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Abstract

The vertical collaborative clustering aims to unravel the hidden structure of data (similarity)

among different sites, which will help data owners to make a smart decision without sharing

actual data. For example, various hospitals located in different regions want to investigate

the structure of common disease among people of different populations to identify latent

causes without sharing actual data with other hospitals. Similarly, a chain of regional educa-

tional institutions wants to evaluate their students’ performance belonging to different

regions based on common latent constructs. The available methods used for finding hidden

structures are complicated and biased to perform collaboration in measuring similarity

among multiple sites. This study proposes vertical collaborative clustering using a bit plane

slicing approach (VCC-BPS), which is simple and unique with improved accuracy, manages

collaboration among various data sites. The VCC-BPS transforms data from input space to

code space, capturing maximum similarity locally and collaboratively at a particular bit

plane. The findings of this study highlight the significance of those particular bits which fit the

model in correctly classifying class labels locally and collaboratively. Thenceforth, the data

owner appraises local and collaborative results to reach a better decision. The VCC-BPS is

validated by Geyser, Skin and Iris datasets and its results are compared with the composite

dataset. It is found that the VCC-BPS outperforms existing solutions with improved accuracy

in term of purity and Davies-Boulding index to manage collaboration among different data

sites. It also performs data compression by representing a large number of observations

with a small number of data symbols.

1 Introduction

Understanding the data is a great concern by data owners (e.g. business owners, government

and private institutions, individuals, etc.). That concern can be defined as the way we discern

the behavior of the data. Having a dataset A, with number of observations n = {n1, n2. . ..nn}
that are measured by number of features X = {x1, x2. . ..xm}, provokes an intensive task of find-

ing answers for questions that can contribute to data owner benefits. In other words, how can

we learn from the behavior of this dataset? Ultimately, to learn something, first, you must have
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a goal. If the goal is to predict an output value y for given dataset A, that can be done via deci-

sion procedure known as h: X! Y where Y = {y1, y2. . ..yn}. In this case, A turns into a training

dataset that helps to train a mathematical algorithm model “SA” where its output is to predict

a value y. Straightforward, substitute an observation nj measured value vector X = {x1, x2. . ..

xm} to model “SA” the output is a prediction of yj value. This goal is known as a supervised

learning approach. This approach can be easily evaluated by using the evaluation set or cross-

validation technique to predict an output value of the model [1]. On the contrary, if the goal is

not to predict an output value of y, but to disclose possible hidden structure in dataset A, then

such an approach would be known as unsupervised learning. The mathematical algorithm of

this approach can find the type of underlying structure that the user has established either

directly or indirectly in their approach. Sometimes, besides, the approach also provides some

level of significance of the discovered structure. Clustering as a type of unsupervised learning

approach, segregates observations into groups, called clusters, which may be mutually exclu-

sive or overlap, relying on the technique used. The observations within a cluster are more simi-

lar to each other than the observations from another cluster. The similarity measure is of

outstanding importance to define clusters that can be disclosed in the data. Different types of

distances have been introduced in the literature with respect to the problem and context of the

study [2].

Supposing that the owner of the dataset A has the goal of using an unsupervised learning

approach. For the sake of argument, let’s assume that the owner has essentially adhered to

some criteria before adopting the approach, criteria such as defining the type of cluster will be

looked for, organizing search space, validation methods (all of which will be introduced in the

literature section). As a result of applying the approach, Fig 1 illustrates the clustering result of

the dataset, represented in two dimensions. This result of clustering has been reached using

{x1, x2, . . ., xm} of features on {n1, n2, n3, . . ., nn} of observations where m and n represent num-

ber of features and observations respectively for dataset A.

The question is with same number of features {x1, x2, . . ., xm}, however added a greater

number of observations {n1, n2, n3, . . ., nn+1, nn+2, nn+n}, will the result of clustering remain the

same? Will it be any better or worse? Another scenario, if the features have changed to a

greater number, with the same observations, will the result again remain the same? Or even if

Fig 1. An example of clustering.

https://doi.org/10.1371/journal.pone.0244691.g001
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both features and observations have changed, the same questions apply. Learning the behavior

of 100 observations can help to discover a pattern. However, if the number grows to 1000 or

more, positively the pattern would be more intelligent. To this end, a concept of “combining

the clustering” is introduced. According to “combining the clustering” approach, the same

clustering method can be applied over two or more datasets, then results are shared and

merged to associate clusters of one site with other sites to identify similarity. This requires the

selection of suitable clustering method(s), an adjustment in parameter values, number of fea-

tures and observations, etc., to obtain unbiased outputs. This approach adds parallelization,

scalability and robustness to the desired solution [3, 4]. One of combining the clustering inspi-

ration ideas is known as collaborative clustering.

Let us assume that the owners of dataset A and B, having the same features, apply the same

clustering algorithm and obtain local results RA and RB respectively. Now, is there any way that

both owners can exchange information about the two results RA and RB? If that is possible,

then both owners will evaluate the final clustering result obtained from other sites in addition

to their local data. The benefit here is augmenting the learning process of clustering local data

through external clustering information of other sites. Technically speaking, different

approaches are introduced to implement the idea, one of which is known as horizontal collabo-

rative clustering (HCC) and the other is known as vertical collaborative clustering (VCC). In

HCC approach, different datasets have same observations with different features, while in

VCC approach, different datasets contain same features with different observations collaborate

the clustering results [5, 6].

Different researchers worked on both of these approaches to explore hidden information

and measure similarity among various independent datasets. This study focuses on vertical

collaborative clustering by considering two independent organizations (A and B) having the

same data features instead of one single tall dataset (combined dataset with a large number of

observations) while maintaining data confidentiality. The vertical collaborative clustering

using self-organizing mapping (SOM) [7, 8] and generative topographic mapping (GTM) [9–

12] are existing approaches to apprehend data information among different data sites but have

certain limitations which are mentioned as under:

1. SOM is sensitive to learning rate and neighborhood function in generating results which

affects similarity measurement [13]. In SOM, all results rely on size of the map and a collab-

orative matrix which consists of collaborative coefficients, determines strength of each col-

laborative link, and degrade results if not set correctly [7, 14, 15]. Moreover, it lacks

simplicity in calculating coefficients, which affects accuracy and performance. For further

reading on SOM (see e.g. [16, 17])

2. GTM is non-linear approach of unsupervised learning and more precise than linear

approaches but has higher run time complexity than linear approaches [10, 14]. GTM uses

likelihood function for fast convergence and better tuning of topographic map parameters,

which may not guarantee local convergence for all algorithms. Moreover, fast convergence

does not ensure results of good quality [18, 19].

3. Accuracy of existing solutions is not verified by comparison of local and collaborative

purity results with global purity for which datasets are pooled (all datasets are combined).

