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A B S T R A C T   

The fundamental cause of human cancer is strongly influenced by down- or up-regulations of epigenetic factors. 
Upregulated histone deacetylases (HDAC) have been shown to be effectively neutralized by the action of HDACs 
inhibitors (HDACi). However, cytotoxicity has been reported in normal cells because of non-specificity of several 
available HDACis that are in clinical use or at different phases of clinical trials. Because of the high amino acid 
sequence and structural similarity among HDAC enzymes, it is believed to be a challenging task to obtain 
isoform-selectivity. The essential aim of the present research work was to identify isoform-selective inhibitors 
against class IIa HDACs via structure-based drug design. Based on the highest binding affinity and isoform- 
selectivity, the top-ranked inhibitors were in silico tested for their absorption, distribution, metabolism, elimi
nation, and toxicity (ADMET) properties, which were classified as drug-like compounds. Later, molecular dy
namics simulation (MD) was carried out for all compound-protein complexes to evaluate the structural stability 
and the biding mode of the inhibitors, which showed high stability throughout the 100 ns simulation. Free 
binding energy predictions by MM-PBSA method showed the high binding affinity of the identified compounds 
toward their respective targets. Hence, these inhibitors could be used as drug candidates or as lead compounds 
for more in silico or in vitro optimization to design safe isoform-selective HDACs inhibitors.   

1. Introduction 

Histone acetylation and deacetylation mechanisms are essential 
parts of gene regulation. Histone acetylation is linked to transcription
ally active chromatin while deacetylation is involved in the formation of 
the transcriptionally inactive heterochromatin (Kim and Workman, 
2010). Histone deacetylation is regulated by histone deacetylases 
(HDACs) that remove the acetyl group from lysine residues on histone 
tails. This will help in the formation of the heterochromatin and inac
tivate the gene transcription (Kurdistani and Grunstein, 2003). In 
human, 18 different HDACs have been found and categorized into four 
classes according to their cellular localization and sequence identity. 
These enzymes are either zinc-dependent enzymes namely HDAC, or 
nicotinamide adenine dinucleotide (NADH) dependent enzymes called 
sirtuin proteins (Dokmanovic et al., 2007). Zinc-dependent HDACs are 
11 enzymes and further grouped into several subclasses according to 
their homology to yeast proteins: class I (HDACs 1, 2, 3 and 8), class II 
(HDACs 4, 5, 6, 7, 9, 10), and class IV (HDAC 11) (Yang and Seto, 2008). 
Class III members are NADH-dependent proteins and consist of seven 

sirtuin enzymes (Sirt1–Sirt7) (Frye, 2000). Class II HDACs are large in 
size and further subdivided into two classes based on the number of the 
catalytic domains; class IIa HDACs (HDAC4, HDAC5, HDAC7 and 
HDAC9) have a single catalytic domain, while class IIb enzymes (HADC6 
and HDAC10) have two catalytic domains (Haggarty et al., 2003; Asfaha 
et al., 2019). 

Over recent decades, HDAC enzymes have proved to be promising 
targets of caner fighting drug design. Several studies have shown the 
impact of class IIa HDACs in disease development in different organs and 
tissues, such as cancer, diabetes, muscle degenerative disorders, 
neurological and immunological disorders (Zhong et al., 2018; Wilson 
et al., 2008; Von Blume et al., 2007; Patrick Walters et al., 1998; Mor
iguchi et al., 1992; Moresi et al., 2010; Gil et al., 2016; Wang et al., 
2021). 

Based on the chemical structure of HDACs inhibitors, they are 
generally classified into carboxylates, hydroxamic acids, benzamides, 
and cyclic peptides and depsipeptide inhibitors. So far, only four HDAC 
inhibitors have been approved for treatment of cancer by the Food and 
Drug Administration (FDA) including the pan-inhibitor suberoylanilide 
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hydroxamic acid (SAHA/Vorinostat) (Mann et al., 2007), Belinostat 
(PXD101) and Romidepsin (FK228) (Lee et al., 2015; Bertino and 
Otterson, 2011), and Panobinostat (LBH589) (Laubach et al., 2015). 
There are several HDAC inhibitors that are proposed for the treatment of 
different non-solid and solid cancers (Ho et al., 2020). Tasquinimod was 
proposed to be a potential HDACi that is used for treatment of patients 
with castration-resistant prostate cancer (CRPC) (Olsson et al., 2010; 
Dalrymple et al., 2012). A structural hybridization between the 
hydroxamic acids and the benzamides of class I HDAC inhibitors resul
ted in a new class IIa selective inhibitor, namely LMK235. The hydro
phobic dimethyl of the cap group in LMK235 fits better in the active site 
of class IIa than class I and led to increase in the selectivity toward 
HDAC4 and HDAC5 (Marek et al., 2013). TMP269 and TMP195 are two 
class IIa HDAC inhibitors in which the classical hydroxamic acid group 
was replaced by a trifluoromethyloxadiazolyl group (TFMO) that 
mimics the trifluoromethylketone (TFMK) (Lobera et al., 2013). 
BRD4354 is another class IIa HDACs inhibitor and is one of the most 
potent compounds that contain hydroxyquinoline as the zinc-triggered 
electrophile. BRD4354 lacks the zinc binding group and showed po
tential inhibition activity against HDAC5 and HDAC9 with IC50 of 0.85 
and 1.88 μM, respectively (Boskovic et al., 2016). CHDI-390,576 is a 
new class IIa selective HDAC inhibitor, that was designed by a structural 
modification in the cap region of the benzhydryl hydroxamic acids. 
CHDI-390,576 was found to inhibit class IIa with a half-maximal 
inhibitory concentration of 0.031~0.051 μM (Luckhurst et al., 2019). 
2-trifluoroacetylthiophenes is a class II HDAC inhibitor that was devel
oped from ethyl 5-(trifluoroacetyl)thiophene-2-carboxylate with 
increased specificity toward class IIa and HDAC6 with a half-maximal 
inhibitory concentration of ~0.22 μM. (Jones et al., 2008). BML-210 
is a weak benzamide derivative inhibitor, that can bind to the hydro
phobic moiety of MEF2 by its aminophenyl group (Jayathilaka et al., 
2012). However, previous mentioned HDACs inhibitors have shown a 
variety of undesired effects that comes with their inhibition influence 
against numerous HDACs through numerous classes. Hence, current 
study has aimed is to identify novel isoform selective HDAC compound 
to avoid side effects and keep the cancer-fighting action of 
broad-spectrum HDACs inhibitors. 

