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Abstract: The availability of free and high temporal resolution satellite data and advanced SAR
techniques allows us to analyze ground displacement cost-effectively. Our aim was to properly
define subsidence and uplift areas to delineate a geothermal field and perform time-series analysis to
identify temporal trends. A Persistent Scatterer Interferometry (PSI) algorithm was used to estimate
vertical displacement in the Brady geothermal field located in Nevada by analyzing 70 Sentinel-1A
Synthetic-Aperture Radar (SAR) images, between January 2017 and December 2019. To classify zones
affected by displacement, an unsupervised Self-Organizing Map (SOM) algorithm was applied to
classify points based on their behavior in time, and those clusters were used to determine subsidence,
uplift, and stable regions automatically. Finally, time-series analysis was applied to the clustered data
to understand the inflection dates. The maximum subsidence is –19 mm/yr with an average value of
–6 mm/yr within the geothermal field. The maximum uplift is 14 mm/yr with an average value of
4 mm/yr within the geothermal field. The uplift occurred on the NE of the field, where the injection
wells are located. On the other hand, subsidence is concentrated on the SW of the field where the
production wells are located. The coupling of the PSInSAR and the SOM algorithms was shown to
be effective in analyzing the direction and pattern of the displacements observed in the field.

Keywords: displacement on Brady geothermal; PSI; SOM for displacement analysis; time-series
analysis for displacement

1. Introduction

Geothermal operations including injection and production can create displacements
on the geothermal fields [1]. Surface displacement caused by geothermal operations affects
the construction of facilities, such as buildings, pipelines, and other infrastructure [2], and
can be monitored through several methods [3–5]. Availability of radar, laser, satellite, and
unmanned aerial vehicle (UAV) images and also recent technological developments in
Remote Sensing (RS), Geographic Information system (GIS), and radar imaging, tools,
and techniques have demonstrated reliable, accurate, cost-effective, and high-performance
displacement analysis opportunities for various purposes. Moreover, the development of
artificial intelligence (AI) and machine learning (ML) algorithms provide strong analysis
tools that can be applied to the analysis of the displacements to investigate the patterns.
Besides, Sentinel 1, Radarsat, ERS SAR provide reliable Interferometric Synthetic Aperture
Radar (InSAR), high spatial resolution data with short revisit times. The type of data
(e.g., radar, laser, optic), radiometric resolution (e.g., 8-bit, 16-bit), and spatial resolution
(e.g., 1 cm, 10 m) are coupled with new and promising algorithms such as SqueeSAR [6],
SBAS [5,7], and PSInSAR [8], which provide meaningful information for a wide variety of
research fields, like analyses of landslides [9–11], displacement monitoring [12,13], natural

Remote Sens. 2021, 13, 349. https://doi.org/10.3390/rs13030349 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-4483-9900
https://doi.org/10.3390/rs13030349
https://doi.org/10.3390/rs13030349
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13030349
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/3/349?type=check_update&version=2


Remote Sens. 2021, 13, 349 2 of 20

hazard and risk mitigation [14], deformation and time-series analysis [15], deformation
caused by earthquakes [16] and volcanic activity monitoring [17], monitoring the surface
impacts of groundwater pumping [18], mining subsidence monitoring [19,20], observing
subsidence in reclaimed coastal land [21], and water level changes [22].

Geoscientists have been using SAR data and its specific components (e.g., amplitude
or phase) to analyze and monitor slow-motion displacement caused by various field
operations [15,23,24]. In geothermal energy production, injection, and production of
water from the wells cause slow-motion displacements in a geothermal field. Several
studies have used slow-motion displacement analysis to monitor various geothermal
sites like Brady, Nevada-USA [25], Landau-Germany [26], Euhanean-Italy [27], Marangin
Jambi-Indonesia [27], Cerro Prieto and Heber-USA [28], Coso-USA [3], and Acoculco-
Mexico [11]. The spatial distribution, magnitude, and rate variations of displacement in
the field depend on the structural geology, geothermal operations, and seismic activities
in the fields. Most studies focus on the displacement between two-time steps, but there is
a limited number of studies [2,7,25] that perform temporal and sequential displacement
monitoring in geothermal sites.

