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The notion of self-duality of 2-forms in 4-dimensions plays an em-

inent role in many areas of mathematics and physics, but although

the 2-forms have a genuinemeaning related to curvature and gauge-

field-strength inhigherdimensionsalso, their “self-duality" is some-

thing which is almost avoided above 4-dimensions. We show that

self-duality of 2-forms is a very natural notion in higher (even) di-

mensions also and we prove the equivalence of some scattered and

rarely used definitions in the literature. We demonstrate the useful-

ness of this higher self-duality by studying it in 8-dimensions and

we derive a natural expression for the Bonan form in terms of self-

dual 2-forms and we give an explicit expression of the local action

of SO(8) on the Bonan form.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let M be a 4-dimensional, oriented Riemannian manifold and let ei, i = 1, . . . , 4 be a local, posi-

tively oriented, orthonormal basis for the cotangent bundle T∗M ofM. The local expression of a 2-form

is given by

ω = ∑
i<j

ωije
i ∧ ej.

(We will use eij for ei ∧ ej .) In 4-dimensions, ω is Hodge self-dual if ∗ω = ω while it is Hodge anti-

self-dual if ∗ω = −ω. For any p-form on an n-dimensional manifold, we have ∗∗ = (−1)p(n−p). In
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particular forn = 4andp = 2,∗∗ = 1and therefore∗has eigenvalues±1.Hence in4-dimensions, the

6-dimensional linear space of 2-forms is the orthogonal direct sum of the 3-dimensional eigenspaces

of the Hodge map. This construction fails in higher dimensions as the Hodge dual of a 2-form is no

longer a 2-form. There are various definitions of self-duality of 2-forms in higher dimensions, each

with some type of a drawback or restrictions. In previous papers [1–3], we have proposed the notion

of “strong self-duality" which unifiesmost of the existing definitions in the literature. In this report we

recall some of these results and apply them to obtain new results on the relation of linear subspaces of

strong self-dual 2-forms and the Bonan form in 8-dimensions [4], whereby we construct new natural

expressions for the Bonan form. This construction allows a very convenient way of obtaining the

expression of the action of SO(8) on the Bonan form.

The ωij ’s form a skew-symmetric matrix whose eigenvalues are pure imaginary and occur in con-

jugate pairs. If these are denoted in 4-dimensions as ±iλ1 and ±iλ2, it can be seen that they satisfy

λ2
1 + λ2

2 = ω2
12 + ω2

13 + ω2
14 + ω2

23 + ω2
24 + ω2

34,

λ2
1λ

2
2 = (ω12ω34 − ω13ω24 + ω14ω23)

2.

Hence

λ1 ∓ λ2 =
√

(ω12 ∓ ω34)2 + (ω13 ± ω24)2 + (ω14 ∓ ω23)2.

Thus for self-duality

λ1 = λ2,

while for anti-self-duality

λ1 = −λ2.

In both cases the absolute values of the eigenvalues are equal. Two cases are distinguished by the sign

of the Pfaffian of ω:

Pf(ω) = ω12ω34 − ω13ω24 + ω14ω23.

Thus in 4-dimensions, the equality of the absolute values of the eigenvalues gives the usual notion

of self-duality in the Hodge sense.

This crucial remark is the starting point of our work on strong self-duality. We declare a 2-form

in 2n-dimensions to be strong self-dual or strong anti-self-dual, if the eigenvalues of its matrix with

respect to some local orthonormal basis {e1, . . . , e2n} are equal in absolute value and nonzero. The

two cases are again distinguished by the sign of the Pfaffian, or more simply, by the sign of ∗(ωn). We

also note that odd dimensionalmanifolds can be ignored because the 2-forms on them are degenerate.

Denoting the 2-form and its matrix with respect to some orthonormal basis by the same symbolω,

strong self-duality or anti self-duality can also be expressed by the minimal polynomial requirement

ω2 + λ2I = 0,

where

λ2 = − 1

2n
Tr ω2.

2. Strong self-duality in higher dimensions

In Section 2.1 we recall the definition of strong self-duality and anti-self-duality in terms of the

associated anti-symmetric matrices, in Section 2.2 we discuss some useful inequalities and in Section

2.3 we prove the equivalence of various self-duality notions for 2-forms.
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2.1. Strong self-duality (SD) and anti-self-duality (ASD) of 2-forms as an eigenvalue criterion

Letω be a 2-form on a 2n-dimensional oriented real vector spacewith an inner-product.We denote

the2-formω and the corresponding skew-symmetricmatrix consisting of its componentswith respect

to some orthonormal basis by the same symbol. The distinction between the wedge product of forms

and thematrix multiplication should bemade from the context. Sinceω is a 2n× 2n skew-symmetric

matrix, its eigenvalues are pure imaginary and pairwise conjugate, i.e. ±iλ1, . . . ,±iλn. Thus there is

an orthonormal basis {Xk, Yk} such that

ωXk = −λkYk, ωYk = λkXk

and ω takes the block-diagonal form

ω =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 λ1

−λ1 0

.

.

.

0 λn

−λn 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We define strong self-duality and anti-self-duality as follows (see [1]):

Definition 1. Let ω be a real 2-form on a 2n-dimensional oriented real vector space with an inner

product and denote the corresponding 2n × 2n skew-symmetric matrix with respect to some ortho-

normal basis by the same symbol. Let ±iλ1, . . . , ±iλn be the eigenvalues of ω. Then ω is said to be

strong self-dual (respectively, strong anti-self-dual) if

|λ1| = |λ2| = · · · = |λn| (1)

and ∗ωn > 0 (respectively, ∗ωn < 0).