Latest advances in the computer technologies and new 

computational modeling tools provided a robust boost to the area of 
computer-aided drug design (CADD) (Macalino et al., 2015; Al-Obaidi 
et al., 2020; Erensoy et al., 2020). There are several successful appli
cations of virtual screening in class IIa HDAC drug design. In 2017, Hsu 
and colleagues demonstrated six novel non-hydroxamate inhibitors that 
preferentially target class IIa HDACs (Hsu et al., 2017). Sinha et al. in 
2017 found a hydroxamic based class IIa inhibitor for the treatment of 
ataxia Type-2 using 3D-QSAR and pharmacophore modeling approach 
(Sinha et al., 2017). Various filtering approaches can be utilized to 
exclude small molecules with undesired chemical properties. One of the 
important approaches is to eliminate compounds that contain toxic, 
reactive, or any other unwanted properties. Drug-likeness is one of the 
crucial steps in virtual screening that evaluates the safety of oral drugs, 
such as the well-known Lipinski’s rule of five applications (Lipinski 
et al., 1997). The current study aimed to identify novel selective class IIa 
HDAC inhibitors by the application of several computational drug dis
covery approaches including virtual screening, molecular docking, 
ADMET analysis, molecular dynamics simulations and ligand-protein 
free binding energy calculation (Fig. 1). 

2. Materials and methods 

2.1. Class IIa HDAC proteins preparation 

The 3D structures of HDAC5 and HDAC9 were generated by ho
mology modeling approach as reported in our previous work (Elme
zayen and Yelekçi, 2020) and, thus were used in the current study. In 
addition, the next X-ray crystallography structures of human HDAC 
were downloaded from the Protein Data Bank (PDB) website 
(http://www.rcsb.org/) (Berman et al., 2002): (i) HDAC4 (2VQM) “the 
structure of human HDAC4 catalytic domain bound to a hydroxamic 
acid inhibitor, resolution: 1.80 Å” (Bottomley et al., 2008); (ii) HDAC7 
(3C10) “the crystal structure of catalytic domain of human HDAC7 in 
complex with Trichostatin A (TSA), resolution: 2.00 Å” (Schuetz et al., 
2008). Native ligands (the co-X-ray crystallography resolved ligands), 
water molecules, and salt ions were next removed from each structure 
using BIOVIA Discovery Studio 4.5 (DS) (Dassault Systèmes, 2016). 
Using the “Prepare Protein” protocol in BIOVIA DS 4.5, hydrogen atoms 
were added to proteins at physiological pH 7.4, and missing loops were 
added if necessary. 

2.2. Dataset preparation 

A total of 10,154,992 compounds were downloaded from several 
databases including ZINC15 database (https://zinc15.docking.org/) 
(Sterling and Irwin, 2015), ChEMBL (https://www.ebi.ac.uk/chembl/) 
(Gaulton et al., 2017), and the National Cancer Institute (NCI) (https:// 
cactus.nci.nih.gov/index.html) (Milne et al., 1994). The dataset con
tains 3D tranches drug-like compounds which have a variety of molec
ular weights ranging from 200 to 500 MW, and octanol-water partition 
coefficient (LogP) ranging from -1 to 5. The small molecules were pro
tonated, all hydrogen atoms are included, and their 3D structures were 
optimized using BIOVIA DS 4.5. The dataset was retrieved in SDF file 
format. 

2.3. Structure-based virtual screening 

Structure-based virtual screening (SBVS) is a computational method 
that has proved its liability and efficiency in searching for novel lead, 
lead-like, and drug-like compounds and is most widely employed by in 
silico labs (Patrick Walters et al., 1998). In the current study, the SBVS 
method has been divided into three stages, where each stage used 
different molecular docking software in order to reduce the large 
number of the dataset and to filter out compounds with the least binding 
affinity, by taking advantage of each software’s capabilities. The first 
SBVS stage used GOLD docking software, the second SBVS used 

Fig. 1. Overall workflow of the structure-based virtual screening.  
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QuickVina 2.0, and the third SBVS used AutoDock 4.2. Validation for the 
molecular docking study, which employed in our research work, was 
performed by re-docking the co-crystallized ligands, hydroxamic acid 
and Trichostatin A (TSA), into the active sites of HDAC4 (2VQM) and 
HDAC7 (3C10), respectively, using GOLD, QuickVina 2 and AutoDock 
4.2. The validation reproduced poses of the co-crystallized ligands very 
well as they displayed reasonably similar poses of the native ones as 
shown in the Supplementary Material Fig. S1. The RMSD for the su
perposition of the co-crystallized hydroxamic acid revealed that, GOLD 
determined with 0.57 Å, QuickVina 2 with 1.59 Å, and AutoDock with 
1.2 Å. The re-docking results of RMSD for TSA showed that, GOLD 
determined with 0.76 Å, QuickVina 2 with 1.85 Å, while AutoDock with 
1.59 Å. Therefore, these docking approaches were found to be reliable 
for reproducing poses similar to the co-crystallized ones and accordingly 
can be employed for the virtual screening in our study. 

2.3.1. Phase I of SBVS 
GOLD docking software was used for its high speed and efficiency in 

high-throughput screening (HTS) of large compounds dataset. GOLD 
was first introduced in our study because of its capability in handling 
large libraries with thousands or hundreds of thousands of small mole
cules, and to reduce our large dataset to the best fitting compounds 
based on their pose prediction scores to exclude those with least scores. 
GOLD software provides four different scoring functions: ChemPLP, 
ChemScore, GoldScore, and ASP (the Astex Statistical Potential), where 
ChemPLP is an empirical fitness function, which is optimized for pose 
prediction and generally has shown better results compared to other 
GOLD’s scoring functions (Li et al., 2014; CCDC, 2017; Jasper et al., 
2018). Docking experiments were performed using the ChemPLP scoring 
function, and the 10,154,992 compounds were screened against HDACs 
4, 5, 7, and 9. The binding site for each protein was centered close to the 
catalytic zinc atom and the box size was set to 10 Å, where the XYZ 
coordinates were set as follows: HDAC7 = 7.8, 49.864, -18.724; HDACs 
4, 5 and 9 = 19.199, -10.083, -1.089. GOLD performed 10 genetic al
gorithms runs for each ligand. Moreover, HDACs class IIa known in
hibitors were retrieved from the ChEMBL website and were docked 
against their respective HDAC. Preliminary investigations of the docking 
results showed that the highest fit values were as follows: HDAC4 = 88, 
HDAC5 = 70, HDAC7 = 95, and HDAC9 = 80. The criteria of selection 
after the GOLD docking study were made according to the previous fit 
values. Thus, the large dataset was reduced to a total of 89,632 mole
cules (HDAC4 = 26,709; HDAsC5 = 24,173; HDAC7 = 18,702, and 
HDAC9 = 20,048). 