Although these techniques and tools have been applied to geothermal sites in the
last decade, there are not many complementary studies on geothermal fields that monitor
displacements caused by the geothermal operations for shorter time periods using PSInSAR,
which is relatively new and provides highly accurate results. The previous studies [25,29]
on the same geothermal field had been investigated the displacements using various types
of data (e.g., TerraSAR-X, ERS-2, Envisat, ALOS) with various InSAR analysis techniques
(e.g., GIPhT, Geospatial Inversion) for a longer period of time (e.g., 2004 to 2018). All these
studies have been only concentrated on monitoring the number of displacements caused
by geothermal operations. On the other hand, the nature of geothermal operations causes a
specific pattern of subsidence and uplift. The subsidence in a geothermal field stems from
the interaction of various complex geological and production-related factors. Among these
various factors, three of them can be considered as the leading factors [25,28,30]. As [25]
stated, the first reason is the thermal cooling of the reservoir due to water injection via
wells and recycling of the cooler brings back into the subsurface. The second reason is the
compaction of the sedimentary layers as the pore pressure decreases and the formations
desaturate. The third reason is the disturbance of the equilibrium between the fluids
and reactive minerals due to dissolved minerals via reinjected water, which cause a mass
loss due to hydrothermal alteration. While geothermal fields experience slow rates of
subsidence, some amount of uplift is also observed due to the disturbed equilibrium via
production and injection. The areas of uplift and subsidence together have the potential to
provide insights into the dynamics of the operations and factors influencing the dynamics.
Therefore, analyzing spatial and temporal patterns of the subsidence and uplift for a
geothermal field has the potential to produce more knowledge about the characteristics of
the slow-motion displacements and the factors causing them.

In this paper, we present a novel approach for analyzing the spatiotemporal pattern
of subsidence and uplift for a geothermal field using the PSInSAR [31] and ML for a short
time interval (from February 2017 to December 2019). Since the displacement is accepted
as slow-motion [32] by looking at previous research [25] on the same site, time-series
analysis for a short time period is an important tool to extract temporal anomalies on
the field caused by geothermal operations. We demonstrated the implementation of the
methodology for the Brady’s Hot Spring Geothermal field as it is one of the most widely
studied geothermal fields in the literature. We used the self-organizing map (SOM) as an
ML approach to obtain spatiotemporal clustering of the displacements. The time-series
and pattern analyses have been applied in a multitude of fields in economics, finance,
environmental sciences, and others [33]. The SOM approach provides successful results
when the data are evenly spaced with some degree of noise [34]. The PSI analysis results in
sparse displacement predictions [1,6,7,10,35–41] with better accuracy. Using SOM allows
one to identify patterns of subsidence and uplift from sparse PSInSAR results, which
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has not been performed before to the authors’ knowledge. We compared the PSInSAR
analysis results, with previous research for validation. In order to understand production
dynamics in the study area we further conducted an analysis on the time series data for
the subsidence and uplift clusters obtained from SOM results. These analyses provide an
in-depth understanding of the relation between displacement behavior and geothermal
operations, which have the potential to investigate the dynamic nature of the geothermal
operations.

In the remaining part of the paper, the study area and the data are explained in Section 2.
The methodology and algorithms are described in Section 3. In Section 4, we summarize
and discuss the results of PSInSAR, SOM Clustering, and Time-Series Analysis in more
detail, and we examine the results of earlier studies for comparison and validation. Fi-
nally, in our conclusion, we elaborate on the analysis results and describe directions for
future research.

2. The Study Area and the Data

In this study, we used Sentinel-1 Synthetic Aperture Radar Interferometric Wide Swath
(SAR-IW) data, which can be downloaded from https://scihub.copernicus.eu. The study
covers Brady’s Hot Springs Geothermal Area in Churchill County, Nevada, a geothermal
field containing a plant that has been operational since 1992 [25]. Previous research on
the site [25] has identified the displacement on the site as slow-motion [32] confirming the
suitability of PSInSAR for the site.

The study area of the Brady’s Hot Spring Geothermal field is located 80 km east-
northeast of Reno, Nevada. Figure 1 illustrates the location of various wells (injection and
production), distribution of faults, build-up areas, and roads.