Note that this is equivalent to the statement that the distinction is based on the sign of the Pfaffian

of ω with respect to a positively oriented orthonormal basis.

If ω is strong self-dual, its matrix with respect to a positively oriented orthonormal basis can be

brought to a block diagonal form Kλ = I ⊗ ελ where ελ =
⎛
⎝ 0 λ

−λ 0

⎞
⎠, by an orientation preserv-

ing orthogonal transformation, while if it is strong anti-self-dual, the same Kλ can be realized by an

orientation reversing transformation.

The strong self-duality condition is equivalent to the matrix equation

ω2 + λ2I = 0,

where I is the identity matrix, and λ2 = − 1
2n

Tr ω2. This definition gives quadratic equations for the

ωij ’s, hence the strong self-duality condition determines an algebraic variety. This algebraic variety

will be denoted by S2n.

In 4-dimensions, the strong self-duality coincides with usual Hodge duality. More precisely, the

matrices satisfyingω2 +λ2I = 0 consist of the union of the usual self-dual and anti-self-dual 2-forms

(including the zero form). Thus the algebraic variety consists of the union of two linear spaces.

2.2. Eigenvalue inequalities

In this section we shall use the well known inequalities between elementary symmetric functions

of the eigenvalues of a skew symmetricmatrix to obtain inequalities between the norms of the powers

of a 2-form.
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Lemma 1 [6]. Let sk be the kth elementary symmetric function of the numbers {α1, α2, . . . , αn}, with

αi ∈ R and let the weighted elementary symmetric polynomials, qk’s, be defined by(
n

k

)
qk = sk. (2)

Then

q1 ≥ q
1/2
2 ≥ q

1/3
3 ≥ · · · ≥ q1/nn , (3)

qr−1qr+1 ≤ q2r , 1 ≤ r < n. (4)

If all αi’s are equal, then the equalities hold and if any single equality holds, then all αi’s are equal.

Although the inequalites (4) are more convenient to use, the inequalites (3) are more refined in the

sense that (4) implies (3).

Remark 1. If A is diagonalizable with eigenvalues λ1, λ2, . . . , λn, then

det(I + tA) =
n∑

k=0

σkt
k =

n∏
k=1

(1 + tλk), (5)

where σk is just the kth elementary symmetric function of the eigenvalues.

If A is a real skew-symmetric 2n × 2nmatrix, then the eigenvalues of A are ±iλk , k = 1, 2, . . . , n.
It can be seen that, in this case σ2k+1 = 0 while the σ2k ’s are kth elementary symmetric functions of

{λ2
1, λ

2
2, . . . , λ

2
n}, i.e.

σ2 = λ2
1 + λ2

2 + · · · + λ2
n,

σ4 = λ2
1λ

2
2 + λ2

1λ
2
3 + · · · + λ2

n−1λ
2
n,

σ6 = λ2
1λ

2
2λ

2
3 + λ2

1λ
2
2λ

2
4 + · · · + λ2

n−2λ
2
n−1λ

2
n, (6)

...

σ2n = λ2
1λ

2
2 · · · λ2

n.

Thus for a skew-symmetric matrix, using (2), we can express σ2k ’s as

σ2k = n!
k!(n − k)!qk. (7)

On the other hand, the σ2k ’s are related to the norms of the kth powers of ω as

σ2k = 1

(k!)2 (ωk, ωk), (8)

where the brackets (,) denote the inner product.

Combining these we have the relations

σ2 = (ω, ω) = nq1,

σ4 = 1

(2!)2 (ω2, ω2) = n(n − 1)

2
q2,

σ6 = 1

(3!)2 (ω3, ω3) = n(n − 1)(n − 2)

6
q3,
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...

σ2k = 1

(k!)2 (ωk, ωk) = n!
k!(n − k)!qk,

...

σ2n = 1

(n!)2 (ωn, ωn) = 1

(n!)2 |∗ωn |2= qn.

Thus

(ωk, ωk) = n!k!
(n − k)!qk (9)

or

qk = (n − k)!
n!k! (ωk, ωk). (10)

From the inequalities (3),

(ωk, ωk) ≤ n!k!
nk(n − k)! (ω, ω)k (11)

and in the case of the equality of the eigenvalues

(ωk, ωk) = n!k!
nk(n − k)! (ω, ω)k. (12)

For k = n this formula gives for a strong SD/ASD form in 2n-dimensions

(ωn, ωn) = (n!)2
nn

(ω, ω)n (13)

or

|∗ωn| = n!
n

n
2

|ω|n. (14)

2.3. Equivalence of strong self-duality with previous definitions of self-duality

We defined the strong SD/ASD of a 2-form as the equality of the absolute values of the eigenvalues

of the corresponding matrix. Now we will show that (i) a 2-form ω in 2n-dimensions is strong SD if

and only if ωn−1 is proportional to the Hodge dual of ω and (ii) a 2-form ω in 4n-dimensions is strong

SD if ωn is SD in the Hodge sense. The first condition has been proposed as a definition of self-duality

by Trautman [11] while the second one appears in the work of Grossman et al. [7]. We start with the

second result which is easier to prove.

Theorem 2. Let ω be a (non-degenerate) 2-form in 4n-dimensions. Then ω is strong self-dual (anti self-

dual) if and only if ωn is self-dual (anti self-dual) in the Hodge sense, that is ∗ωn = ωn (∗ωn = −ωn).