2.3.2. Phase II of SBVS 
Phase II was conducted to further reduce the number of the outcome 

from Phase I according to the binding energy calculations - rather than 
pose prediction only - to assure higher affinity toward class IIa HDACs 
and to decisively filter out compounds with least binding affinity. In the 
second phase of the virtual screening, QuickVina 2.0 was used due to its 
relative fast screening compared to AutoDock 4.2 which was used in 
Phase III. QuickVina 2.0 is an AutoDock Vina-based tool that was 
designed for faster and more accurate results, where it automatically 
determines the grid maps and ranks the outputs for simple interpretation 
(Alhossary et al., 2015). The scoring function of QuickVina 2.0 relies on 
the same scoring function of classical AutoDock Vina where the method 
combines between the knowledge-based and empirical approach. Due to 
the highly conserved amino acid sequence and the great resemblance 
among class IIa HDAC enzymes (Bottomley et al., 2008; Schuetz et al., 
2008), the 89,632 ligands that displayed highest affinity toward their 
corresponding targets at the first SBVS phase, were additionally docked 
into each protein of the class (e.g., cross-docking). All individual 
members of class IIa HDACs were prepared and correctly protonated and 
saved as PDBQT using AutoDockTools (Morris et al., 2009). The 
configuration files for each protein were prepared and the exhaustive
ness was set to 8, the energy grid box size was set as (HDA7 = 20, 20, 20; 

HDACs 4, 5, and 9 = 22.5, 22.5, 22.5) and the XYZ coordinates were 
specified as follows: HDAC7 = 7.8, 49.864, -18.724; HDACs 4, 5, and 
9 = 19.199, -10.083, 1.089. Upon results analyses, the ligands were 
filtered according to their binding affinity, and, in order to end up with 
the highest binding affinity for the third stage of SBVS, all compounds 
with a binding energy (ΔG) of -8 kcal/mol or less were selected for the 
third SBVS stage, thus a total of 6325 compounds fulfilled this condition. 

2.3.3. Phase III of SBVS 
The final virtual screening stage was performed using AutoDock 4.2 

(Morris et al., 2009) in order to identify the highest binding affinity 
among the tested dataset and to assess the selectivity among them to
ward each class IIa isoform. Therefore, based on the binding affinity, the 
top 500 compounds retrieved from previous stage were cross-docked 
against each individual member of class IIa HDACs using grid box size 
and XYZ coordinates given in Table 1. Searching for the ligand confor
mation in AutoDock 4.2 was calculated by the Lamarckian genetic al
gorithm, and twenty independent runs were allowed for each ligand 
using 25,000,000 energy evaluation. 

2.4. Selection criteria of the isoform-selective compounds 

In current study, the selection criteria of the isoform-selective com
pounds were directed by Bieliauskas and Pflum (Bieliauskas & Pflum, 
2008). Authors demonstrated a thorough insight into the HDAC in
hibitors selectivity based on the inhibitory constant (Ki) of those in
hibitors. Accordingly, the following formula was employed herein to 
evaluate the top-ranked compounds selectivity (Eq.1): 

Selectivity forHDACx =
Ki of otherHDACsisoform

Ki of HDACx
(1) 

Based on the calculated binding energy and the predicted Ki value 
that was obtained from the AutoDock 4.2, a total of 15 compounds 
showed a wide range of selectivity for their respective proteins (HDAC4: 
5, HDAC5: 3, HDAC7: 6, HDAC9: 1). In addition, to further test and 
evaluate the potency and selectivity of the 15 top-ranked compounds, 
the compounds were examined using AutoDock 4.2 as previously 
described in Phase III of SBVS, against other human HDACs proteins 
including class I HDAC1 (PDB: 4BKX) (Millard et al., 2013), HDAC2 
(PDB: 7KBG) (Liu et al., 2020), HDAC3 (PDB: 4A69) (Watson et al., 
2012) and HDAC8 (PDB: 1T64) (Somoza et al., 2004); class IIb HDAC6 
(PDB: 5EDU) (Hai and Christianson, 2016) and the homology model of 
human HDAC10 that was previously reported by our research group in 
2018, due to the lack of experimentally determined structure of human 
HDAC10 enzyme (Ibrahim Uba and Yelekçi, 2019). 

2.5. ADMET profile description 

ADMET descriptors including absorption, distribution, metabolism, 
elimination, and toxicity properties are significant in the computational 
drug discovery and design. There are several computational tools that 
combine in vivo and in vitro prediction of ADMET profile. In addition, 
ADMET profile has been successfully predicted in silico over the last 

Table 1 
Coordinate parameters and grid box size used for AutoDock 4.2.   

HDAC4 HDAC5 HDAC7 HDAC9 

Center     
X 19.199 19.199 7.8 19.199 
Y − 10.083 − 10.083 49.864 − 10.083 
Z 1.089 1.089 − 18.724 1.089  

Dimension (Å)    
X 55 55 50 55 
Y 55 55 50 55 
Z 55 55 50 55  
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decade (Cheng et al., 2013). Herein, all 15 compounds were saved and 
uploaded as SMILES files, where the ADMET properties and 
drug-likeness were predicted using admetSAR 2.0 web server (http:// 
lmmd.ecust.edu.cn/admetsar2) (Yang et al., 2019) and SwissADME 
website (http://www.swissadme.ch/) (Daina et al., 2017). These prop
erties include Lipinski’s rule of 5 that calculates the molecular weight 
(MW), octanol-water partition coefficients (LogP), total number of 
hydrogen bond acceptors, and hydrogen bond donors (Lipinski et al., 
2001); topological polar surface area (TPSA); Caco-2 cell permeability; 
and the water solubility. 