The Brady geothermal Hot Spring has been functional since 1992 and there are three
injection and six production wells active on the field (Figure 1). In addition, there are
human-made structures and buildings in the Area of Interest (AOI), and buildings can pro-
vide good persistent scatterers for the analysis. The predominant fault direction (Figure 1)
is north-northeast (NNE), which is commonly observed in geothermal fields [31]. In the
literature, a correlation was found between subsidence and geothermal operations at
Brady’s Hot Spring Geothermal field [25]. Some other researchers also stated that defor-
mation may occur due to thermal effects and/or pore pressure changes in this geothermal
field [25,28,30].

In this study, we limited our dataset to Sentinel 1A as the Sentinel-1A products are
available with a revisit cycle of 12 days for this satellite, which allowed us to construct
time series data for a short time period. We downloaded 72 SAR images (Orbit track 144,
descending from February 2017 to December 2019), for PSInSAR analysis. The orbital file,
atmospheric data, and Digital Elevation Model (DEM) were also downloaded to complete
the data processing. Table 1 shows the summary of SAR data, which were used for the
PSInSAR analysis.

In this study, the analysis was conducted using a Single Look Complex (SLC) Interfer-
ometric Wide (IW) C-band of Sentinel-1A images. Displacement analysis was performed
specifically in the VV polarization due to having a higher number of backscattered Per-
sistent Scatterers (PSs) in VV than HH polarization [39]. Since the phase contribution of
the SAR is more suitable for slow-motion displacement [42], phase values have been used
for displacement calculation and error corrections. In data processing, we identified two
images with some anomalies and hence excluded them. The final set of images used for
PSInSAR was 70.

Once we obtained PSInSAR results we constructed a time series of displacements. We
wanted to include enough data to monitor for at least two years, to make sure we had a
sense of annual trends, and to obtain monitoring at regular and frequent intervals. The
Sentinel data for the area are available for earlier years; however, the number of images
per year is significantly low. For this reason, we did not consider the previous years in
the analyses. Moreover, the SOM analysis for the time series data requires data with the
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same frequency. Therefore, the final set of images we used reduced to 59 spanning from
the period of 22 December 2017 to 24 December 2019, where the displacement results were
available with a 12-day frequency.

Figure 1. Brady’s hot spring geothermal study area.

Table 1. Dataset used for PSInSAR analysis.

Period
(yyyy–mm–dd) Days

Master Scene
Acquisition Date
(yyyy–mm–dd)

Track Pass Number of
Images

2017–02–01 to
2019–12–24 1056 2018–05–27 144 Descending 70

3. The Proposed Methodology

The proposed methodology consists of three main steps. Step I is the analysis of
displacements using PSInSAR. Step II is the analysis of spatiotemporal patterns with respect
to subsidence and uplift using SOM. Step III is the temporal analysis of displacements
using the time-series obtained from SOM to obtain finer patterns in time. The following
subsections explain each step in more detail with their implementation of the case study.
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3.1. Step I—Analysis of Displacements Using PSInSAR

Synthetic Aperture Radar is a microwave imaging system penetrating clouds and
water, providing day and night imaging capabilities. Backscattered microwave signals
from the ground, rocks, buildings, and vegetation carries amplitude and phase information.
Rapid Motion Tracking (RMT) algorithms use amplitude values for rapid landslides or
fast-moving areas [43]. Differential Synthetic Aperture Radar Interferometry (DInSAR)
uses two different radar images for the same field to form interferometric pairs that show
the displacement information [8]. On the other hand, Persistent Scatterer Interferometry
(PSI) methods like SqueeSAR, SBAS [3,6,7], and PSInSAR [8] are a specific class of DInSAR,
used for extremely slow (< 16 mm/yr) or very slow displacements (between 16 mm/yr ≤
and < 1.6 m/yr) [41,44]. Additionally, PSInSAR gives good results on non-vegetated [42,44],
and bare fields [41]. In addition, PSI with PSs from large coherent targets measures the
displacement more accurately than those with many small Distributed Scatterers (DSs).
Brady is a field in a deserted area with slow movement and, as such, the PSInSAR approach
was selected for displacement analysis in this study.