Proof. If ω is strong SD, we can choose a positive orthonormal basis such that ω = λ(e12 + e34 +
· · · + e4n−1,4n) with respect to this basis and it can be seen that ∗ωn = ωn. For the ASD case we can

choose ω = λ(−e12 + e34 + · · · + e4n−1,4n) giving ∗ωn = −ωn.

Conversely, if ∗ωn = ωn holds, then

∗ω2n = ∗(ωn ∧ ωn) = ∗(ωn ∧ ∗ωn) = (ωn, ωn). (15)
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By the inequalities (2) we have for k = n in 4n-dimensions, q
1/n
n ≥ q

1/2n
2n , i.e. q2n ≥ q2n. As qn =

1
(2n)! (ω

n, ωn) and q2n = 1

(2n)!2 (ω
2n, ω2n) this gives (ωn, ωn)2 ≥ (ω2n, ω2n) = |∗ω2n|2. Thus this

inequality is saturated by Eq. (15) and ω is strong SD.

If ∗ωn = −ωn, then ∗ω2n = −(ωn, ωn), ∗ω2n < 0 and the same saturation argument shows that

ω is strong ASD. �

We will now show that the strong self-duality condition is also equivalent to the self-duality defi-

nition used by Trautman [11].

Theorem 3. Let ω be a strong SD (ASD) 2-form in 2n-dimensions. Then

ωn−1 = n!
nn/2

(ω, ω)
n
2
−1 ∗ ω

(
ωn−1 = − n!

nn/2
(ω, ω)

n
2
−1 ∗ ω

)
. (16)

Conversely, if for a (non-degenerate) 2-formω the equalityωn−1=k ∗ ω holds, then k = ± n!
nn/2

(ω, ω)
n
2
−1

and ω is strong SD (ASD) for positive (negative) k.

Proof. Ifω is strong SD, we can choose a positive orthonormal basis such thatω = λ(e12 +e34 +· · ·+
e4n−1,4n) with respect to this basis. Then (ω, ω) = nλ2 and it is not difficult to see that ωn−1 consists

of the products of 2n − 2 distinct ei’s, with coefficient (n − 1)!. Thus ωn−1 = λn−2(n − 1)! ∗ ω and

the result follows by inserting λ = (ω,ω)1/2

n1/2
. Ifω is strong ASD, then we can takeω = λ(−e12 + e34 +

· · · + e4n−1,4n).
Conversely, if ωn−1 = k ∗ ω holds, then multiplying it with ω and taking Hodge duals, we obtain,

∗ωn = k(ω, ω). Since (ω, ω) = σ2 = nq1 and |∗ωn |= n!σ 1/2
2n = n!q1/2n , we obtain k = (n −

1)!q1/2n /q1. Then taking inner products of both sides of ωn−1 = k ∗ ω with themselves, we obtain

(ωn−1, ωn−1) = k2(∗ω, ∗ω) = k2(ω, ω). Substituting the value of k obtained above, and using

(ωn−1, ωn−1) = (
(n − 1)!)2nqn−1, we obtain qn = qn−1q1. But since q1 ≥ q

1/n
n , we have qn ≥

qn−1q
1/n
n , which leads to qn−1

n ≥ qnn−1. This is just the reverse of the weighted elementary symmetric

polynomials qk ’s inequality in Section 2.2, hence equalitymust hold, and all eigenvalues ofω are equal

in absolute value. Thusω is strong SD/ASD.∗ωn = k(ω, ω) and theEq. (14) gives |k| = n!
nn/2

(ω, ω)
n
2
−1.

For positive (negative) k we have ∗ωn > 0 (∗ωn ≤ 0), thus ω is strong SD (ASD). �

3. Geometry of 2-forms

In Section 3.1 we recall the manifold structure of strong SD/ASD 2-forms, in Section 3.2 we recall

some basics from Clifford algebras, in Section 3.3 we discuss the maximal linear subspaces of strong

SD/ASD 2-forms and in Section 3.4we specialize to 8-dimensionswhere possibly the richest structures

are encountered.

3.1. Manifold structure of strong SD/ASD 2-forms

In this section we describe the geometrical structure of strong self-dual and anti-self-dual 2-forms

in arbitrary even dimensions. Let S2n be the set of SD/ASD 2-forms in 2n-dimensions. Taking as vector

space the standard R
2n (with the usual metric and orientation) this set can be equivalently defined in

terms of skew symmetric matrices as follows.

Definition 2. LetA2n be the set of anti-symmetricmatrices in 2n-dimensions. Then S2n = {A ∈ A2n |
A2 + λ2I = 0, λ ∈ R, λ 	= 0}.

Including the zeromatrix, we denote the closure of S2n by S2n. Note that at each A, S2n contains the

line through A, i.e. if A ∈ S2n, thenλA ∈ S2n forλ ∈ R and hence the existence of 1-dimensional linear
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subspaces of the closure is trivial. In the next section we will determine the dimension of maximal

linear spaces of S2n.

We recall now the manifold structure of S2n.

Proposition 1. S2n is diffeomorphic to
(
O(2n) ∩ A2n

) × R
+.

Proof.

φ : S2n −→ (
O(2n) ∩ A2n

) × R
+

given by φ(A) =
(
1
κ
A, κ

)
with κ =

[
− 1

2n
Tr A2

]1/2
is a diffeomorphism [2]. �

There is another useful description of S2n:

Proposition 2. S2n is diffeomorphic to the homogeneous manifold
(
O(2n) × R

+)
/U(n) × {1} (where

R
+ is considered as a multiplicative group), and dimS2n = n2 − n + 1.