Additionally, test data results are not mentioned to evaluate model generalization.

To overcome the above-mentioned limitations, this study proposes the vertical collaborative
clustering using bit plane slicing (VCC-BPS) approach which is simple, accurate, and com-

presses data, managing collaboration among different data sites. The VCC-BPS consists of two

phases i.e. local and collaborative phase to find a bit plane at which model fits the data to
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capture maximum similarity locally and collaboratively. The working principle of this

approach is described as follows:

1. Local Phase: The object of the local phase is to look for that specific bit plane at which obser-

vations are grouped based on maximum similarity within the local dataset. It is an iterative

process, searching for a bit plane at which code map fits the model in capturing maximum

similarity locally.

2. Collaborative Phase: In a collaborative phase, the aim is to merge the local similarity of one

dataset with that of others to produce collaborative results (collaborative similarity) similar

to global similarity. This is achieved by merging the local result table of participating sites

concerning common bit plane shared among them to identify maximum similarity. Finally,

the data owner decides whether collaboration brings any new insight to uncover hidden

information (similarity). The local and collaborative similarity is evaluated by purity and

David-Bouldin index.

This study contributes a simple novel approach with improved accuracy in a match to exist-

ing approaches. The VCC-BPS can be used as a tool by different organizations and also per-

forms compression to represent a large number of observations by small data codes to make

smart decisions without compromising data confidentiality. Additionally, it produces collabo-

rative results close to as if obtained from the pooled dataset (all datasets are combined).

The rest of the paper is organized as follows. In section 2, clustering, collaborative clustering

with its requirements, types, and importance are explained. Section 3 elaborates the proposed

methodology in detail. Section 4 mentions datasets used, evaluation metrics, and experimental

results. Section 5 includes discussion and inferences. Section 6 mentions conclusion and future

work.

2 Literature review

Since we propose Vertical Collaborative Clustering using the Bit Plane Slicing approach, this

section briefly explains clustering, collaborative clustering with its requirements, types, impor-

tance, and bit plane slicing.

2.1 Clustering

The goal of clustering as a type of unsupervised learning, is to group clusters of observations

that can be mutually exclusive or overlapped. The similarity is an important factor to decide

the observations that are grouped together. Two approaches are mostly known for clustering

[20]:

1. Generative approach is often based on statistical model, where the objective is to determine

parameters that maximize how well the model fits the data.

2. Discriminative approach mostly depends on optimization criteria and similarity measure-

ments to group the data.

Let us consider a buzzword known as ill-defined problem [21, 22]. This problem is consid-

ered from the idea that mathematically, the similarity is not a transitive relation while belong-

ing to the same cluster. In other words, different methods may give inconsistent clustering

outputs for the same data. Moreover, proper heuristics be employed to manage the computa-

tional cost. The following points need to be considered before adopting clustering approaches:

1. The first thing is to define the type of clusters being looked for, which relies on the context

and our goal. The reason is that the same set of observations can be clustered in different
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ways, depending on type of distance used [23]. For example, measuring a distance between

observations in the input space or between an observation and a cluster, may lead to a dif-

ferent clustering model [2].

2. The learning process of clustering is affected by the organization of the search space which

is based on the number of variables, their degree of dependence, the type of normalization,

etc. [5] discusses how the escalation of dimensionality increases the volume of the space

exponentially.

3. The last matter is considering the validation step of the clustering model. Since there is no

post validation method to compare true classes with the classes discovered by the algorithm

for test data, clustering output evaluation is a delicate task. A few statistical procedures have

been introduced to test the importance of the clustering result. They are based on measur-

ing deviations of some statistical quantities but have certain limitations which create hin-

drances in getting the true findings [24].

2.2 Collaborative clustering and the vertical type

The clustering algorithms use two types of information during their computations:

1. Information about observation membership.

2. Information about internal parameters, such as the number of clusters anticipated, the

coordinates of observations, and so on.

If we consider these two kinds of information developed from each local dataset, then the

question is: Is it possible to exchange this information with another site that has a similarly

structured dataset? The answer is “yes”. The concept, of doing so, is known as the collaborative

clustering [25]. The goal is that the local clustering process can benefit from the work done by

the other collaborator. In other words, collaborative clustering helps the local algorithm to

escape from local minima (i.e. by only operating over a local dataset) by discovering better

solutions (i.e. by exchanging information with another site that has a similar dataset). The

validity is measured by the assumption that useful information be shared between the local

sites. Important benefits of collaboration occur due to [5]:

1. Operating on local data in addition to information from other sites can help the algorithm

to enhance the learning process.

2. The algorithm can escape local optima by using external information to get better

solutions.

3. The local bias can be managed by using external information. However, this information

can also be subject to other types of bias.

The core of this approach is accomplished by the exchange of information. Here informa-

tion can be about the local data, or current hypothesized local clustering, or the value of one

algorithm’s parameters. In other words, what can be shared between experts is information

about data (e.g. features found useful, distances used, etc.) or information on the observation

itself, such as the characteristic of an observation measured by a fixed feature vector. Important

to mention is the performance measurement in clustering. It is hard to introduce an answer to

such a question or in other words, no perfect answer can be reached. Therefore, there is no

specific way of measuring the absolute quality of partitioning the data points. However, as

mentioned above in the validity line that the assumption always lays on as the useful
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information is shared between the local sites. Nonetheless, some measurements are still a pio-

neer metric to measure the performance or the validity of the cluster. For example, [26] intro-

duces a technique by defining the similarity between input clusters based on the graph

structure. Notable, that the way the cluster is viewed can be a good matter of measuring the

performance or the validity of the cluster. But still, as the goal is to look for a common struc-

ture among different datasets, it is no longer possible to make direct comparisons at the level

of the observation since they are different. Only descriptions of the clusters found by the local

algorithm can be exchanged, and a consensus measure must be defined at this level [27].

Following the above paragraph, it is important to discuss an important question that is how

to control the collaboration phase? There are different approaches introduced in this domain,

here are some of them [28]:

1. Synchronous or asynchronous operations: The former occurs when each local clustering

process has its own goal and exchanges information only in the search of its local goal. The

latter one is generally needed when the result depends on all local achievements.

2. Iterative or one-time process: The former occurs when the computations performed by

each local algorithm can consider partial solutions shared by other algorithm sites and is

therefore iterative. In a one-time process, all algorithms compute their local solution, after

which a master algorithm combines them and outputs the final solution.

3. Local or global control: The former works with an asynchronous control strategy, while the

latter is linked with the computation of a final combined overall solution [18].

However, regardless of the method of controlling, termination condition is of main concern

in collaborative approaches. Where it is required that a clustering algorithm stops when a con-

dition is met, even though the solution obtained might not be meeting the global optimization

criterion [18].