PSI can help remove atmospheric errors, which require a higher number of images
to provide reliable, precise, and accurate results than simpler algorithms in the DInSAR
family (which only compares two images). The higher number of interferograms increases
the reliability of the estimated deformation scatter points [44]. The studies in the literature
suggest that the algorithm requires at least 15 images [45] to 20 images [46] for better
accuracy. The SARPROZ software was used to analyze the displacements with the PSInSAR
method [47]. The method of PSInSAR can be divided into five [31] steps. Figure 2 shows
the flowchart of the PSInSAR analysis.

Figure 2. The flowchart of PSInSAR analysis.
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In the data preparation step (Figure 2), once the images, orbit data, and DEM are
downloaded, the images were Co-registered using the selected master/slave pairs, and a
Co-registered stack is obtained. In Preprocessing, a reflectivity map was constructed which
is the first meaningful result that could be evaluated, and then the Amplitude Stability
Index (ASI) index is obtained. The parameter of the ASI is critical and is recommended
to be higher than 0.75 [31,40]. Hence, we used the recommended parameter of 0.75 for
the ASI index, which cause a sparse final PSI result as expected [46]. After masking the
sparse points, a geocoded map was obtained using GCPs and the DEM (Figure 2). GCPs
are the reference points in PSI analysis. The SARPROZ software automatically downloads
the SRTM data as DEM. It is also possible to incorporate a user-defined DEM. We used
SRTM in our analyses. In Atmospheric Phase Screening (APS) Analysis, the first step is to
find stable PSs. After GCP selection, we performed statistical analysis to make sure the
PSs were normally distributed and accumulated on the zero axes. The Delaunay Graph
creates a reference network by connecting the PSs. In general, the atmospheric phase is not
expected to show significant linear trends. Therefore, we subtracted height to refine the
baselines to have a linear trend. Then we estimated the parameter that connects the graph
in Connection Processing. Figure 3 shows the histograms of the cumulative displacement,
integrated cumulative displacement, and integrated residual height histograms, which
should have zero mean for the identification of stable points. As can be seen from the graph
illustrated in Figure 3, the majority of points accumulate at or around zero, indicating that
the selected points are suitable for further analysis.

Figure 4 shows the PSI Processing that includes the Linear Trend and Height Esti-
mation and APS Removal. Similar to the APS Analysis step, a threshold was needed to
have a denser PSs analysis result. Then, the height was subtracted, and the APS was
removed. We found that 13,048 (out of 13,517) points have a coherence value higher than
0.75 (Figure 4). In the final stage of the PSI analysis (Figure 2), 13,048 PSs were geocoded
and exported for visualization. We exported maps as point scatters and resampled them to
obtain cumulative and pair displacements.

In the final step, we visualized the displacement values. SARPROZ provides Line of
Sight displacement, that is, there is no breakdown of vertical and horizontal displacements.
In the case of Brady, the horizontal displacement is assumed to be zero due to no/limited
seismic or other major geological activity. Moreover, the previous studies conducted in the
area did not also report significant horizontal displacements. Hence, we have assumed
LOS and vertical displacement to be equivalent.