2.6. Pan-assay interference compounds (PAINS) filter 

In addition, pan-assay interference compounds (PAINS) filter was 
applied for all the 15 compounds using the PAINS Remover website (htt 
ps://www.cbligand.org/PAINS/) (Baell and Holloway, 2010). PAINS 
are identified as special structural properties that can lead to false pos
itive effects at certain cases during the virtual screening and can 
nonspecifically interact to random targets rather than a particular target 
(Baell and Holloway, 2010). Consequently, it is important to eliminate 
compounds with PAINS features to avoid false positive outcomes. 

2.7. Molecular dynamics simulation 

Molecular dynamics (MD) simulation has proved its importance in 
examining the structural stability of the proteins and in extracting 
important details about the conformational modifications in the protein- 
ligand binding. MD simulation is a computational simulation approach 
that allows the investigation of the physical movement and orientation of 
all atoms in the system, and thus, explores the dynamics and structures in 
detail. In the present study, seven isoform-selective complexes were sub
jected to MD simulation using NAMD package (Phillips et al., 2020), 
including HDAC4− CHEMBL2177655, HDAC4− CHEMBL3126309, 
HDAC5-ZINC000033260361, HDAC5− CHEMBL2426361, HDAC7−
CHEMBL1968496, HDAC7-ZINC000009640741, and HDAC9−
CHEMBL1761559. The web server of CHARMM-GUI (http://www.ch 
armm-gui.org/) (Lee et al., 2016) was used to generate all the necessary 
input files for the MD simulation study. The web server of the CHARMM 
General Force Field (CGenFF) server (https://cgenff.umaryland.edu/) was 
utilized for the parameterization of all the seven ligands, in which the 
charges assignment and atoms typing were carried out (Vanommeslaeghe 
et al., 2010). The seven systems were water solvated applying the trans
ferable intermolecular potential with 3 points model (TIP3) and NaCl slat 
ions were added to neutralize the systems at 0.15 M concentrations. The 
first step of the MD simulation consisted of energy minimization for 20,000 
steps by means of steepest descent method. The second step included 
restrained equilibration run for 10 ns at 310 K in constant number of 
atoms, volume, and temperature ensemble (NVT). Finally, all seven sys
tems were subjected to unrestrained 100 ns run in constant number of 
atoms, pressure, and temperature ensemble (NPT) with 2 fs of collection 
period, while the system’s coordinates were recorded into the trajectory 
files every 5000 steps. The MD simulation trajectory files were analyzed 
using VMD software (Humphrey et al., 1996) and the analyses included the 
root mean square deviation (RMSD), root mean square fluctuation (RMSF), 
radius of gyration (Rg), and potential energy. In addition, VMD software 
was also used for the analysis of the hydrogen bond number that formed by 
each compound with its respective HDAC isoform by calculating each 
frame in the trajectory file that was generated during the MD simulation. 
The protein–ligand complex stability and affinity of the ligand toward the 
receptor can be assessed the hydrogen bond analysis of each frame 
generated during the MD simulation. The hydrogen bonds formed by each 
ligand with TMPRSS2 in each frame were calculated and it is given in Fi 

2.8. Binding free energy calculations 

The Molecular Mechanics-Poisson-Boltzmann Surface Area (MM- 

PBSA) (Massova and Kollman, 2000) is widely used approach for the 
prediction of the binding free energy, which provides more accurate 
calculations than the majority of molecular docking scoring functions 
and requires less computational processing than classic alchemical free 
energy approaches (Wang et al., 2019). Herein, this method was used to 
calculate the binding free energy for all the seven systems after MD 
simulations. The binding free energy of any given complex (protein-li
gand) can be expressed as follows (Eq. 2): 

ΔGbind = ΔH − TΔS = 〈ΔEgas + ΔGpolarsol + ΔGnonpolarsol − TΔS〉 (2) 

Herein, CaFE tools (Liu and Hou, 2016) was used to calculate the 
binding free energy for all studied complexes. The last 10 ns was 
extracted from all trajectory files after performing the MD simulations, 
and all necessary files including DCD, PSF and toppar files were pre
pared to be used by CaFE tools. The configuration file was created and 
the reciprocal size of the grid spacing was defined as 1.0 Å, while the 
internal and external dielectric constants were defined as 4.0 and 80.0, 
respectively. 

3. Results and discussion 

3.1. SBVS analysis 

Perceptive variations within the active sites and the catalytic chan
nels of HDAC protein members can be beneficial in obtaining isoform- 

Table 2 
Calculated binding energy by AutoDock 4.2 of the hit compounds against each 
member of class IIa HDACs.  

# Compound ID HDAC4 HDAC5 HDAC7 HDAC9   
ΔG (kcal/ 
mol) 

ΔG (kcal/ 
mol) 

ΔG (kcal/ 
mol) 

ΔG (kcal/ 
mol) 

1 CHEMBL2177655 − 15.14 − 10.16 − 12.36 − 10.51 
2 CHEMBL3126309 − 15.04 − 12.74 − 12.64 − 11.94 
3 CHEMBL236510 − 13.18 − 11.93 − 8.52 − 11.7 
4 ZINC000095945790 − 11.44 − 10.49 − 10.06 − 10.31 
5 ZINC000001058982 − 9.81 − 8.98 − 8.82 − 8.93 
6 ZINC000033260361 − 10.61 − 11.81 − 10.37 − 9.83 
7 CHEMBL2426361 − 10.01 − 11.27 − 9.63 − 10.16 
8 CHEMBL529211 − 8.6 − 9.6 − 7.85 − 8.68 
9 CHEMBL1968496 − 11.25 − 9.59 − 14.25 − 9.91 
10 ZINC000009640741 − 11.97 − 11.07 − 14.67 − 11.17 
11 NSC 23,217 − 8.69 − 7.42 − 11.16 − 8.22 
12 ZINC000019704978 − 11.37 − 10.76 − 13.35 − 10.91 
13 ZINC000514563218 − 9.52 − 9.75 − 11.8 − 9.81 
14 ZINC000674197814 − 9.08 − 9.61 − 11.49 − 9.78 
15 CHEMBL1761559 − 7.16 − 7.49 − 5.93 − 8.09  

Table 3 
Selectivity index of class IIa HDACs. Ki of specific HDAC is compared to the 
nearest Ki of others for the same compound.   