Proof. O(2n) × R
+ acts on S2n transitively by (P, α)A = αPtAP (where P ∈ O(2n), α ∈ R

+, and

A ∈ S2n) with isotropy group U(n) [2]. �

In particular, in 8-dimensions, S8 is a 13 dimensional manifold (with two connected components,

one of them containing ω = e12 + e34 + e56 + e78 and all strongly SD 2-forms, the other containing

ω = −e12 + e34 + e56 + e78 and all strongly ASD 2-forms).

3.2. Clifford algebras

We recall very briefly the notion of a (real) Clifford algebra. Let V be a real vector space and q be

a (real) quadratic form on V . The Clifford algebra Cl(V, q) associated to V and q is a real associative

algebra with identity 1, generated by the vector space V and by the identity, subject to the relations

v · v = −q(v)1 for any vector v in V . The map α(v) = −v for v ∈ V extends to an involution of

the Clifford algebra Cl(V, q) and its ±1 eigenspaces are called, respectively, the even and odd parts,

denoted by Clev(V, q) and Clodd(V, q). A representation of a Clifford algebra Cl(V, q) on a real vector

spaceW is a homomorphism from Cl(V, q) to Hom(W,W).
The real Clifford algebra associated to V = R

n and to the quadratic form q(x) = x21 + · · · + x2n, is
denoted by Cl(n).

If {e1, e2, . . . , en} is an orthonormal basis for V , the real Clifford algebra Cl(n) is generated by the

{ei}’s, subject to the relations,

e2i = −1, i = 1, . . . , n eiej + ejei = 0, i 	= j,

and it is a 2n-dimensional vector space spanned by the set

{1, e1, e2, . . . , e1e2, . . . , e1e2e3, . . . , e1e2e3, . . . , en}.
There is a transpose-antiinvolution on Cl(n), given by reversing the order of generators: ei1ei2 . . .eik �→
eik eik−1

. . .ei1 . We denote the image of an element u ∈ Cl(n) by ut .
The spin groups are defined by

Spin(n) = {u ∈ Clev(n) | uxu−1 ∈ V for x ∈ V and uut = 1}. (17)

Clifford algebras have the following fundamental property: if f : V → A is a linear map into an

associative algebra with unit such that f (v)2 = −q(v) · 1 holds for all v ∈ V , then f can be uniquely

extended to an algebra homomorphism from Cl(V, q) to A.
Togiveanexample relevant forus, letV = R

7 with thestandardquadratic formandA = EndR(O)⊕
EndR(O) where O denotes the octonions. To give a map f : V → A, we understand R

7 as Im(O)
(imaginary octonions) and define f (v) = (Rv, −Rv) where Rv denotes the octonion multiplication

from the right with the imaginary octonion v. This map can be seen to possess the required property
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and thus extends to an algebra homomorphism Cl(7) → EndR(O) ⊕ EndR(O), which can be seen to

be an isomorphism (for this and generally for Clifford algebras we refer to [8,10]).

Under this isomorphism Clev(7) is embedded as the diagonal of EndR(O) ⊕ EndR(O), Spin(7) ⊂
Clev(7) is embedded diagonally into O(8)⊕O(8) and we can also understand Spin(7) as a subgroup of

O(8) (in fact, SO(8)) by projecting into a factor; it can be shown that Spin(7) is the subgroup generated

by the right-multiplication maps Rv for v ∈ Im(O), ‖v‖ = 1. We note for later reference, that in this

model and according to the Eq. (17), Spin(7) consists exactly of those elements P ∈ O(8) for which

any Rv (v ∈ Im(O)) is transformed under PRvP
−1 into another right-multiplication map for some

w ∈ Im(O): PRvP
−1 = Rw.

3.3. Maximal linear subspaces of S2n

In this section we will show that the dimension of maximal linear subspaces of S2n is equal to

the number of linearly independent vector fields on S2n−1. Themaximal number of pointwise linearly

independent vector fields on the sphere SN is given by the Radon–Hurwitz number associated toN+1:

If N + 1 = (2a + 1)24d+c with c = 0, 1, 2 or 3, then the R–H-number associated to N + 1 equals

8d + 2c − 1 [10].

Using this formula it canbe seen that there are threepointwise linearly independent vector fields on

S3, seven on S7, three on S11 and so on. In particular this number is one for the spheres S2n−1 for odd n.

Let Lk2n be a k-dimensional linear subspace of S2n. Wewill show that themaximum of the numbers

k is equal to the Radon–Hurwitz number associated to 2n.

Proposition 3. The dimension of the maximal linear subspaces of S2n is equal to the number of linearly

independent vector fields on S2n−1.

Proof. Let Lk2n be a k-dimensional linear subspace of S2n, and choose an orthogonal basis {A1, A2, . . . ,
Ak} consisting of orthogonal and anti-symmetric matrices for this linear subspace (note that a suitable

multiple of any nonzero matrix in S2n is orthogonal). As (Ai + Aj) ∈ Lk2n, (Ai + Aj)
2 is a scalar matrix,

consequently AiAj + AjAi is a scalar matrix and (Ai, Aj) = Tr(At
i Aj) = 0 implies that AiAj + AjAi = 0.

This means that the assignment ei �→ Ai (i = 1, 2 . . . , k) gives a representation of Cl(k) on R
2n.