3.2. Step II—Analysis of Spatiotemporal Patterns Using Self-Organizing Map (SOM)

This step is for the identification and analysis of displacement patterns in time and
space. The SOM is an unsupervised machine learning algorithm introduced by Teuvo
Kohenen in 1982 [48]. The main purpose of the SOM is to classify high-dimensional inputs
into spatially related two-dimensional maps. The SOM has spatial smoothness constraints
on analysis; otherwise, the SOM algorithm is similar to a K-means clustering [49]. There
are mainly three types of segmentation methods applied to the clustering of pixels in an
image: supervised, semi-supervised, and unsupervised. Some unsupervised methods, like
Iterative Self-Organizing Map Data (ISODATA) and Stochastic Expectation Maximization
(SEM), depend on parameters, and they are susceptible to noise [49]. The SOM clustering
algorithm is robust in eliminating the disadvantages of supervised methods and does not
require the effort of manual or semiautomatic labeling operations. This algorithm is an
Artificial Neural Network, ANN, algorithm [50], which has been used in many engineering
tasks including clustering, dimensionality reduction, classification, sampling, vector quan-
tization, and data mining [48] and for various image processing research [51]. It has also
been used recently for pattern recognition by geoscience researchers [52], including satellite
image segmentation [53]. There are several advantages of using SOM for segmentation:
unsupervised learning [54], preserving topological relationships [55], translating high
dimensional input into two-dimensional output map [56], and visualization [55]. The SOM
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algorithm is a suitable tool for our purposes given its ability to handle multidimensional
data (as in our time series) while delineating small linear features [55]. The SOM has
neurons for each data point in each dimension. The output layer is a two-dimensional map
array of neurons. The output neurons are connected to input neurons by weight vectors.
The initial weight is started with random estimation and the learning phase is to update
the weights while learning [55].

Figure 3. Displacement histograms and maps after Atmospheric Phase Screening (APS) removal.
(a) Cumulative displacement, (b) Integrated residual height, (c) Integrated cumulative displacement
(Single Red Point: Selected GCP).
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Figure 4. PSs coherence values after the APS removal.

The flowchart of the SOM algorithm, as applied in our framework, is summarized
in Figure 5. The SOM analysis for the time series displacement data requires data with
the same frequency. Therefore, the final set of images we used reduced to 59 spanning
from the period of 22 December 2017 to 24 December 2019, where the displacement results
were available with a 12-day frequency. We developed codes in R with the CRAN kohonen
package for the application of the SOM algorithm to our dataset and selected a 3 × 3
SOM map, with a square grid and planar map (nontoroidal). The 3 × 3 SOM map results
in nine clusters that can provide an efficient separation between subsidence, uplift, and
no-displacement points. It is to be noted that we tried 4 × 4, 5 × 5, 6 × 6, and 7 × 7 SOM
maps and analyzed the results. As an example, a 7 × 7 SOM map showed a large variety
in trends and geographical dispersion, at the cost of fewer points classified in each cluster.
We found that the 3 × 3 SOM map was enough to segregate the data to an adequate level
of granularity and the 3 × 3 SOM map provides a good separability between subsidence,
uplift, and no-displacement points.

In Figure 5, the input layer (Table 2) is a feature vector composed of an image stack
indicating displacement in our case. It includes normalized X, Y, and displacement values
for different dates, and 2 years of data for SOM and time-series analysis for a total of 61
columns of data and 13,048 rows corresponding to displacement results for that number of
points with coherence over 0.75.

The SOM segments the values and creates several clusters that show trends in time
for similarly behaved points. Once SOM results are mapped in space, the spatial pattern
of the displacements with their temporal behavior can be visualized. The segments are a
two-dimensional representation of the clusters on a map.
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Figure 5. The SOM algorithm, as used in our framework.

Table 2. Input layer for SOM analysis.

Point # X Y 17.12.22 18.01.03 18.01.15 19.12.24

001 329449 4409995 5.60 5.07 5.44 7.57

002 329432 4409984 10.34 10.13 8.00 5.25

003 329469 4409963 6.75 5.83 6.99 12.09
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3.3. Step III—Temporal Analysis of Displacements Using the Time-Series from SOM

As the last step, we analyzed the clustered PSInSAR time-series data obtained from
SOM to identify dates that exhibit significant change, called inflection points in the field.
This analysis forms the basis of an in-depth understanding of the relation between the
time of activity in the geothermal site and the displacements. It was stated that gradual
thermal cooling of the reservoir, sediment compaction because of decreasing pore pressure
and desaturation, and transportation of the dissolved salt flow are three reasons for subsi-
dence [25]. The effect of these processes can be monitored in time through deformation,
and the changes in the acceleration of the displacement can show the pattern of factors
playing a role in the subsidence and uplift behavior in time. An inflection is a point where
a function changes from concave to convex, or vice versa [57]. This coincides with a change
in the direction of the acceleration, which relates to changes in the factors influencing the
patterns of displacements in the geothermal field. Mathematically, this corresponds to the
second derivative of the function associated with the deformation and, experimentally, in
the difference of the differences between the displacement points:

The acceleration is given by the second derivative of the displacement in Equation (1).

a =
∆
∆t

(
∆s
∆t

)
=

d2s
dt2 (1)

where s is the pixel elevation, and t is time.
In addition, the inflection dates of this new function would show the moments in time

where the influencing factors changed directions (from uplift to subsidence or vice versa).
The accuracy of the measurements must also be considered when analyzing the

PSInSAR displacement result in the SOM algorithm. In addition, grouping samples in
clusters or smoothing the curves in time can reduce the error. From previous studies, we
know that high-quality PSInSAR measurements can achieve millimeter accuracy, but some
of the variations between displacements are submillimeter; and this could result in noisy
inputs during the displacement analysis. Therefore, before taking the derivative of the data
(Table 3), we applied a three-date moving average (3-dma) on displacement data to make it
smooth as shown in Equation (2).

xmn =
xm + xm−1 + . . . + xm−(n−1)

n
=

1
n

n−1

∑
i=0

pm−i (2)

where the displacement values are pm, pm−1, . . . , pm−(n−1) and n = 3 (we used three-date
for smoothing values).

Table 3. Input and output layers for time series analysis (for a single point).

Point #001 17.12.22 18.01.03 18.01.15 19.12.24

Displacement −0.11 −0.76 −0.12 11.95

First Derivative −1.14138 −0.9892 −1.20

Second
Derivative 3.271961 −1.75

4. Results and Discussion
4.1. Step I—The PSInSAR Analysis

The results of the PSInSAR analysis are given in Figure 6. The highest subsidence
detected in this analysis is −21 mm/yr whereas the highest uplift detected is 14 mm/yr.
The average displacement of the field in AOI is 0 ± 2 mm/yr. In the map (Figure 6), hot
colors (e.g., yellow to red) indicate subsidence, and cold colors (e.g., light blue to dark blue)
indicate uplift.
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Figure 6. The PSI analysis of Brady’s field with 70 images (± 3 mm/yr displacement values are not shown as accepted as
stable).

The displacement direction and magnitude in the map show patterns in the field from
the PSInSAR analysis. However, to determine the pattern of velocity variation and to
evaluate them concerning site-specific activity, it is better to first cluster them to improve
the reliability of the analysis. Figure 7 shows the same results after applying Universal
Kriging (UK) to the data, thus creating a smooth surface that shows more clearly the areas
with large displacement.
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Figure 7. The universal kriging applied to PSI displacement analysis result (PSInSAR_UK: PSIn-
SAR_Universal Kriging).

The result of the PSInSAR with 70 images shows that subsided areas in the geothermal
field overlap with production wells (black upright triangles) which are located on SW of the
field, while the uplift areas overlap with the injection wells (black upside-down triangles)
which are located NE of the field. Additionally, the faults in the region are oriented in
the NE and SW direction [58], which also contribute to the evaluated subsidence and
uplift trends.

As stated earlier the pore pressure changes and thermal contraction are possible two
mechanisms that may cause displacement in the geothermal sites [29]. Both mechanisms
have the potential to occur in the Brady Geothermal field as hot fluids are extracted at SW
of the field and cooled in the heat exchanger at the power plant and then injected NE of the
field. The first mechanism which decreases pore pressure causes subsidence on the other
hand second mechanism which decreases the temperature causes the uplift [29]. Figure 7
shows that the uplift occurred on the NE of the field, where injection wells are located,
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whereas subsidence is concentrated on the SW of the field where the production wells
are located.

4.2. Step II—The SOM Analysis

The 3 × 3 SOM map yielded the clusters indicated in Figure 8. When the data points
in the clusters were mapped in the AOI (Figure 8), the spatial pattern of each SOM cluster
can be visualized. These are related to the deformation behavior in time for each cluster.

Figure 8. The SOM result and maps, (a) SOM Results in 3x3, (b) SOM Analysis Maps 3 × 3.