To conclude this section, we will introduce the two most common types of implementing

collaborative clustering. Noteworthy, other types are there, however, the focus of this paper is

to discuss one type in particular. The two types known in collaborative clustering are [9]:

1. Horizontal collaborative clustering, the idea of it as the name may suggest, same observa-

tions, however, different features. In other words, let dataset A with set of observations {n1,

n2. . ..nn}, operates over the feature space {x1, x2. . ..xm}. Another dataset with the same set of

observations can be investigating again, however in different feature spaces such as {z1,

z2. . ..zm}. For detail on HCC, see e.g. [19, 29, 30].

2. Vertical collaborative clustering describes datasets in the same feature space but with

different observations. In other words, let dataset A with set of observations {n1, n2. . ..nn},
operates over the feature space {x1, x2. . ..xm}. Another dataset B with different set of obser-

vations {o1, o2. . ..om}, however, operates in the same feature space {x1, x2. . ..xm}.

The proposed work considers the last type of collaborative clustering which is the vertical

collaborative clustering, has the following basic requirements [8]:

1. Type and number of features must be the same among data sites.

2. Share local findings with other sites, such that collaborative results obtained at each site are

as if obtained from the pooled dataset (all datasets are combined).

Before closing this section, we may narrate some benefits of such an approach as following

[8]:
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1. Reduces time and space complexity.

2. Keeps data confidentiality.

3. Enhances scalability.

Recently [9, 12] proposed probabilistic approach of collaborative learning using generative

topographic mapping (GTM) based on principles of vertical collaborative clustering to

exchange the information for tunning the topographic maps parameters. [14] introduces non-

linear classification approach to interpolate missing data and performs nonlinear mapping

between data and latent space using Generative Topographic Map (GTM). In [15], hybrid col-

laborative clustering approach which is a combination of vertical and horizontal collaborative

clustering, use the Self Organizing Map (SOM) algorithm to find common structure by

exchange of information. [31] explains collaborative classification among different informa-

tion sources (data sites) with same features using SOM to reveal common structure of distrib-

uted data. Collaborative filtering makes use of available preference to predict unknown

preferences based on clustering similarity measurement [32].

2.3 Bit Plane Slicing

The Bit Plane Slicing (BPS) is an image compression technique that divides a pixel of 8 bits

image into 8-bit planes. Bit plane ranges from least significant bit (LSB) represented as bit-

level 0 to most significant bit (MSB) marked as bit-level 7. The least and most significant bit

plane contains all low and high order bits in the byte respectively. Change in low order bits of

LSB does not change value much because they lack high contrast, while the change in high

order bits of MSB signifies the change in data. Therefore, the most significant bit contains the

majority of significant data and forms an image approximately similar to the original 8-bit

image. This highlights the relative importance of specific bits in the image to reduce the image

size. Based on such a strong characteristic of BPS, an 8-bit image containing a large amount of

data is compressed into an image of small size with high similarity [33, 34]. The pictorial repre-

sentation of bit plane slicing is shown in Fig 2 for an image composed of pixels, where each

pixel occupies 8-bits memory and is represented by eight single-bit planes. The Eq (1) is used

to form kth bit plane with respect to kth bit selected from all pixels. [35]:

BitPlanek ¼ Reminderf
1

2
floor½

1

2k
Image�g ð1Þ

Where the value of k varies from 0 to 7. Suppose a gray scale image contains a pixel of intensity

value 220. To find appropriate value for fourth bit plane, Eq (1) will return 1.

Fig 2. Bit Plane Slicing description [36].

https://doi.org/10.1371/journal.pone.0244691.g002
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3 Proposed methodology

The prime reason for proposing vertical collaborative clustering using bit plane slicing, in

addition to all benefits of using collaborative clustering, will enable a local data owner (e.g.

business owners, government and private institutions, individuals, etc.) to find hidden struc-

ture in the process of implementing clustering techniques. This aim is logically explained since

local data owner has the local capacity within the size of his/her data, however, enlarging the

narratives that help to find hidden structure (in term of similarity among data sites without

sharing data) by adding other information about clustering results from different sites, which

happen to have same feature space with different observations, and can lead to better local

clustering results by collaboration. For example, various hospitals located in different regions

want to investigate the structure of common disease among people of different populations,

identifying latent causes without sharing actual data with other hospitals. Similarly, a chain of

regional educational institutes wants to evaluate their students’ performance belonging to dif-

ferent regions based on common latent constructs.

The proposed approach is termed as Vertical Collaborative Clustering using bit plane slic-

ing (VCC-BPS), which performs collaboration among data sites where observations of similar

code maps are associated with same class labels for common bit plane. In other words, map-

ping of all data inputs to a particular code map is done by searching for adequate common bit

plane among sites where the model fits data with maximum similarity. Transformation from

input space to code (latent) space is shown in Fig 3. The novelty of this approach is to capture

not only similarity in local behavior but it also qualifies for collaboration to apprehend similar-

ity among different datasets concerning common code space. This learning demands an unbi-

ased environment where data of the same nature at different sites performs vertical

collaborative clustering based on the following assumptions:

• Number of features and their type be the same (Requirement of VCC).

• Type of clustering method must be the same at all sites to avoid the influence of one cluster-

ing method over the other [4].

• Binary form after the decimal point is considered for computation.

• Bit plane consists of a single bit per feature to generate code.

• Common bit plane is selected for collaboration among data sites.

• Number of clusters be the same at all sites to deal with inconsistent output during collabora-

tion [4].

Fig 3. Transformation from input space to code space.

https://doi.org/10.1371/journal.pone.0244691.g003
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The vertical collaborative clustering using bit plane slicing consists of two phases i.e. local

and collaborative phase to manage collaboration among data sites. The block diagram of the

proposed approach is shown in Fig 4.

3.1 Local phase

According to the local phase, the dataset is first normalized to form common analytical plate

form. The normalized value of each observation for given feature vector is converted into

binary form. Then, BPS approach is used to compress feature vector into code vector and asso-

ciated with corresponding class label for each observation. Finally, simple voting algorithm is

applied over training dataset to predict class label for code vector called code map based on

most frequent labels for selected bit plane. It captures data behavior where different observa-

tions for same class labels are encoded by same code map. In this phase, large volume of local

data is compressed and represented as code map. Following are different steps involved in

local phase:

1. Conversion to binary form and bit plane generation: In this step, dataset with features X1

and X2 is first normalized, having values between 0 and 1 and then converted to binary

form as shown in column 4 (Binary form) of Table 1. Moreover, the observation value of

Fig 4. Proposed approach block diagram.

https://doi.org/10.1371/journal.pone.0244691.g004

Table 1. Code map with predicted labels.