Conversely, if for some k, there is a representation of Cl(k) on R
2n, then there is an orthogonal

representation also and the relations e2i = −1, eiej + ejei = 0 imply that the images Ai of ei under this

representationareanti-symmetric andanti-commuting. Thismeans that thematrices {A1, A2, . . . , Ak}
span a k-dimensional linear subspace of S2n.

Thus, the maximal dimension of a linear subspace of S2n is the maximal k, for which Cl(k) acts on
R

2n. This the Radon–Hurwitz number associated to 2n [10]. �

This property shows that there is an intimate relationship between strong self-duality and Clifford-

algebras. Namely,S2n admits a k-dimensional linear subspace (i.e. including the zero-form, there exists

a k-dimensional linear space of strongly SD/ASD 2-forms onR
2n) if and only if there is a representation

of Cl(k) on R
2n.

Remark 2. The 7-dimensional plane of 2-forms on R
8 given by the linear self-duality equations of

Corrigan et al. [5] is one of these planes in S8.

We now prove directly that for odd n there are no linear subspaces other than the 1-dimensional

ones.

Proposition 4. Let L = {A ∈ S2n | (A + J) ∈ S2n} where J = ε1 ⊗ I is a reference matrix. Then

L = {kJ | k ∈ R} for odd n.

Proof. Let A =
⎛
⎝ A11 A12

−At
12 A22

⎞
⎠, where A11 + At

11 = 0, A22 + At
22 = 0. Since (A + J) ∈ S2n, AJ + JA is

proportional to the identity. This gives A11 + A22 = 0 and the symmetric part of A12 is proportional
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to identity. Therefore A = kJ +
⎛
⎝ A11 A12o

A12o −A11

⎞
⎠, where A12o denotes the antisymmetric part of A12 and

k ∈ R. Then the requirement that A ∈ S2n gives

[A11, A12o] = 0, A2
11 + A2

12o + k′I = 0, k′ ∈ R.

As A11 and A12o commute, they can be simultaneously diagonalised, hence for odd n they can be

brought to the form

A11 = diag(λ1ε, . . . , λ(n−1)/2ε, 0),

A12o = diag(μ1ε, . . . , μ(n−1)/2ε, 0),

up to the permutation of blocks, where ε = ε1 =
⎛
⎝ 0 1

−1 0

⎞
⎠, and 0 denotes a 1× 1 block. If the blocks

occur as shown, clearly A2
11 + A2

12o cannot be proportional to the identity unless λi = μi = 0 for all i.

It can also be seen that the same is the case for any permutation of the blocks. �

Note that these structures refer to local constructions on a manifold. Existence of k-dimensional

strong SD/ASD sub-bundles of the bundle of 2-forms is another matter. If there exists a section ω of

strong SD/ASD2-formson themanifold, thenω canbenormalized tohave constant normand it defines

an almost complex structure. Conversely, almost complex manifolds provide examples of manifolds

admitting a (global) section of strong self-dual 2-forms. In this case ∗ω = κωn−1, where κ is constant.

Then if dω = 0 it follows that d ∗ ω = 0, hence if ω is closed and has constant norm, then ω is

harmonic.

3.4. Maximal linear spaces of strong AS/ASD 2-forms in 8-dimensions

By Theorem 3, the maximal linear spaces of strong SD/ASD 2-forms on R
8 are 7-dimensional. By

the proof of Theorem 3, to produce one such space, it is enough to take a representation of Cl(7) on

R
8 = O and take the span of the images of the generators e1, e2, . . . , e7 of Cl(7).
Let us take the representation (implicit in Section 3.2) given by ei �→ Rei . The corresponding strong

SD 2-forms are the following (see the Appendix for the multiplication table we use):

ω1 = −e12 + e34 + e56 − e78,

ω2 = −e13 − e24 + e57 + e68,

ω3 = −e14 + e23 + e58 − e67,

ω4 = −e15 − e26 − e37 − e48,

ω5 = −e16 + e25 − e38 + e47,

ω6 = −e17 + e28 + e35 − e46,

ω7 = −e18 − e27 + e36 + e45. (18)

We will denote the span of these 2-forms by L
7 and use it as a reference 7-plane inside S8 ⊂

EndR(O) = End(R8). L
7 is the first projection of the image of R

7 = Im(O) under the map f :
Im(O) → EndR(O) ⊕ EndR(O), f (v) = (Rv, −Rv). L

7 is invariant under the matrix-conjugation

action of Spin(7).
Let us denote the set of maximal (7-dimensional) linear subspaces of S8 by L7

8. O(8) acts on L7
8 (by

conjugation on the level of elements, which maps a maximal plane onto another maximal plane) and

we now show that this action is transitive:
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Lemma 4. The conjugation action of O(8) on L7
8 is transitive.

Proof. Let L7 and L′7 ∈ L7
8 be given and choose matrices Ai ∈ L7, Bi ∈ L′7 (i = 1, . . . , 7) with

A2
i = −I, AiAj + AjAi = 0, B2i = −I, BiBj + BjBi = 0. The assignments ei �→ Ai and ei �→ Bi

determine two representationsρ andσ of Cl(7) onR
8. The assignment ei �→ −Ai determines another

representation ρ− of Cl(7) on R
8, which is inequivalent to ρ. It is a fact that [10] there are exactly two

inequivalent representations of Cl(7) onR
8, so σ is either equivalent to ρ or to ρ−. Let us assume σ to

be equivalent to ρ (the other case being similar) which means that for a certain P ∈ GL(R, 8) it holds
Bi = PAiP

−1. Anti-symmetry of Ai and Bi gives P
tPAi = AiP

tP, which necessitates PtP to be a scalar

matrix, since it commutes with all Ai (and the Ai generate the algebra End(R8)). So, if PtP = λI, then
Q = 1√

λ
P is orthogonal and Bi = QAiQ

−1. Thus L′7 is obtained from L7 by the action of Q ∈ O(8). �

Remark 3. Spin(7) is the isotropy group of L
7 under this action of O(8) on L7

8.