Clusters 2, 3, and 6 show uplift patterns in time (of those, 2 and 3 are steep uplift
patterns), while clusters 4, 7, and 8 show subsidence (of those, 4 and 7 are steep subsidence
patterns) in Figure 8. The rest of the clusters shown in Figure 8b are mostly stable (no/very
small deformation). Figure 8b shows the maps with the locations of the pixels for each
cluster shown in Figure 8a.

In Figure 9, subsidence clusters (4 and 7) are shown with yellow-red, whereas uplift
clusters (2 and 3) are shown with light-dark blue; and stable clusters (1, 5, 6, 8, and 9)
are not shown. As can be seen from Figures 6 and 9, the subsided area has almost the
same pattern. By using the SOM, subsets that present similar behavior in time is classified
automatically, which allowed us to identify stable, subsided, and uplifted zones in time.
The range of displacement is from −21 mm/year to 14 mm/year. Table 4 illustrates
statistics for areas experiencing subsidence (clusters 4 and 7) and uplift (clusters 2 and
3). When we investigated the subsidence and uplift clusters, we found that 3 % of the
pixels are classified incorrectly. This means that there are pixels classified as subsidence
with positive displacement values (between 0.0016 and 2 mm/year) and there are pixels
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classified as uplift with negative displacement values (between −0.00064 and −1 mm/year).
We excluded these pixels as an outlier in the post-processing of SOM results. For the
subsidence clusters, the average displacement is −6 mm/year. Conversely, uplift points
have an average displacement of 4 mm/year across all the samples in the considered
study period.

Figure 9. The SOM analysis in 9 clusters (Up: Uplift, Down: Subsidence).

Table 4. Statistics about stable, subsidence, and uplift clusters.

Displacement Type Cluster Min (mm/yr) Mean (mm/yr) Max (mm(yr)

Subsidence 4 and 7 −19 −6 −0.00064

Uplift 2 and 3 0.0016 4 14

All 1 to 9 −21 0 14

Table 5 shows the comparison of the earlier studies and PSInSAR analysis results
from this study. Visual assessment of the images in Table 5 indicates a similar pattern
and direction of the displacement. The pattern and direction of the analysis overlap in
all analyses from 2011 to 2019, as shown in Table 5. It also shows that the range of all
analyses is closer to each other, especially when using similar time frames and methods.
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Tables 5c and 5d compare average displacement values. Since Table 5c gives statistics
specifically for the geothermal field shown in purple color (Table 5c), we have given the
statistics specifically for the same cluster shown in hot colors (Table 5d - yellow to red). In
addition to statistics in Table 5, it was stated that the subsidence rate between 2004 and 2014
was 10 mm/yr [25]. Besides, subsidence was observed at −13.5 ± 2.9 mm/yr by using GPS
data and −9.9 ± 3.3 mm/yr by using InSAR data analysis [29]. One of the recent studies
in the same field observed by InSAR results at rates as high as ∼25 mm/year [3]. In our
study, we found the range being between −21 mm/yr and 14 mm/yr which is consistent
with the previous studies. The average displacement is −6.4 ± 2.2 mm/yr which is again
consistent with the previous studies.

Table 5. Comparison of the previous studies with our analysis result (Imgs: Images – Stdv: Standard Deviation – Ave:
Average – Ref: Reference).

Imgs

Time (a) 2013 May–2014 May (b) 2011–2015 (c) 2016 July–2017 Aug (d) 2017 Dec–2019 Dec

Range −15–15 mm/yr −13–13 mm/yr −25–25 mm/yr −21–14 mm/yr

Stdv. 3.3 mm/yr 2.2 mm/yr

Ave. − 9.9 mm/yr − 6.4 mm/yr

Ref. [25] [25] [29] PSI analysis with
70 images

4.3. Step III—Temporal Analysis of Displacements

To explore in more detail the dynamics in the geothermal field, we analyzed the time-
series data obtained from SOM. For this purpose, we first calculated the second derivative of
the displacement, and then we identified the inflection dates associated with the variations
in displacement by tagging the moments when acceleration changes its direction. This
analysis serves for establishing correlations between the displacements and operational
activities in the geothermal field. Based on previous studies, we know that a PSInSAR
analysis can achieve submillimeter accuracy for a location, under good conditions, and we
use the differentials of the clusters to calculate the variations in acceleration. Consequently,
additional sources of error are introduced. To mitigate this, we established an experimental
threshold of 0.25 mm/(period2) to reduce noise caused by smaller changes in acceleration,
we accept those points as inflection dates. Additionally, it is expected that points around
subsidence would present uplift as opposing forces exist at the same time in close regions.
That is, when there is acceleration in one direction in a cluster, an opposite cluster should
accelerate in the opposite direction.