Obs. Features Values Normalized Values Binary form Bit Plan 3

and 2

Code Vector Class Label Code Map Predicted Label

X1 X2 X1 X2 X1 X2 X1 X2

1 1.933 49 0.0951 0.1132 00001100 00001110 1 1 11 C-1 11 C-1

2 4.35 74 0.7857 0.5849 01100100 01001010 0 0 00 C-2 00 C-2

3 4.933 88 0.9523 0.8491 01111001 01101100 1 1 11 C-2 11 C-1

4 1.867 53 0.0763 0.1887 00001001 00011000 1 0 10 C-1 10 C-2

5 2.883 55 0.3666 0.2264 00101110 00011100 1 1 11 C-1 11 C-1

6 4.8 94 0.9143 0.9623 01110101 01111011 0 0 00 C-2 00 C-2

7 4.65 90 0.8714 0.8868 01101111 01110001 1 0 10 C-2 10 C-2

8 4 70 0.6857 0.5094 01010111 01000001 0 0 00 C-2 00 C-2

9 1.7 59 0.0286 0.3019 00000011 00100110 0 1 01 C-1 01 C-1

10 2.483 62 0.2523 0.3585 00100000 00101101 0 1 01 C-1 01 C-1

11 4.5 84 0.8286 0.7736 01101010 01100011 1 0 10 C-2 10 C-2

12 4.367 82 0.7906 0.7358 01100101 01011110 0 1 01 C-2 01 C-1

13 4.567 84 0.8477 0.7736 01101100 01100011 1 0 10 C-2 10 C-2

14 1.817 59 0.0620 0.3019 00000111 00100110 0 1 01 C-1 01 C-1

15 2.133 67 0.1523 0.4528 00010011 00111001 0 0 00 C-1 00 C-2

https://doi.org/10.1371/journal.pone.0244691.t001
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each feature consists of 8 bits and represents 8 bit-plane. Bit plane is defined as a set of bits

corresponding to the same bit position within observation in a data array (feature vector)

shown in column 5 (Bit Plane 3 and 2) of Table 1.

2. Code vector generation: We are inspired by the Bit Plane Slicing approach [33, 34] which

compresses image with high resemblance to the original one by considering the most signif-

icant bits. This study exploits such a strong characteristic of BPS when used with vertical

collaborative clustering, highlights the relative importance of specific bits whether they are

most or least significant bits or combination of both least and most significant bits in data,

capturing maximum similarity. The purpose of using BPS is to transform binary input

obtained from step 1 of the local phase into code space for a particular bit plane. According

to BPS, a particular bit plane of one feature for each observation is concatenated to that of

other features, forms code vector for given observation in the local dataset as shown in col-

umn 6 (Code Vector) of Table 1. The size of the code vector depends on the number of fea-

tures. For example, number of features are two in a dataset, then number of bits per code(b)

are two, assuming 1 bit per feature. Moreover, number of code vectors are Cv = 2b = 22 = 4

(00,01,10,11). Similarly, in case of four features, Cv = 24 = 16. A code vector is a compressed

form of actual data for a given observation at a particular bit plane.

3. Voting Algorithm: This step aims to correctly label the code vectors obtained from step 2 of

the local phase. It is found in step 2 that certain observations have the same code vector

mapping to different labels (clusters), thus forming the dual nature of the code vector.

Notably, the same code vector must not belong to more than one class label or cluster. Such

dual nature is shown in column 6 (Code Vector) versus column 7 (Class label) of Table 1.

To solve such dual behavior, simple voting algorithm is used to find observations with a

code vector of class label that repeats at least more than half of such observations, is consid-

ered in the majority. The voting algorithm helps to train the model to find code vector

called code map for specific bit plane with the most frequent class labels (called predicted

labels) as shown in column 8 (Code Map) and 9 (Predicted Label) of Table 1 respectively.

Such mapping via simple voting algorithm correctly classifies class labels with least misclas-

sification.

The local phase of the proposed approach is an iterative approach to look for those bit

planes in the local dataset at which observations are grouped based on maximum similarity

in code space shown in Fig 3. Here, a search is made to determine a bit plane at which there

is large contrast among observations to correctly group (cluster) them with least misclassifi-

cation. For example, three observations with code vector 00 are labeled as cluster-2 (C-2)

and one observation as cluster-1 (C-1) as shown in Fig 3, after transformation from input

to code space using BPS. It is found in Table 1 that code vector 00 represents three observa-

tions {2, 6, 8} belonging to C-2 and one observation {15} belonging to C-1, thus reveals its

dual behavior when bit plane is (3,2). Now in such scenario, using simple voting approach

at particular bit plane (3,2) of feature X1 and X2 respectively, code vector 00 dominates C-2

in the match to C-1, therefore all observations in local dataset corresponding to code vector

00 are predicted or updated as class label C-2 (class in the majority). Moreover, observation

{15} whose actual label is C-1 for code vector 00, is misclassified by the proposed approach.

The same analogy is applied to other code vectors as shown in Table 1. It is important to

mention that the same approach can be applied to the datasets with more than two clusters

or class labels.

In this phase, data is compressed to code map with most frequent class labels for selected

bit planes. This forms the most important attribute of the proposed approach capturing not
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only similarity in local behavior but also qualifies for collaboration to apprehend similarity

among different data sites for the same shared code space.

3.2 Collaborative phase

This phase aims to fulfill the basic requirement of vertical collaborative clustering, which is to

share the local findings with other sites, such that collaborative results obtained at each site are

as if obtained from pooled dataset [8]. This challenging task is addressed by the proposed

approach, where similarities are identified among participating sites using following rules:

1. The same code map must represent the same class label among all participating sites at a

particular bit plane. For example, code map 00 represents the class label C-1 at A with

respect to particular bit plane, then the same code map must represent the same class label

for the same bit plane at B.

2. There must be a common bit plane during the collaboration phase.

3. Only those local bit plane combinations are considered for collaboration that give local

purity greater than 70% as threshold level.

4. More than one code map may represent the same class label locally. For example, at site A,

code map 00 for an observation (x1), represents class label C-1. Similarly, code map 01 for

other observations (x2), represents class label C-1 at A. It means both code maps fall in the

same group labeled as C-1.

It is noticeable that those bit plane combinations where local results do not obey the above-

mentioned rules, do not qualify for collaboration due to mismatch in behavior among partici-

pating sites. For example, observations with code map 00 represents the class label C-1 at A and

the same code map represents observations with different class label (C-2) at B with respect to

common bit plane e.g. (4,4). Then such bit plane combination in the light of the first rule do

not qualify for collaboration due to mismatch in behavior among the participating sites. Like-

wise, if observations with code maps 00 and 01 represent the class label C-1 at site A and the

code maps 00 and 10 represent observations with class label C-2 at site B with respect to com-

mon bit plane, then such bit plane is not considered for collaboration in light of the fourth rule.