HDAC4 HDAC5 HDAC7 HDAC9 
Selectivity Compounds K4

i (nM)  K5
i (nM)  K7

i (nM)  K9
i (nM)  

CHEMBL2177655 0.0080 35.73 0.8640 19.88 HDAC4 
CHEMBL3126309 0.0094 0.458 0.5460 1.780 HDAC4 
CHEMBL236510 0.2190 1.790 568.00 2.680 HDAC4 
ZINC000095945790 4.0900 20.00 42.050 27.00 HDAC4 
ZINC000001058982 64.650 261.0 342.00 282.0 HDAC4 
ZINC000033260361 16.590 2.200 25.020 62.48 HDAC5 
CHEMBL2426361 45.920 5.460 86.690 35.60 HDAC5 
CHEMBL529211 492.00 91.00 1750.0 433.0 HDAC5 
CHEMBL1968496 5.6200 94.20 0.0360 54.68 HDAC7 
ZINC000009640741 1.6700 7.680 0.0175 6.540 HDAC7 
NSC 23,217 426.00 3610 6.6300 938.0 HDAC7 
ZINC000019704978 4.6500 12.99 0.1650 9.990 HDAC7 
ZINC000514563218 104.80 71.18 2.2400 64.11 HDAC7 
ZINC000674197814 219.53 89.90 3.7700 67.91 HDAC7 
CHEMBL1761559 5670.0 3230 44,950 1160 HDAC9  
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selectivity (Bieliauskas & Pflum, 2008). In attempt to take advantage of 
that fact, here in the current study, we employed a comprehensive 
structure-based drug design testing more than 10 million drug-like 
compounds against class IIa HDAC enzymes. A total of fifteen com
pounds displayed potential selectivity toward their corresponding tar
gets according to their calculated binding energy and predicted 
inhibitory constant (Ki) (Table 2). Five compounds were selective for 
HDAC4 over the rest of class IIa HDACs; Three compounds were found to 
be selective for HDAC5; Six compounds selective for HDAC7; and one 
selective compound for HDAC9 (Table 3) (Fig. 2). The 2D structures of 
the rest of the 15 top-ranked compounds are provided in the Supple
mentary Material Fig. S2. To obtain the selectivity of a certain com
pound for specific HDAC member of the class IIa, the Ki of the same 
compound for the four members of the HDAC is sorted from the lowest to 
the largest, and the second-lowest Ki is divided by the first lowest one. 
Furthermore, to assure the selectivity of the top-ranked compounds to 
the members of class IIa HDACs compared to other HDAC enzymes, 
cross-docking study was performed using AutoDock 4.2 to estimate the 
compounds binding energy and predict their inhibitory constant against 
class I and IIb HDACs (Supplementary Material Tables S1 and S2). 
Interestingly, these compounds displayed higher binding affinity toward 
class IIa HDACs compared to other HDACs according to the calculated 
binding energy and the predicted inhibitory constant. Consequently, 
these in silico calculations suggest and support the isoform-selectivity of 
the top-ranked compounds toward class IIa HDACs. Noteworthy, 
ChEMBL compounds that were identified in our study have been pre
viously reported in several studies and displayed various activities to
ward different targets other than HDACs enzymes including activation 
and inhibition assays. A brief overview of other activities of these 
ChEMBL compounds are given in Supplementary Material Table S3. 

The top two ranked compounds that showed potential selectivity for 
HDAC4 over other HDACs are CHEMBL2177655 and CHEMBL3126309. 
Compound CHEMBL2177655 was found to have the highest binding 
affinity among all studied compounds, with an estimated binding energy 
of -15.14 kcal/mol and a predicted inhibitory constant of 8.0 pM 
(0.0080 nM). Compound CHEMBL2177655 revealed a potential selec
tivity for HDAC4 ranging from ~ 107 to 4400-fold compared to HDACs 
5, 7 and 9. The second top-ranked compound, CHEMBL3126309 showed 
the second-highest affinity and selectivity for HDAC4, with an estimated 
binding energy of -15.04 kcal/mol and a predicted inhibitory constant of 
9.4 pM (0.0094 nM). Compound CHEMBL3126309 displayed a prom
ising selectivity for HDAC4 ranging from ~48 to 189-fold compared to 
HDACs 5, 7 and 9. CHEMBL2177655 and CHEMBL3126309 compounds 
spanned the HDAC4 active site in very similar ways. They both inter
acted with the key amino acid residues in the catalytic site including 
His158, His159, Gly167, Phe168, Asp196, His198, Asp290, Gly330, and 
many other residues with the following interactions: hydrogen bonds, 
van der Waals interactions, attractive charge, π-π stacked, π-π T-shaped, 
π-alkyl, alkyl, π-cation (Fig. 3 (a) and (b)). Deep in the catalytic channel, 
the catalytic Zn2+ metal atom was found to be bonded to the carboxylate 
groups of CHEMBL2177655 compound via an electrostatic and an 
attractive charge interaction; and an electrostatic interaction with the 
carboxylate group of CHEMBL3126309 compound. This collectively 
may result in blocking the catalytic site and thus lead to the inhibition of 
the enzymatic activity. 

Thorough molecular docking study identified three moderate 
HDAC5 isoform selective compounds, and the top two-ranked com
pounds are ZINC000033260361 and CHEMBL2426361. Compound 
ZINC000033260361 bonded to HDAC5 with an estimated binding en
ergy of -10.61 kcal/mol and a predicted inhibitory constant (Ki) of 

Fig. 2. Top-ranked selective compounds for class IIa HDACs obtained from Phase III of SBVS using AutoDock 4.2. ΔG: calculated binding energy. Ki: predicted 
inhibitory constant. 
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Fig. 3. 2D and 3D presentations of the chemical interactions between the top-ranked compounds and their respective HDAC isoform. (a) HDAC4− CHEMBL2177655; 
(b) HDAC4− CHEMBL3126309; (c) HDAC5-ZINC000033260361; and (d) HDAC5− CHEMBL2426361. 
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16.59 nM. In comparison to all class IIa HDACs, the ZINC000033260361 
compound revealed a moderate selectivity for HDAC5 ranging between 
~ 8 to 28-fold. On the other hand, compound CHEMBL2426361 was the 
second HDAC5 isoform selective compound which showed a binding 
energy of -10.01 kcal/mol and a predicted inhibitory constant (Ki) of 
45.92 nM. Compound CHEMBL2426361 exhibited a moderate isoform 
selectivity for HDAC5 ranging from 7 to 16-fold over the rest of class IIa 
HDACs family. In HDAC5, ZINC000033260361 and CHEMBL2426361 
compounds fitted very well into the binding pocket of the enzyme with 
great binding affinity compared to the remaining of class IIa HDACs. 
These two compounds were found to have a variety of chemical in
teractions with the active amino acid residues lining the binding pocket 
of the enzyme involving His159, His160, Gly168, Phe169, Asp197, 
His199, Asp291, Gly331 and other several residues through different 