Remark 4. All planes L7 ∈ L7
8 are “pure" in the sense that, the non-zero 2-forms in a plane are either

all strong SD, or all strong ASD, becauseL
7 is pure (SD), so any other is pure (SD or ASD) depending on

whether the conjugation is by matrix from SO(8) or O(8)\SO(8). (This could be seen by a connectivity

argument also.)

Remark 5. Ifω is a 2-formwith the associatedmatrixA and P ∈ End(R8), then the pull-backη = P∗ω
has the matrix B = PtAP, so if P ∈ O(8) then B = P−1AP, the conjugation by P−1.

Before describing the Bonan form we want to note a few useful properties in 8-dimensions. The

basic eigenvalue inequalities reduce to

(ω, ω)2 ≥ 2

3
(ω2, ω2) ≥ 2

3
| ∗ ω4|. (19)

When ω is strong self-dual we have the equalities

(ω, ω)2 = 2

3
(ω2, ω2) = 2

3
∗ ω4, ω3 = 3

2
(ω, ω) ∗ ω, (20)

while when ω is strongly anti self-dual

(ω, ω)2 = 2

3
(ω2, ω2) = −2

3
∗ ω4, ω3 = −3

2
(ω, ω) ∗ ω. (21)

Lemma 5. Let ω and η be two orthogonal strong SD/ASD 2-forms with commuting matrices. Then

ω2η = −1

2
(ω, ω) ∗ η. (22)

Proof. Since the matrices of ω and η are commuting, they can be simultaneously diagonalized and

without loss of generality we can choose

ω = e12 + e34 + e56 + e78, η = e12 + e34 − e56 − e78.

The result follows by simple computation. �

Lemma 6. Let ω and η be two orthogonal strong SD/ASD 2-forms whose matrices anti-commute. Then

ω2η = 1

2
(ω, ω) ∗ η. (23)

Proof. By anti-commutativity ω ± η are also strong SD/ASD and by connectivity reasons all are SD or

ASD. Applying (19) for the SD-case and (20) for the-ASD case to both ω ± η and using orthogonality

gives the result by simple computation. �
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4. The Bonan-form

In Section 4.1 we give an expression for the Bonan-form in terms of strong self-dual 2-forms and in

Section 4.2 we compute explicitly the eigenvalues and eigenspaces of the self-adjoint map on 2-forms

associated with the Bonan-form.

4.1. The relationship of the Bonan-form with strong self-duality

The Bonan-form, which is a Spin(7)-invariant 4-form in 8-dimensions [4,10,9], and which plays

an important role in special Spin-geometry, can be constructed in an elegant way in terms of strong

self-dual 2-forms.

Consider the 7-plane L
7 ∈ L7

8 with an orthonormal basis {η1, η2, . . . , η7} and define

Φ = η2
1 + η2

2 + · · · + η2
7 ∈ Λ4(R8)∗. (24)

If {θ1, θ2, . . . , θ7} is another orthonormal basis of L
7 it is easily seen that

η2
1 + η2

2 + · · · + η2
7 = θ2

1 + θ2
2 + · · · + θ2

7 .

The operation of pullback of a 2-form η ∈ L
7 by an element P ∈ Spin(7) is expressed at the matrix

level by the operation of conjugation by P−1, so the map L
7 → L

7, η �→ P∗η is orthogonal and

consequently,

P∗Φ = (P∗η1)
2 + (P∗η2)

2 + · · · + (P∗η7)
2 = Φ, (25)

i.e. the 4-form Φ (which is self-dual by Theorem 1) is Spin(7)-invariant. Thus, the Bonan-form is

expressed in terms of strong self-dual 2-forms.

To give an explicit expression we can use the ortonormal basis{
η1 = 1

2
ω1, η2 = 1

2
ω2, . . . , η7 = 1

2
ω7

}
, (26)

where the ωi’s are given by Eq. (18) and find

Φ = −3

2
(e1234 + e1256 − e1278 + e1357 + e1368 + e1458 − e1467

−e2358 + e2367 + e2457 + e2468 − e3456 + e3478 + e5678). (27)

The same construction can naturally be applied to any L7 ∈ L7
8 and in this way a Bonan-form ΦL

is associated with every maximal 7-plane of strong SD/ASD 2-forms. If Q ∈ O(8), then Q∗Φ is the

Bonan-form associated with the plane Q−1
L

7Q and the isotropy group of Q∗Φ is Q−1Spin(7)Q .

4.2. Eigenspaces of the Bonan-form

We want to compute the eigenspaces and eigenvalues of the self-adjoint map TΦ on Λ2(R8)∗
defined by TΦ(η) = ∗(Φη). (The method explained below works for any ΦL .) We start with an

orthonormal basis ofL7 and denote it by {ω12, ω13, . . . , ω18} (We abuse the notation: double-indices

denote no more the coefficients of a 2-form, but a 2-form itself; it will be convenient in the sequel.)