In collaborative phase, the participating sites share their local results called the local result

table. It consists of code vector with actual class label and code map with a predicted class label

(code vector with the class label in the majority) for different bit plane combinations. When

one data site local behavior matches with that of another data site in light of the above men-

tioned rules, then the collaborative purity is measured. The collaborative purity is computed as

mean of local purities by merging shared results with local results at common bit plane combi-

nation such that local code map(s) matches with that of shared code maps. These rules ensure

symmetry i.e. code map of one data site is exactly similar to another site with respect to com-

mon bit plane combinations. Such symmetry gives collaborative purity as the mean of all local

purities with respect to common bit plane combinations among the participating sites where

code map(s) at one site is similar to that at another site. Likewise, the collaborative DB index is

measured by sharing local data cluster centroids and their variances among the participating

sites under same rules.

4 Result evaluation

This section mentions datasets used, reason of their selection, evaluation metrics and experi-

mental results.
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4.1 Datasets

To evaluate the proposed approach, three multivariate datasets i.e. Geyser [37], Skin segmenta-

tion (Skin) [38] and Iris [39] are used with features of real values. Skin dataset is tall dataset,

consists of large number of observations with three features. To avoid computational complex-

ity, these datasets of low dimensionality are chosen to explain and implement this novel

approach simply and clearly. For example, a dataset with two features has 8-bit planes per fea-

ture and thus has (82) 64-bit plane combinations for given feature space. Similarly, in the case

of five features, search space for finding optimal solution consists of (85) 32,768-bit plane com-

binations. This shows how much the search space explodes with the increase in number of fea-

tures as shown in Fig 5. Therefore, datasets with small feature space are selected to reduce the

search space to find a suitable bit plane.

To prepare the datasets for vertical collaborative clustering, having same features in a dis-

tributed environment (i.e. fulfilling the first requirement of VCC), the dataset is randomly

divided into two data sites with same features, which are named as dataset A and B as shown

in Table 2. Geyser dataset is subjected to the K-means algorithm for clustering/labeling the

observations into two groups (i.e. C-1 and C-2) before BPS. The local and collaborative phases

of the proposed approach are processed at each data site and then evaluated by purity and

Davies-Bouldin index.

Fig 5. Computational cost of measuring purity.

https://doi.org/10.1371/journal.pone.0244691.g005

Table 2. Dataset description.

Dataset # of Observations # of Features # of Class labels

Geyser [37] 136 × 2 sites 2 2 using K-mean

Skin [38] 122528 × 2 sites 3 2

Iris [39] 75 × 2 sites 4 3

https://doi.org/10.1371/journal.pone.0244691.t002
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4.2 Evaluation metrics

To evaluate the local results, the local purity is calculated based on their respective predicted

and actual labels for given observations at a particular bit plane using Eq (2).

Pi ¼
1

jnj

X

k2C

max
l2L
j clk j ð2Þ

Where Pi denotes local purity of the ith data site, n and C refers to number of the observations

and clusters respectively. L denotes the labels and jclkj describes the number of observations

with label l in cluster k. The purity is the average proportion of the majority label in each clus-

ter [6, 8]. The Eq (3) is used to compute the collaborative purity under certain rules (refer to

section 3.2) to merge respective results.

P ¼ Avg
CiM�C

j
M

ðPi;PjÞBP
ð3Þ

Where P is collaborative purity, Pi and Pj denote local purities of the ith and jth data sites with

respect to common bit plane combinations BP such that code map(s) at ith data site (CiM) must

be similar to that at jth site. In addition to local and collaborative purity, the global purity is

also used to evaluate the accuracy of collaborative outcome. For measuring the global purity,

datasets are pooled and then purity is measured over the combined dataset clustering final

map. The global purity with the local and collaborative purity is visually explained in Fig 6.

In addition to the purity as external index, Davies-Bouldin index is used as internal quality

index to assess the compactness and separation of the resulting clusters [9] locally using Eq (4).

DB ¼
1

K

XK

i¼1

max
j6¼i

Si þ Sj
dði; jÞ

ð4Þ

Where Si and Sj are local dispersions of ith and jth clusters, d(i, j) is centroid to centroid (inter

cluster) distance for K number of given clusters using local dataset and DB refers to local

Davies-Bouldin index. Local dispersion Si and their corresponding inter-cluster distance, i.e. d

(i,j) can be computed using Eqs (5) and (6).

Si ¼
1

Ti

XTi

l¼1

kxl � mik
2

ð5Þ

dði; jÞ ¼ kmj � mik
2

ð6Þ

Where xl is an observation in the dataset, associated with ith cluster of size Ti, having centroid

μi. Moreover, μi and μj refers to the centroid of the ith and jth cluster of same dataset (local data-

set). The two clusters are considered similar, if they have large dispersion relative to their dis-

tance. Lower value of local DB indicates a cluster of better quality. Eq (6) is used to associate

each cluster of dataset A with that of B to measure collaborative DB index:

DB ¼
1

K

XK

i¼1

max
i;j2K

SAi þ S
B
j

Dði; jÞ
¼

1

K

XK

i¼1

max
i;j2K

SABij
Dði; jÞ

ð7Þ

Where DB is collaborative DB index, D(i, j) is the centroid to centroid distance between ith

and jth cluster of dataset A and B respectively. Likewise, SAi and SBj are dispersions of ith and jth

clusters of dataset A and B respectively. It is noticeable that low local DB value means observa-

tions within clusters are compact and clusters are well separated, whereas high collaborative
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DB value for dataset A and B means both have similarity in behavior and vice versa. In other

words, Eq (4) reveals that local DB value is small when inter-cluster distance (d(i, j)) is large.

Likewise, Eq (7) shows that collaborative DB value is large when inter cluster distance D(i,j)

between clusters of A and B is small i.e. cluster i of A is similar to cluster j of B.

4.3 Experimental results

In this section, the local and collaborative results are evaluated by purity and DB index. It

also presents the comparison of proposed approach (VCC-BPS) with existing approaches

VCC-SOM [7] and VCC-GTM [9].

In local phase of VCC-BPS, the normalized training datasets (A and B) of Geyser are con-

verted into binary form and then subjected to BPS generating code vector, followed by simple

voting algorithm to find code map with class labels in the majority at particular bit planes as

shown in Table 3. The Table 3 consists of Geyser Data Local Result Table for site A and B,

which explains that dataset A has 46 and 68 correctly classified observations belonging to class

label C-2 and C-1, respectively, using simple voting algorithm with respect to bit plane (6,7).