Figure 10 compares the inflection dates of cluster 3 (uplift) and cluster 7 (subsidence).
To make the relationships more visible, we stacked the acceleration values in between
inflection dates for each cluster. If there is an inflection on specific dates, it is expected that
uplift and subsidence clusters should appear on opposite sides, and the delta value should
be equal to two.
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Figure 10. Inflection dates using uplift (cluster 3) and subsidence (cluster 7) (7: cluster 7; 3: cluster 3; delta: difference in
sign of cluster 3 and cluster 7).

The time-series analysis indicates the inflection dates in Table 6. It shows that January
and June have a higher frequency of inflections in 2019.

Table 6. The inflection dates.

Year/Months January February April May June July August October

2018 03.01.18 20.02.18 09.04.18 15.05.18 08.06.18 02.07.18 31.08.18 18.10.18

2019 10.01.19
22.01.19

15.06.19
27.06.19 02.08.19 25.10.19

To verify that there are inflections in cluster 3 and cluster 7 and the methodology that
we applied is correct for finding inflection dates, we applied the same selection logic on
the stable clusters such as cluster 5 and cluster 6. If there are zero or a small number of
inflection dates, it means that these two selected clusters are stable. As shown in Figure 11,
there are no inflection dates between cluster 5 and cluster 6 that prove the stable points
have no opposite acceleration in time. The time-series analysis between cluster 5 and
cluster 6 verify the process of finding inflection dates by using this methodology.
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Figure 11. Inflection dates using stable (cluster 5) and stable (cluster 6).

5. Conclusions

This study introduced a methodology for the identification of spatiotemporal dis-
placement patterns for monitoring geothermal sites, which have usually slow-movement
profiles. The successful application of the methodology to the Brady’s Hot Spring Geother-
mal field, which is one of the highly studied geothermal sites in the literature, proves that
the proposed methodology serves for monitoring such a slow-moving geothermal site in a
short time period as opposed to previous studies with longer time periods. After the appli-
cation of the PSInSAR analysis, we applied an unsupervised SOM algorithm for clustering
uplift, subsidence, and stable areas in the geothermal field. We used time-series analysis to
find the inflection dates that may indicate the dynamics of the geothermal operations. The
coupling of the PSInSAR and the SOM algorithms was shown to be effective in analyzing
the direction and pattern of the displacements observed in the field. In PSInSAR analysis,
the range of the displacement is between −21 and 14 mm/yr and the average displacement
with standard deviation is 0 ± 2 mm/yr for the entire AOI. In the subsidence cluster,
we found that the minimum subsidence is −19 mm/yr with an average displacement of
−6 mm/yr. On the other hand, in the uplift cluster, we found that the maximum uplift is
14 mm/yr with an average displacement of 4 mm/yr.

Several inflection dates have been extracted from the time-series analysis. In order to
decide inflection dates, we analyzed the displacement direction in different two clusters
such as uplift and subsidence. These dates have the potential to show the dynamics of the
operations which cause a significant change in the displacement patterns in the field. It
needs some field and detailed research that we address for future studies.

The expected subsidence field and its direction should be similar for every year if
there is no extraordinary situation like a landslide, natural hazard, production change
in the site. The former studies on the same site in different years and with different
algorithms prove that the pattern of the subsidence is similar. The findings in this study can



Remote Sens. 2021, 13, 349 18 of 20

highlight in-depth monitoring of displacements in other geothermal sites and establishing
and understanding the relationship between the dynamics of geothermal operations and
subsidence and uplift patterns. Such an in-depth analysis has the potential to identify the
contribution of factors causing subsidence and uplift patterns when surface and subsurface
datasets are analyzed with ML algorithms. The authors plan to study these relations in
the future.
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