Let A1i (i = 2, . . . , 8) denote the matrices corresponding to ω1i. Let Aij = A1iA1j for 1 < i < j. The

matricesAij for i < jwill constitute a basis for skew-symmetricmatrices in End(R8) andwill represent

strong SD/ASD forms (their squares are scalar matrices). Now, it can easily be seen that two distinct Aij

and Akl commute iff {i, j} and {k, l} are disjoint; Aij and Akl anti-commute iff {i, j} and {k, l} have one

index common. We denote the 2-form corresponding to Aij by ωij . The set {ω12, . . . , ω78} is a basis of

2-forms.
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Let

Φ = ω2
12 + · · · + ω2

18, Φ ′ = ω2
23 + · · · + ω2

78.

By symbolic computation with REDUCE, it can be seen that Φ ′ = −Φ , hence the sum of the squares

of the basis elements is zero. Since {ω12, . . . , ω18} is an orthogonal basis of a 7-planeL
7,Φ is a Bonan

form.Wewill show that the linearmaps TΦ and TΦ ′ have both 7- and 21-dimensional eigenspaceswith

eigenvalues ±3 and ∓1 (after scaling), and L is the eigenspace corresponding to the eigenvalue ±3.

Thus each Bonan form determines an L. Hence maximal linear subspaces of strong self-dual 2-forms

and the Bonan forms are in 1–1 correspondence.

Proposition 5. TΦ : Λ2(R8)∗ → Λ2(R8)∗ defined by TΦ(η) = ∗(Φη) where Φ = ω2
12 + · · · + ω2

18,

has eigenvalues 9/2 and −3/2, with 7- and 21-dimensional eigenspaces, respectively. (Scaling Φ we can

get eigenvalues 3 and −1.)

Proof. Applying the Lemmas 3 and 4, one gets,

TΦ(ω1j) = Tω2
1j
(ω1j) + ∑

k 	=j

Tω2
1k
(ω1j) = 3

2
ω1j + 6 × 1

2
ω1j.

TΦ(ωjk) = Tω2
1j
(ωjk) + Tω2

1k
(ωjk) + ∑

l 	=j,k

Tω2
1l
(ωjk) = 2 × 1

2
ωjk − 5 × 1

2
ωjk. �

Wewill now show thatΦ ′ has eigenvalues−9/2 and 3/2with, respectively, 7- and 21-dimensional

eigenspaces, hence prove that it is equal to −Φ .

Proposition 6. TΦ ′ : Λ2(R8)∗ → Λ2(R8)∗ defined by TΦ ′(η) = ∗(Φ ′η)whereΦ ′ = ω2
23+· · ·+ω2

28,

has eigenvalues −9/2 and 3/2, with 7- and 21-dimensional eigenspaces, respectively. (Scaling Φ ′ we can

get eigenvalues −3 and 1.)

Proof. We start by computing TΦ ′ on ω1k. Φ
′ is a sum of 21 terms and there are exactly 6 terms ω2

ij

where i = k or j = k and 15 terms with i 	= k and j 	= k. By Lemmas 4 and 3, these first and the

second group of terms lead to positive and negative contributions, hence

TΦ ′(ω1k) = Tω2
ik
(ω1k) + ∑

i,j 	=k

Tωij
(ω1k) = 6 × 1

2
ω1k − 15 × 1

2
ω1k = −9

2
ω1k.

By similar counting arguments,

Tφ′(ωjk) =
[
3

2
+ (5 + 5) × 1

2
− (5 + 5) × 1

2

]
ωjk = 3

2
. �

We have thus seen that any maximal linear subspace L
7 of strong self-dual 2-forms determines

a Bonan form as the sum of squares of any orthogonal basis and conversely, given a Bonan form Φ ,

an L
7 is determined as a 7-dimensional eigenspace of the linear map TΦ determined by Φ . We will

now show that given an L
7, the Bonan form is uniquely determined by a linear transformation that

acts as identity on L
7. The following proposition is proved by directly checking the claim by symbolic

computation with REDUCE.

Proposition 7. Let Ψ be a 4-form such that

TΨ (ω1i) = kω1i, i = 2, . . . , 8.

Then

Ψ = k
2

9
Φ.
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We note that in the characterization above, Ψ is not assumed to be self-dual, but its self-duality

follows from the invariance of theω1i’s. Furthermore, if an L
7 has a basis ω1i with anti self-dual ω2

1i’s,

then the form Ψ defined above is anti self-dual.

4.3. The SO(8) action on the Bonan form

In this section we give the explicit expression of the Bonan form under the action of SO(8). Let ωij

be as in the previous section and let Aij be the correspondingmatrix. Thus the Aij ’s span the Lie algebra

of SO(8). It is easy to see that the exponential of matrix Aij is

etAij = cos(t)I + sin(t)Aij.

The action of SO(8) on 2-forms is obtained by its action on matrices by conjugation. If R ∈ SO(8),
and R · ω denotes its action on the 2-form ω, then

R · ω = RARt .

We will show that etAij for i ≥ 2 leaves the Bonan form invariant. For simplicity of notation let

tij = etAij = (cI + sAij),

where

c = cos(t), s = sin(t).

The 2-form tij · ω1k is the 2-form corresponding to the matrix (cI + sAij)A1k(cI − sAij). Then,

tij · ω1i = (c2 − s2)ω1i + 2csω1j,

tij · ω1j = (c2 − s2)ω1j − 2csω1i,

tij · ω1k = ωik, k 	= i, j. (28)

It is easy to see that

(tij · ω1i) ∧ tij · ω1i + (tij · ω1j) ∧ tij · ω1j = ω2
1i + ω2

1j.