Similarly, the dataset B has 38 and 77 correctly classified observations belonging to class label

C-2 and C-1, respectively at bit plane (6,7). The code maps 00 and 10 participate to associate

observations with class C-2 and C-1 at A and B, respectively as shown in local and collabora-

tive code map diagram column of Fig 7. Code maps 01 and 11 do not participate in capturing

similarity locally at A and B when BP (6,7). The local purity is measured using Eq (2) for

Fig 6. Process of local, collaborative and global purity measurements. (a) Local purity is computed at data site A

without collaboration. (b) Collaborative purity is computed at A with respect to the result shared from site B,

enhancing learning while data confidentiality is maintained. (c) Global purity is measured with respect pooled dataset

where data confidentiality is compromised. This is done to check whether collaborative similarity is similar to global

similarity.

https://doi.org/10.1371/journal.pone.0244691.g006
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Table 3. Geyser dataset local result table for A and B (RA, RB) using purity index.

Bit Plane

(BP)

Dataset

(DS)

Cluster/

Label

Code Vector Code map Discussion

00 01 10 11 00 01 10 11

(6,7) DS-A C-1 4 0 68 0 0 0 68 0 With BP (6,7) of features 1 and 2 respectively, the number of correctly classified

observations at A and B belong to class label C-2 are 46 and 38, are represented by code map

00, whereas misclassified are 4 and 3 respectively. Likewise, 68 and 77 observations at A and

B belong to label C-1, are represented by code map 10, whereas misclassified are 2 each

respectively.

C-2 46 0 2 0 46 0 0 0

DS-B C-1 3 0 77 0 0 0 77 0

C-2 38 0 2 0 38 0 0 0

(5,7) DS-A C-1 24 0 48 0 0 0 48 0 With BP (5,7), code map 00 receives 47 and 37 correctly classified votes to represent class

label C-2 at A and B, whereas misclassified are 24 and 31 respectively. Similarly, code map

10 receives 48 and 49 votes to represent class label C-1 at A and B, whereas 1 and 3 are

misclassified respectively.

C-2 47 0 1 0 47 0 0 0

DS-B C-1 31 0 49 0 0 0 49 0

C2 37 0 3 0 37 0 0 0

(5,6) DS-A C-1 1 33 1 41 0 33 0 41 With BP (5,6), code map 00 receives 30 and 27 correctly classified votes to represent class

label C-2 at A and B, whereas misclassified are 1 and 1 respectively. Likewise, code map 01

receives 33 and 35 correctly classified votes to represent class label C-1 at A and, B

respectively. Similarly, code map 10 receives 14 and 13 votes to represent cluster C-2 at A

and B respectively, whereas 1 and 2 are misclassified. Likewise, code map 11 has 41 and 42

correctly classified votes to represent C-1 at A and B respectively.

C-2 30 0 14 0 30 0 14 0

DS-B C-1 1 35 2 42 0 35 0 42

C-2 27 0 13 0 27 0 13 0

(4,6) DS-A C-1 1 32 2 37 0 32 0 37 With BP (4,6), code map 00 receives 31 and 29 correctly classified votes to represent class

label C-2 at A and B respectively, whereas 1 is misclassified at A. Likewise, code map 01 has

32 and 41 correctly classified votes representing C-1 at A and B respectively. Similarly, code

map 10 receives 17 and 11 votes to represent C-2 at A and B, whereas 2 and 3 are

misclassified respectively. Likewise, code map 11 has 37 and 36 correctly classified votes

representing C-1 at A and B respectively.

C-2 31 0 17 0 31 0 17 0

DS-B C-1 0 41 3 36 0 41 0 36

C-2 29 0 11 0 29 0 11 0

(3,6) DS-A C-1 3 34 0 35 0 34 0 35 With BP (3,6), code map 00 receives 23 and 22 correctly classified votes to represent cluster

C-2 at A and B respectively, whereas 3 and 1 are misclassified. Likewise, code map 01 has 34

and 35 correctly classified votes representing C-1 at A and B respectively. Similarly, code

map 10 receives 25 and 18 votes to represent cluster C-2 at A and B respectively, whereas 2

are misclassified at B. Likewise, code map 11 has 35 and 42 correctly classified votes

representing C-1 at A and B respectively.

C-2 23 0 25 0 23 0 25 0

DS-B C-1 1 35 2 42 0 35 0 42

C-2 22 0 18 0 22 0 18 0

https://doi.org/10.1371/journal.pone.0244691.t003

Fig 7. Geyser purity measurement and code map description.

https://doi.org/10.1371/journal.pone.0244691.g007
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Geyser data at A and B, consisting of 120 training observations each as follows: Local purity at

A = PA = (46+68)/120 = 0.95 and PB = (38+77)/120 = 0.958 such that code maps are 00 and 10

at both sites with BP (6,7). The detail about other bit plane combinations for Geyser data are

shown in the discussion column of Table 3. The detail about Iris data having three classes, are

mentioned in Table 4 with respect to only single bit plane combination (5,7,1,2) to avoid large

Table 4. Iris dataset local result Table for A and B (RA, RB) using purity index.

Bit

Plan

Data

Set

Class

Label

Code Vector Code Map Discussion

0000 0001 0010 0011 1000 1001 1010 1011 0000 0001 0010 0011 1000 1001 1010 1011

(5,7,1,2) A C-1 13 0 0 0 7 0 0 0 13 0 0 0 7 0 0 0 At BP (5,7,1,2), code map

0000 receives 13 and 9

correctly classified votes to

represent cluster C-1 at A

and B respectively, whereas

1 observation is

misclassified at A. Likewise,

code map 0001 has 2 and 4

correctly classified

observations representing

C-3, whereas misclassified

are 1 each at A and B

respectively. Similarly, code

map 0010 has 8 and 5

correctly classified

observations to represent

class C-2, whereas

misclassified observations

are 4 and 2 at A and B

respectively. Code map 0011

has 8 correctly classified

observations each to

represent class C-3, whereas

misclassified observations

are 3 and 2 at A and B

respectively. Code map 1000

has 7 and 12 correctly

classified observations to

represent class C-1 at A and

B respectively. Code map

1001 has 3 and 7 correctly

classified observations to

represent class C-2 at A and

B respectively, whereas

misclassified observations

are 4 at B. Code Map 1010

has 7 and 4 correctly

classified observations to

represent class C-2, whereas

3 and 2 are misclassified

observations at A and B

respectively. Code map 1011

has 6 and 4 correctly

classified observations to

represent class C-3 at A and

B respectively, whereas 2 are

misclassified observations at

B. The code maps not

mentioned, are not involved

in measuring similarity

locally and collaboratively.

C-2 1 1 8 3 0 3 7 0 0 0 8 0 0 3 7 0

C-3 0 2 4 8 0 0 3 6 0 2 0 8 0 0 0 6

B C-1 9 0 0 0 12 0 0 0 9 0 0 0 12 0 0 0

C-2 0 1 5 2 0 7 4 2 0 0 5 0 0 7 4 0

C-3 0 4 2 8 0 4 2 4 0 4 0 8 0 0 0 4

https://doi.org/10.1371/journal.pone.0244691.t004
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computational local result table. The same analogy is applied to Skin datasets to generate local

result table.