chemical interactions including salt bridge interaction, van der Waals 
interactions, hydrogen bonds, π-cation, π-sulfur interaction, alkyl, 
π-alkyl, amide-π stacked interactions (Fig. 3 (c) (d)). The catalytic Zn2+

metal atom was found to be interacted with the fluorobenzene group of 
the ZINC000033260361 compound with an electrostatic interaction; 
and interacted with CHEMBL2426361 via a van der Waals interaction. 
Wilcken et al. computed electrostatic potentials of halobenzenes using 
MP2/TZVPP method. From these results they obtained strong evidence 
that fluorobenzene does not follow the same trend as the other hal
obenzenes (Cl, Br, I). Fluorine on benzene ring has a considerable 
electronegativity and there is no positively charged area, therefore 
behaving as nucleophile toward electrophile (Wilcken et al., 2013). 
These findings were also supported with the weak interaction of fluoride 
atom on the trifluoromethyloxadiazoles with the cofactor Zn2+

Fig. 4. 2D and 3D presentations of the chemical interactions between the top-ranked compounds and their respective HDAC isoform. (a) HDAC7- 
ZINC000009640741; (b) HDAC7− CHEMBL1968496; and (c) HDAC9− CHEMBL1761559. 
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described as HDAC IIa non-coordinating inhibitors (Lobera et al., 2013). 
These two above-mentioned compounds showed potential 
isoform-selectivity for HDAC5 over other class IIa enzymes. 

SBVS identified six promising HDAC7 enzyme selective drug-like 
compounds that showed a diversity in the binding affinity level. Ac
cording to the binding affinity, the top two compounds are 
ZINC000009640741 and CHEMBL1968496. The first top-ranked mole
cule, ZINC000009640741, demonstrated the highest binding affinity 
toward HDAC7 with the lowest binding energy (-14.67 kcal/mol) and 
has a predicted inhibitory constant of 0.0175 nM (17.5 pM). The second 
compound, CHEMBL1968496, showed a binding energy with a score of 
-14.25 kcal/mol and a Ki of 0.036 nM (36 pM). Compound 
ZINC000009640741 favorably bonded to HDAC7 with a selectivity 
index ranging between ~ 95 to 438-fold compared to the rest of the class 
IIa HDACs. Whereas compound CHEMBL1968496 preferentially 
expressed higher selectivity toward HDAC7 compared to HDACs 4, 5, 
and 9 (about 156 to 2616-fold). Both compounds, ZINC000009640741 
and CHEMBL1968496, spanned the deep catalytic tunnel of the active 
site of HDAC7, where they interacted with most of the key amino acid 
residues in the active site including His166, His167, Gly175, Phe176, 
Asp204, His206, Asp235 (Fig. 4 (a) and (b)). ZINC000009640741 
compound was found to be interacted with Zn2+ ion through its hy
droxyl group by an electrostatic interaction, while compound 
CHEMBL1968496 bonded to the Zn2+ ion through its carboxyl group by 
an electrostatic interaction. The common prevalent interactions of these 
two compounds included hydrogen bonds, van der Waals interactions, 
π-π stacked, π-π T-shaped, π-alkyl, alkyl, and amide-π stacked in
teractions. π-donor hydrogen bond was seen specifically in 
ZINC000009640741 compound with Gly339, and a π-anion interaction 
was formed between the benzene ring of CHEMBL1968496 and the 
Asp298 residue. 

VS application identified compound CHEMBL1761559, which dis
played a binding energy of -8.09 kcal/mol and a predicted inhibitory 
constant (Ki) of 1160 nM against HDAC9. CHEMBL1761559 covered the 
binding pocket of HDAC9 and interacted with several active residues 
within the catalytic pocket such as two hydrogen bonds with His199 and 
Phe169, and a π-π T-shaped interaction with Phe19. A π-cation inter
action was seen between the Zn2+ ion and the benzene ring of the 
compound. Additionally, other significant interactions were observed 
with several amino acid residues in the active site including hydrogen 
bonds, van der Waals interactions, π-alkyl, and alkyl interactions (Fig. 4 
(c)). Although compound CHEMBL1761559 relatively showed the least 
binding affinity for HDAC9 in comparison to all other 15 tested 

compounds, the compound displayed modest isoform-selectivity for 
HDAC9 compared to all other class IIa HDACs. With about 3 to 38-fold 
selectivity, CHEMBL1761559 compound revealed a higher binding af
finity toward HDAC9 compared to the rest of the enzymes. 

All the selected compounds seemed to interact with the key amino 
acids lying within the active site; thus this would interfere with the 
charge-relay system of HDACs (Somoza et al., 2004), and consequently 
would interrupt this system which may block the enzymatic activity. The 
diversity in the structures of the previous tested compounds, considering 
their pharmacophoric features, along with the subtle variations in the 
amino acid residues within the active sites of each HDAC member, might 
have facilitated in their isoform-selectivity. 

3.2. ADMET profile and PAINS filtration 

The predicted ADMET profile of the 15 top-ranked compounds from 
the virtual screening is given in Table 4 along with their drug-likeness 
properties. These properties were predicted using the admetSAR and 
SwissADME web servers. According to Lipinski’s rule of 5, oral drugs 
must obey at least three of four properties: the molecular wight should 
not exceed 500 Da; the total number of hydrogen bond acceptors 
(including oxygen and nitrogen) must not exceed 10; the total number of 
hydrogen bond donors (including − OH and -NH) should not exceed 5; 
and the octanol-water partition coefficient (LogP) must not be more than 
5 (or 4.15 as in Moriguchi model MLogP) (Moriguchi et al., 1992; Lip
inski et al., 2001). In addition, other important ADMET properties 
including water/aqueous solubility (LogS) should be > -5; TPSA must be 
less or equal to 140 Å2; and human colorectal adenocarcinoma cells 
(Caco-2) Caco-2 permeability (cm/s) must be faster than 22 nm/s. All 
the 15 compounds obeyed the Lipinski’s rule of five except for two 
compounds ZINC000033260361 and NSC 23,217 where they had a 
MLogP more than 4.15. Even though, it is tolerated to have one violation 
of the rule of five for oral drugs according to Lipinski’s rule (Lipinski 
et al., 2001). Although compounds ZINC000514563218 and 
ZINC000674197814 exhibited a slightly increase in the TPSA with a 
value of 145.2 Å2, rational intestinal permeability can still be seen in 
drugs with a TPSA ranging between 140 and 150 Å2 (Lipinski, 2003). 
The prediction of the Caco-2 permeability and the water solubility for all 
the 15 compounds were found to be within the normal range. Further
more, the 15 top-ranked compounds have been proved to be PAINS-free 
compound. 