It follows that tij leaves the Bonan form invariant hence generate Spin(7).
Identifying the Lie algebra of SO(8) with 2-forms, if X is any vector in SO(8),

etX · Φ = etY · Φ,

where Y belongs to the span of the A1i’s. Thus the orbit of the Bonan form is locally generated by t1j ,

for j = 2, . . . , 8. Let yi(t), i = 1, . . . , 8 be a 1-parameter family of functions such that

y21 + y22 + y23 + y24 + y25 + y26 + y27 + y28 = 1.

Then the matrix R defined by

R = y1I + y2ω12 + y3ω13 + y4ω14 + y5ω15 + y6ω16 + y7ω17 + y8ω18

is a one parameter family of orthogonal matrices. The image of the Bonan form Φ under the action of

R is obtained by taking the wedge products of the images of the 2-forms ω1j ’s and summing up. The

result is

Φ̃ = ∑
i<j<k

cijk(e
1ijk + ∗e1ijk),

where
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c234 = 1 − 8y21

(
y25 + y26 + y27 + y28

)
,

c256 = 1 − 8y21

(
y23 + y24 + y27 + y28

)
,

c278 = −1 + 8y21

(
y23 + y24 + y25 + y26

)
,

c357 = 1 − 8y21

(
y22 + y24 + y26 + y28

)
,

c368 = 1 − 8y21

(
y22 + y24 + y25 + y27

)
,

c458 = 1 − 8y21

(
y22 + y23 + y26 + y27

)
,

c467 = −1 + 8y21

(
y22 + y23 + y25 + y28

)
, (29)

c235 = −4y1y8 + 8y21(y1y8 + y2y7 − y3y6 + y4y5),

c246 = 4y1y8 + 8y21(−y1y8 − y2y7 − y3y6 + y4y5),

c347 = 4y1y8 + 8y21(−y1y8 + y2y7 + y3y6 + y4y5),

c567 = 4y1y8 + 8y21(−y1y8 + y2y7 − y3y6 − y4y5), (30)

c236 = 4y1y7 + 8y21(−y1y7 + y2y8 + y3y5 + y4y6),

c245 = 4y1y7 + 8y21(−y1y7 + y2y8 − y3y5 − y4y6),

c348 = −4y1y7 + 8y21(y1y7 + y2y8 − y3y5 + y4y6),

c568 = −4y1y7 + 8y21(y1y7 + y2y8 + y3y5 − y4y6), (31)

c237 = −4y1y6 + 8y21(y1y6 − y2y5 + y3y8 + y4y7),

c248 = −4y1y6 + 8y21(y1y6 − y2y5 − y3y8 − y4y7),

c345 = −4y1y6 + 8y21(y1y6 + y2y5 + y3y8 − y4y7),

c578 = 4y1y6 + 8y21(−y1y6 − y2y5 + y3y8 − y4y7), (32)

c238 = 4y1y5 + 8y21(−y1y5 − y2y6 − y3y7 + y4y8),

c247 = −4y1y5 + 8y21(y1y5 + y2y6 − y3y7 + y4y8),

c346 = 4y1y5 + 8y21(−y1y5 + y2y6 − y3y7 − y4y8),

c678 = −4y1y5 + 8y21(y1y5 − y2y6 − y3y7 − y4y8), (33)

c257 = 4y1y4 + 8y21(−y1y4 + y2y3 + y5y8 + y6y7),

c268 = 4y1y4 + 8y21(−y1y4 + y2y3 − y5y8 − y6y7),

c356 = −4y1y4 + 8y21(y1y4 + y2y3 − y5y8 + y6y7),

c378 = 4y1y4 + 8y21(−y1y4 − y2y3 − y5y8 + y6y7), (34)

c258 = −4y1y3 + 8y21(y1y3 + y2y4 − y5y7 + y6y8),

c267 = 4y1y3 + 8y21(−y1y3 − y2y4 − y5y7 + y6y8),

c456 = 4y1y3 + 8y21(−y1y3 + y2y4 + y5y7 + y6y8),

c478 = −4y1y3 + 8y21(y1y3 − y2y4 + y5y7 + y6y8), (35)



1214 A.H. Bilge et al. / Linear Algebra and its Applications 434 (2011) 1200–1214

c358 = 4y1y2 + 8y21(−y1y2 + y3y4 + y5y6 + y7y8),

c367 = −4y1y2 + 8y21(y1y2 − y3y4 + y5y6 + y7y8),

c457 = −4y1y2 + 8y21(y1y2 + y3y4 − y5y6 + y7y8),

c468 = −4y1y2 + 8y21(y1y2 + y3y4 + y5y6 − y7y8). (36)

5. Conclusion

In order to conclude,wewish to re-emphasize that aBonan4-form is associatedwitheverymaximal

7-plane of strongly self-dual (or anti-self-dual) 2-forms. The square of any strong self-dual 2-form in

8-dimensions as given above yields a Bonan 4-form that is a Spin(7) invariant form and plays an

important role in the construction of special spin geometries [11]. We also give explicitly the action of

SO(8) on a given Bonan 4-form.
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Appendix

We use the following multiplication table for the octonions:

1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 −1 e3 −e2 e5 −e4 −e7 e6

e2 e2 −e3 −1 e1 e6 e7 −e4 −e5

e3 e3 e2 −e1 −1 e7 −e6 e5 −e4

e4 e4 −e5 −e6 −e7 −1 e1 e2 e3

e5 e5 e4 −e7 e6 −e1 −1 −e3 e2

e6 e6 e7 e4 −e5 −e2 e3 −1 −e1

e7 e7 −e6 e5 e4 −e3 −e2 e1 −1
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