In collaborative phase of VCC-BPS, data site A and B of Geyser share their local result table

(RA and RB) and then collaborative purity is measured with respect to common bit plane as

shown in Fig 7. The collaborative purity for Geyser data at site A and B is measured using Eq (3)

as follows: P ¼ Avg
CAM�C

B
M

ðPA; PBÞBP ¼ Avg
00;10

ðð46þ 68Þ=120; ð38þ 77Þ=120Þ
ð6;7Þ
¼ 0:954. The Fig

7 consists of the local, collaborative, global purity and DB indexes at site A and B with respect to

particular bit plane for Geyser datasets. The same analogy is applied to Skin and Iris data con-

sisting of 2 and 3 clusters with detail mentioned in discussion column of Figs 8 and 9.

The Davies-Bouldin index is used to evaluate the results of our proposed approach for Gey-

ser, Skin and Iris data locally and collaborative at A and B. The local and collaborative DB index

values are computed using Eqs (4) and (7), respectively. The details about computing local and

collaborative DB for Iris data are mentioned in Tables 5 and 6. The same analogy is applied to

Geyser and Skin data to measure their respective local and collaborative DB values as men-

tioned in Figs 7 and 8. To check the generalization of the proposed approach, test data is passed

through the model and accuracy is determined for different bit planes as shown in Figs 7–9.

The existing approaches which are VCC using SOM [7] and GTM [9] are implemented and

tested over Geyser, Skin and Iris datasets for comparison with the proposed approach as

shown in Table 7. The results of VCC-SOM and VCC-GTM approaches are topographic

maps, representing compressed form of original dataset for given number of class labels men-

tioned in Table 2. Since SOM and GTM do not perform direct clustering, but are coupled with

K-means approach and EM algorithm respectively over final map to extract clusters. Then

purity and Davies-Bouldin index are measured over final map using Eqs (2) and (4) [9, 11, 12].

The size of the map is 5 × 5 for existing approaches to capture similar behavior among partici-

pating data sites. The Table 7 mentions local and collaborative results (i.e. collaboration of A

with B and vice versa) for existing approaches using purity and DB index.

5 Discussion

In our proposed work, the vertical collaborative clustering using bit plane slicing approach is

studied and applied over all eight-bit planes per feature of Geyser, Skin and Iris datasets. Since

Fig 8. Skin purity measurement and code map description.

https://doi.org/10.1371/journal.pone.0244691.g008
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there are 2, 3 and 4 features in Geyser, Skin and Iris data at site A and B respectively, therefore,

the numbers of bit plane combinations are 64 (82), 512 (83) and 4096 (84) respectively. The

findings reveal BP (5,6) and (7,6,7) as the most significant bits combinations for Geyser and

Skin data, whereas BP (6,2,1,2) as both most and least combinations for Iris data, capturing

similarity. These bit plane combinations have such important bits which capture contrast

between given class labels as the least or most significant bits or both to correctly classify class

labels at particular bit plane with the least misclassification. They have high purity with good

compactness (DB) value in comparison to existing approaches. It is not necessary that the col-

laborative purity will always be the mean of the local purities for all methods. For instance, our

proposed approach (VCC-BPS) returns exact mean of local purities but existing approaches

return collaborative purity not exactly equal to the mean of the local purities. The reason

behind such symmetric and asymmetric collaborative purity is that the existing approaches

have topographic map of fix size having nodes to represent similar observations. These nodes

may be surplus and do not participate to represent data or have the least data observations at

one site in match to another site. This deteriorates the final map results once K-mean algo-

rithm is applied [4]. As a result, the collaborative purity corresponding to the existing

approaches is asymmetric. Therefore, the collaborative purity measured at site A is different

from that at B. Our proposed approach is very effective to deal with such problem by consider-

ing only those code maps which participate to capture similarity locally and collaboratively,

and discard other code maps which do not participate. This forms symmetry, giving collabora-

tive purity as the mean of the local purities.

This study shows that 120 training observations of the Geyser data at site A and B each, are

compressed into 4 code maps (2 bits per code map) locally and collaboratively at bit plane

(5,6). In case of Iris data, the contrast among three given class labels is captured and 66 training

observations at site A and B are compressed into 14 code maps (4 bits per code map) and 2

Fig 9. Iris purity measurement and code map description.

https://doi.org/10.1371/journal.pone.0244691.g009
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code maps (0001 and 1101) do not participate in data compression locally and collaboratively

at bit plane (6,2,1,2). Likewise, using same approach for Skin dataset, contrast between two

given class labels is captured and more than 98000 training observations at site A and B each,

are compressed into 8 code maps locally and collaboratively at bit plane (7,6,7).

The proposed collaborative purity reflects the similarity among the participating sites as

high if the difference between the local and collaborative purity is low and vice versa. More-

over, if the local purity is less than the collaborative purity, means local learning enhanced by

collaboration and accordingly collaborative DB increases based on Eq (7). Such increase in col-

laborative DB confirms similarity between respective clusters of different data sites, whereas

the low local DB shows the quality clustering within the local data. The Table 7 shows the out-

performance of the proposed approach in comparison to the existing approaches with quality

clustering in terms of increased purity and collaborative DB with high test data accuracy.

Notably, the bit plane at which an optimal solution is obtained, varies from dataset to dataset.

Table 5. Iris dataset local result table for A and B (RA, RB) using Davies Bouldin index.

Data site Bit Plane Cluster Cluster Centroid Local Dispersion (Si) Local cluster to cluster

distance d(i,j)