Table 4 
Physicochemical properties of the 15 hits, including ADMET profiles and Lipinski’s rule of five parameters.  

Compound MWa HAb HDc MLogP TPSAd HIAe Caco-2 WSf 

CHEMBL2177655 412.43 5 2 3.61 91.67 0.9943 0.857 − 3.008 
CHEMBL3126309 488.55 5 2 2.47 112.16 0.8998 0.7953 − 3.63 
CHEMBL236510 485.62 4 2 3.27 76.64 0.9259 0.7631 − 3.08 
ZINC000095945790 489.48 5 2 2.73 117.16 0.9196 0.821 − 3.271 
ZINC000001058982 492.45 7 1 4.05 86.22 0.9268 0.6646 − 3.616 
ZINC000033260361 498.59 5 0 5.4 66.63 0.9845 0.7621 − 3.379 
CHEMBL2426361 488.66 4 0 3.39 47.1 0.993 0.798 − 3.107 
CHEMBL529211 452.59 2 3 3.35 54.53 0.9846 0.6446 − 2.884 
ZINC000009640741 475.56 4 1 2.48 109.16 0.9701 0.7725 − 3.5 
CHEMBL1968496 415.44 6 3 0.56 99.77 0.8145 0.9147 − 2.998 
NSC 23,217 404.53 0 2 5.37 56.15 0.964 0.5672 − 4.616 
ZINC000019704978 448.52 4 2 3.52 86.8 0.9904 0.8016 − 2.739 
ZINC000514563218 484.47 8 1 2.6 145.2 0.9771 0.8338 − 3.376 
ZINC000674197814 470.44 8 1 1.84 145.2 0.9771 0.8404 − 3.277 
CHEMBL1761559 464.52 6 1 2.6 93.88 0.9956 0.8111 − 2.754  

a Molecular weight, Da. 
b Total number of H-bond acceptors, O and N. 
c Total number of H-bond donors, OH and NH. 
d Topological polar surface area, Å2. 
e Human intestinal absorption. 
f Water solubility, LogS. 
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3.3. Molecular dynamics simulation 

3.3.1. RMSD analysis 
The root mean square deviation (RMSD) of the HDAC4 apo-protein 

(inhibitor-free), HDAC4-hydroxamic acid inhibitor (known inhibitor), 
HDAC4− CHEMBL2177655, and HDAC4− CHEMBL3126309 profiles 
have been evaluated throughout the 100 ns MD simulations (Fig. 5 (a)). 
HDAC4 apo-protein showed an initial increase till 20 ns around 4 Å, then 
remained stable between 3 and 3.5 Å till the end of the MD simulation. 
HDAC4-hydroxamic acid complex exhibited a higher fluctuation 
compared to the apo-protein, where the RMSD fluctuated between 2 and 
5 Å till the 64 ns and thereafter displayed stable trend around 5 Å. The 
RMSD of the HDAC4− CHEMBL2177655 complex at first rose to 4.7 Å 
around 17 ns then gradually fell down to 4 Å around 55 ns and thereafter 
remained stable around 4.1 Å until the end of the MD simulation. 
Similarly, the RMSD of the HDAC4− CHEMBL3126309 ascended to 4.8 Å 
till 13 ns and then fell down to 3.7 Å near 62 ns and remained fluctuating 
between 3.5 and 4.2 Å until the end of the 100 ns run. 

RMSD profiles were calculated during the 100 ns MD simulations for 
the HDAC5 apo-protein (ligand-free), HDAC5-Rac62 (known inhibitor), 
HDAC5-ZINC000033260361, and HDAC5− CHEMBL2426361 (Fig. 5 
(b)). HDAC5 apo-protein RMSD was observed to slowly rose up to 3.4 Å 
around 12 ns and afterward it showed steady stable nature with an 
average RMSD of 3.2 Å to 100 ns. The average RMSD of HDAC5−
CHEMBL3110016 (Rac-26 known inhibitor) was found to be 4.5 Å be
tween the 22 ns and until the end of the MD run. The RMSD of HDAC5- 

ZINC000033260361 and HDAC5− CHEMBL2426361 complexes were 
well converged and exhibited relatively comparable stability after the 
32 ns with an average of 4.6 Å and 4.4 Å, respectively. 

The RMSD of the HDAC7 apo-protein, HDAC7-Trichostatin A, 
HDAC7-ZINC000009640741, and HDAC7− CHEMBL1968496 were 
analyzed after the MD run and presented in (Fig. 5 (c)). Remarkably, all 
HDAC7 complexes retained their steady-stable equilibrium below 3.5 Å 
throughout the MD simulation. The RMSD of the free HDAC7 protein 
initially increased to 3.2 Å around 25 ns and later kept slowly decreasing 
through time to reach 2.1 Å around 100 ns. Both HDAC7- 
ZINC000009640741 and HDAC7− CHEMBL1968496 systems were 
shown to display similar minor fluctuation and stability state after the 
47 ns with an average RMSD of 3.3 Å and 3.1 Å, respectively. 

Lastly, the RMSD analysis was performed for the free HDAC9 protein, 
HDAC9-TMP269 (known inhibitor), and HDAC9− CHEMBL1761559 
during the 100 ns MD run (Fig. 5 (d)). The free HDAC9 RMSD was seen 
to rise up to 5.2 Å around 37 ns and then fluctuated between 3.4 Å and 
4.6 Å during the 53 and 57 ns and thereafter remained in equilibrium 
state until the end of the MD run. HDAC9-TMP269 RMSD profile was 
observed to gradually elevated up to 5.2 Å around 34 ns and then 
decreased to 4.6 Å over 43 ns and remained in its equilibrium state until 
the end. The RMSD of HDAC9− CHEMBL1761559 preliminary increased 
to 5.5 Å until 43 ns and then stabilized until the end of the 100 ns with an 
average RMSD of 5.2 Å. Ligands RMSD analyses are shown in Fig. 6. 
ZINC000033260361 compound showed higher RMSD compared to 
other compounds, which fluctuated in the range of 3.5 and 4 Å. 

