.2 | 557 | 0.16 | 6.62 | 0.07 | 6.23 | 0.07
1M10 | 2.46 | 0.36 | 6.27 | 0.18 | 4.21 0.3 5.13 | 0.41
3BX7 | 1.42 | 0.64 | 6.01 | 0.26 | 6.18 | 0.91 | 6.11 | 0.49
3AAD | 144 | 0.13 | 464 | 0.51 | 553 | 0.73 | 5.17 | 0.49
Avg. 1.15| 034 | 544 | 0.38 | 6.09 | 037 | 5.82 | 0.39

3.2 Model Comparison by Cross Validation

In order to analyze the performance of the models in an unbiased
fashion and to demonstrate that characteristics of individual protein
complexes in our test sets is not in any way favoring the prediction,
we conducted 5- fold cross validation experiments. We combined
the training/test datasets and randomly divided the samples into
training and testing sets, where 80 percent of total samples were
used for training and the remaining samples were set aside for
testing. This was repeated in an iterative manner for 5 times such
that no samples generated for a particular protein could fall in both
training and testing sets.

The prediction errors and correlation coefficients for the four
datasets are summarized in Table 3. Similarly, the lowest average
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error of 1.34A and highest average correlation of 0.47 were gen-
erated by RosettaDock complexes. Average prediction errors of
6.57A 7.6A and 7.17A were produced by pyDock, ClusPro and the
combined dataset respectively. The prediction error was similar to
the test sets reported above, with a slightly lower but still positive
correlation.

Table 3: 5-fold cross validation SVR results using the struc-
tures in medium category generated by Rosetta, pyDock and
ClusPro.

Rosetta pyDock ClusPro C.andD.

Fold | Err | Co | Err | Co | Err | Co | Err | Co
1 1.25 | 033 | 6.41 | 0.29 | 6.52 | 0.42 | 6.69 | 0.33

2 1.22 | 047 | 6.83 | 0.34 | 798 | 0.18 | 7.4 | 0.27

3 1.25 | 043 | 6.33 | 0.28 | 6.21 | 0.39 | 6.67 | 0.22

4 1.79 | 036 | 7.24 | 04 | 9.26 | 0.08 | 83 | 0.21

5 1.21 | 0.59 | 6.05 | 0.29 | 8.03 | 0.15 | 6.75 | 0.27
Avg. | 1.34 | 047 | 6.57 | 032 | 7.6 | 0.24 | 7.17 | 0.26

3.3 Comparing SVR with the Scoring Functions

Finally, we compared the predictive ability of our model with the
built-in scoring functions used by the docking methods to rank
the candidate complexes. For each complex, we compared the rela-
tive ranking of the 100 docking candidates based on the docking
method’s scoring function against the predicted IRMSD produced
by our model. As a ground truth we ranked the candidate complexes
by their IRMSD from their native complex. In order to conduct an
objective comparison for the ranking performance of the SVR and
the other 3 docking methods, two measurements are used: (1) the
number of correctly identified top ten structures for each complex,
and (2) each method’s ranking of a structure against its real ranking
is compared and the root mean square error in ranking is calculated.

Tables 4, 5 and 6 present how RosettaDock, pyDock and ClusPro
ranked the 100 solutions for each protein. In these set of experi-
ments, SVR performed better than pyDock and ClusPro in identify-
ing top-10 complexes, and had lower average ranking error. Our
model performs slightly worse than RosettaDock in average rank-
ing error. RosettaDock achieved lower ranking error in 73 percent
of the cases, but the difference is rather small (25.57 for Rosetta-
Dock vs. 26.98 for SVR). Finally, SVR and RosettaDock identified,
on average, the same number of top-10 complexes, but our model
was able to identify more top-10 complexes in six out of the 15 test
cases, whereas RosettaDock identified more top-10 complexes in
four out of the 15 cases.

4 CONCLUSIONS

We presented a machine learning approach to predict and rank
protein-protein docking candidates. A major challenge in protein-
protein docking is that existing scoring functions still produce a
large number of false positive candidates, which are high-ranking
complexes with high RMSD with respect to the native complex.
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Table 4: Comparison of Rosetta and SVR by the number of
best structures included in their top-10, and by their error
in ranking, medium category.

Error in ranking | # of detected top-10

PDB | Rosetta | SVR | Rosetta SVR
3D5S 20.68 20.78 3 5
3K75 30.06 30.46 0 1
2HQS 11.06 17.87 6 4
1JTG 32.46 34.34 2 1
1GPW 23.5 24.42 3 3
1XD3 26.26 24.66 3 1
2A1A 20.68 24.54 1 2
4CPA 19.2 24.38 0 1
1FFW 40.04 37.06 0 0
1S1Q 23.44 27.38 1 1
1SYX 29.92 26.58 0 0
1JIW 24.5 30.52 0 0
1M10 24.34 25.76 3 1
3BX7 18.78 19.68 2 3
3AAD 38.7 36.24 0 1
Avg. 25.57 26.98 1.6 1.6

Table 5: Comparison of pyDock and SVR by the number of
best structures included in their top-10, and by their error
in ranking, medium category.

Error in ranking | # of detected top-10

PDB | pyDock | SVR | pyDock SVR
3D5S 33.6 40.68 3 0
3K75 31.9 28.36 3 6
2HQS 35.72 23 1 3
1JTG 31.46 27.88 4 1
1GPW 28.2 20.6 4 3
1XD3 32.22 18.42 1 3
2A1A 30.4 22.12 3 5
4CPA 30.6 15.54 0 2
1FFW 33.52 39.04 2 0
1S1Q 38.5 19.42 0 4
1SYX 35.54 37.68 0 0
JIW 30.58 32.16 1 2
1M10 36.36 37.34 0 1
3BX7 24.24 25.62 2 1
3AAD 29.36 23.78 1 2
Avg. 32.15 27.44 1.67 2.2

We trained our prediction model on a large number of protein-
protein docking candidates with a wide range of RMSDs and com-
plex types. Our features include amino acid type, physico-chemical
interactions and evolutionary conservation on the binding interface.
We showed that our ranking and predictive ability was comparable
to, and in most cases better than, existing scoring functions. Initial
results (not shown) demonstrate that the addition of evolutionary
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Table 6: Comparison of ClusPro and SVR by the number of
best structures included in their top-10, and by their error
in ranking, medium category.

Error in ranking | # of detected top-10

PDB | ClusPro | SVR | ClusPro | SVR
3D5S 36.5 26.66 0 1
3K75 37.74 34.04 0 1
2HQS 34.28 26.7 1 6
1JTG 33.78 34.7 0 1
1GPW 36.02 29.96 1 0
1XD3 29.32 33.46 1 0
2A1A 30.32 14.92 2 5
4CPA 34.76 44.92 1 1
1FFW 34.76 30.22 1 0
1S1Q 35.84 16.76 0 3
1SYX 37.6 22.7 2 3
1JIW 32.08 33.72 2 0
1M10 33 39.56 1 0
3BX7 33.6 15.18 2 4
3AAD 34.54 18.94 3 2
Avg. 33.59 29.75 0.87 1.67

conservation contributes to the better performance of the model in
all of our test cases, and especially when the binding interface is
not known and the full conformational space is explored. This is
the subject of current work. Future work includes incorporating the
ranking function into a docking scheme. Most docking programs
first perform geometric search, followed by a ranking stage. Incor-
porating a scoring phase in the search will allow us to filter out
implausible candidates and make the search more effective.
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