Sij
dði;jÞ

Local DB

Cluster

X1 X2 X3 X4 1 2 3 1 2 3

A (7,3,1,2) 1 0.276 0.61 0.142 0.123 0.275 0.000 0.716 1.087 0 0.690 0.446 0.839

2 0.46 0.304 0.599 0.543 0.219 0.716 0.000 0.470 0.690 0 0.913

3 0.696 0.460 0.820 0.846 0.210 1.087 0.470 0.000 0.446 0.913 0

B 1 0.198 0.567 0.110 0.096 0.242 0 0.757 1.151 0 0.637 0.410 0.877

2 0.419 0.284 0.584 0.564 0.240 0.757 0 0.471 0.637 0 0.997

3 0.733 0.385 0.815 0.809 0.230 1.151 0.471 0 0.410 0.997 0

A (7,4,5,2) 1 0.18 0.5960 0.075 0.051 0.136 0 0.674 1.147 0 0.673 0.324 0.956

2 0.4370 0.3750 0.496 0.454 0.318 0.674 0 0.505 0.673 0 1.097

3 0.667 0.438 0.788 0.79 0.236 1.147 0.505 0 0.324 1.097 0

B 1 0.144 0.56 0.073 0.062 0.176 0 0.681 1.140 0 0.678 0.410 0.982

2 0.364 0.322 0.5 0.482 0.286 0.681 0 0.509 0.678 0 1.133

3 0.697 0.378 0.768 0.753 0.291 1.140 0.509 0 0.410 1.133 0

A (7,6,1,2) 1 0.2220 0.6330 0.072 0.059 0.163 0 0.788 1.140 0 0.464 0.350 0.837

2 0.4730 0.3080 0.576 0.505 0.203 0.788 0 0.429 0.464 0 1.023

3 0.645 0.432 0.791 0.81 0.236 1.140 0.429 0 0.350 1.023 0

B 1 0.155 0.563 0.074 0.063 0.173 0 0.770 1.161 0 0.565 0.351 0.900

2 0.398 0.296 0.556 0.543 0.262 0.770 0 0.466 0.565 0 1.068

3 0.723 0.395 0.785 0.764 0.235 1.161 0.466 0 0.351 1.068 0

A (6,2,1,2) 1 0.2220 0.6330 0.072 0.059 0.163 0 0.813 1.134 0 0.466 0.345 0.838

2 0.4360 0.2920 0.585 0.545 0.216 0.813 0 0.434 0.466 0 1.024

3 0.69 0.454 0.79 0.78 0.228 1.134 0.434 0 0.345 1.024 0

B 1 0.161 0.579 0.074 0.063 0.117 0 0.784 1.122 0 0.418 0.306 0.837

2 0.393 0.275 0.565 0.54 0.211 0.784 0 0.417 0.418 0 1.047

3 0.679 0.37 0.761 0.752 0.226 1.122 0.417 0 0.306 1.047 0

A (5,7,1,2) 1 0.2130 0.6230 0.074 0.06 0.156 0 0.775 1.114 0 0.465 0.350 0.818

2 0.4200 0.3040 0.561 0.527 0.204 0.775 0 0.441 0.465 0 0.994

3 0.687 0.449 0.777 0.762 0.234 1.114 0.441 0 0.350 0.994 0

B 1 0.161 0.579 0.074 0.063 0.184 0 0.764 1.105 0 0.509 0.399 0.841

2 0.352 0.245 0.543 0.528 0.205 0.764 0 0.459 0.509 0 1.006

3 0.675 0.38 0.754 0.737 0.257 1.105 0.459 0 0.399 1.006 0

https://doi.org/10.1371/journal.pone.0244691.t005
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Moreover, if the dataset with large number of features is used then the accuracy will not be

compromised but computational cost will increase. Additionally, the collaborative purity

results are closer to the global purity, verifies accuracy of our proposed approach. It also reveals

that the proposed approach is successful to capture distributed hidden behavior which is simi-

lar to that of pooled dataset.

Table 6. Iris Davies Bouldin measurement.

Bit Plane Cluster SAi SBj D(i,j) SABij
Dði;jÞ

DB
A B Cluster

i j 1 2 3 1 2 3

(7,3,1,2) 1 1 0.275 0.242 0.098 0.719 1.088 5.253 0.717 0.464 6.272

2 2 0.219 0.240 0.759 0.052 0.446 0.607 8.758 1.008

3 3 0.210 0.230 1.152 0.493 0.092 0.393 0.913 4.804

(7,4,5,2) 1 1 0.136 0.176 0.052 0.689 1.135 5.986 0.612 0.376 5.231

2 2 0.318 0.286 0.673 0.198 0.481 0.734 3.051 1.267

3 3 0.236 0.291 1.153 0.532 0.079 0.357 0.981 6.656

(7,6,1,2) 1 1 0.163 0.173 0.097 0.783 1.146 3.464 0.543 0.347 4.533

2 2 0.203 0.262 0.783 0.087 0.425 0.480 5.329 1.030

3 3 0.236 0.235 1.153 0.454 0.098 0.355 1.097 4.806

(6,2,1,2) 1 1 0.163 0.117 0.082 0.795 0.795 3.432 0.471 0.489 5.568

2 2 0.216 0.211 0.807 0.051 0.373 0.413 8.434 1.186

3 3 0.228 0.226 1.150 0.478 0.094 0.300 0.918 4.839

(5,7,1,2) 1 1 0.156 0.184 0.068 0.775 1.092 4.987 0.466 0.378 5.250

2 2 0.204 0.205 0.771 0.092 0.390 0.503 4.455 1.182

3 3 0.234 0.257 1.130 0.513 0.078 0.370 0.855 6.308

https://doi.org/10.1371/journal.pone.0244691.t006

Table 7. Comparison of existing and proposed work.

Methods Data site Purity Davies Bouldin Index

Local Collaborative DB DB
Existing VCC-SOM [7] AGeyser 93.38 94.85 0.546 0.531

BGeyser 96.32 95.48 0.533 0.554

ASkin 73.16 71.89 0.865 0.901

BSkin 70.62 72.13 0.881 0.876

AIris 80 80 0.702 0.702

BIris 80 82.45 0.702 0.678

VCC-GTM [9] AGeyser 93.4 94.64 0.547 0.536

BGeyser 95.88 94.23 0.541 0.567

ASkin 74.64 72.77 0.872 0.875

BSkin 70.91 73.12 0.88 0.866

AIris 84.3 85.17 0.712 0.701

BIris 86.04 84.29 0.668 0.691

Proposed VCC-BPS at BP (5,6) AGeyser 98.33 97.92 0.389 7.144

BGeyser 97.5 0.423

VCC-BPS at BP (7,6,7) ASkin 74.23 75.70 0.953 0.916

BSkin 77.16 0.863

VCC-BPS at BP (6,2,1,2) AIris 86.36 86.36 0.838 5.568

BIris 86.36 0.837

https://doi.org/10.1371/journal.pone.0244691.t007
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6 Conclusion and future work

This paper presents vertical collaborative clustering using bit plane slicing to manage collabo-

ration among different sites. In this novel approach, an adequate common bit plane is deter-

mined among participating data sites, at which model fits the data with maximum similarity to

unlock hidden patterns. Investigation shows that there is at least one-bit plane which captures

relative important information commonly shared among different data sites. Notably, the bit

planes, which contribute the most to represent relative important information, vary from data-

set to dataset. The comparison of the proposed with the existing approaches reveals that

VCC-BPS outperforms by having superior accuracy in term of high purity with improved DB

and compress a large number of observations into smaller code space. The proposed collabora-

tive results are close to that of pooled data output which verifies its accuracy. However, the

proposed approach has a vast search space finding bit planes with an adequate solution for a

dataset with large feature space. This requires further investigation to add an extra computa-

tional layer such as using a data compression technique before voting algorithm to unravel the

most informative bit plane and reduce the computational cost of measuring similarity both

locally and collaboratively.
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