Fig. 5. The root mean squared deviation (RMSD) plots of (a) HDAC4 systems; (b) HDAC5 systems; (c) HDAC7 systems; and (d) HDAC9 systems.  
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CHEMBL1968496 and CHEMBL2426361 compounds maintained their 
stability with a slight deviation in a range of 1.5–2 Å over the simulation 
time. CHEMBL3126309 and CHEMBL1761559 compounds revealed 
relatively similar stability where their RMSD fluctuated in range of 2.5 
and 3 Å. CHEMBL2177655 compound moderately showed higher RMSD 

fluctuation during the simulation and then maintained its stability after 
the 80 ns with deviation in a range of 2.3 Å. These calculations can 
suggest the stability of these compounds and their binding with the key 
residues of their respective targets and additionally confirm the mo
lecular docking results. 

3.3.2. RMSF analysis 
In order to fully assess the dynamics of the protein’s backbone, the 

root mean square fluctuation (RMSF) profile was analyzed for all amino 
acids throughout the MD simulation. RMSF helps in describing local 
variations during the MD run along the protein sequence. During MD 
simulations, higher RMSF profiles are presented by higher flexible re
gions within the protein such as loops. High stable regions of the pro
teins are indicated by the low RMSF values and highly flexible atoms are 
located within loops regions. RMSF analysis of HDAC4 apo-protein, 
HDAC4-hydroxamic acid, CHEMBL2177655, and HDAC4−
CHEMBL3126309 are shown in (Fig. 7 (a)). The RMSF of the HDAC5 
apo-protein (ligand-free), HDAC5-Rac62 (known inhibitor), HDAC5- 
ZINC000033260361, and HDAC5− CHEMBL2426361 are illustrated in 
(Fig. 7 (b)). The RMSF of the HDAC7 apo-protein (free protein), HDAC7- 
Trichostatin A, HDAC7-ZINC000009640741, and HDAC7−
CHEMBL1968496 are shown in (Fig. 7 (c)). The RMSF profile of the free 
HDAC9 protein, HDAC9-TMP269 (known inhibitor), and HDAC9−
CHEMBL1761559 during the 100 ns MD runs are presented in (Fig. 7 
(d)). The highest peaks in the RMSF plots represent the loop regions that 
are known for their high flexibility. These regions include the following 
amino acid residues: HDAC4 (Leu17-Gly36, Thr81, Asn82, Gln87- 
Leu94, and Phe102-Ile117); HDAC5 (Lue19-Gly36, Thr81-Pro83, 
Lys88-Leu94, and Lys101-Val118); HDAC7 (Leu48-Ala64 and Thr110- 

Fig. 6. Ligands RMSD calculations that produced during the 100 ns MD 
simulations. 

Fig. 7. The root mean squared fluctuation (RMSF) plots of (a) HDAC4 systems; (b) HDAC5 systems; (c) HDAC7 systems; and (d) HDAC9 systems.  
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Ser131); HDAC9 (Lue19-Gly36, Thr81, Asn82, Lys88-Leu94, and 
Lys101-Ile118). 

3.3.3. Rg analysis 
Analysis of the compactness level of a protein is useful to fully un

derstand the protein folding level. This analysis is denoted by the radius 
of gyration (Rg). Higher degree of Rg describes higher flexibility of the 
protein, while lower level of Rg implies less flexibility. Furthermore, 
steady level of Rg indicates firmly folded protein, whereas changes in Rg 
values refer to alteration in protein folding. The Rg of HDAC4 systems 
seemed to be stable throughout the MD run with average values of 
1.37 Å for both the apo-protein and HDAC4-hydroxamic acid complex, 
1.27 Å for HDAC4− CHEMBL2177655, and 1.38 Å for HDAC4−
CHEMBL3126309 (Fig. 8 (a)). The Rg profile of all HDAC5 systems were 
also remained stable during the 100 ns MD simulations with average Rg 
of 1.28 Å for the apo-protein, 1.42 Å for the HDAC5-Rac26, HDAC5- 
ZINC000033260361, and HDAC5− CHEMBL2426361 (Fig. 8 (b)). All 
systems of HDAC7 were found to be stable throughout the MD simula
tions over the 100 ns run time with an average Rg value of 1.37 Å for the 
apo-protein, HDAC7-Trichostatin A, and HDAC7-ZINC000009640741, 
whereas the Rg of HDAC7− CHEMBL1968496 complex was found to 
be 1.43 Å (Fig. 8 (c)). Lastly, the average Rg value of the apo-protein of 
HDAC9 was found to be 1.26 Å, while the average Rg value for HDAC9- 
TMP269 and HDAC9− CHEMBL1761559 was 1.42 Å (Fig. 8 (d)). All 
HDAC9 systems remained stable over time. 

3.3.4. Potential energy profile 
The potential energy measurement is beneficial in validating the 

energy consistency and stability during the MD simulations. Herein, the 

total energy is plotted as potential energy versus run time, and all 
studied systems proved to be energetically stable throughout the MD run 
(Fig. 9). 

3.3.5. Number of hydrogen bonds 
In all living systems, the molecular interactions are highly influenced 

by the presence of hydrogen bonds. Hydrogen bonds are crucial in 
regulating the changes in the secondary structures that in turn influence 
the protein-ligand interactions. During MD simulation, proteins can be 
found in different conformations mimicking real biological environ
ments. Each of these conformations may provide a different protein- 
ligand interaction. Thus, the number of hydrogen bonds formed 
throughout the MD simulation was calculated for the selected isoform 
selective compounds (Fig. 10). In HDAC4− CHEMBL2177655 complex, 
the maximum number of H-bonds formed was found to be 5 during the 
MD simulation. In the first 19 ns, many conformations showed 3 H- 
bonds, and less showed 4 H-bonds. The majority of the conformations 
showed two hydrogen bonds (Fig. 10 (a)). On the other hand, 
HDAC4− CHEMBL3126309 showed at most 3 H-bonds during the 
simulation (Fig. 10 (a)). Most of the conformations showed 1 H-bonds 
and about 60 % showed 2 H-bonds. HDAC5-ZINC000033260361 com
plex showed at most 4 H-bonds in few conformations and more two H- 
bonds after the first 6 ns of the simulation. It also had at least 1 H-bond in 
most of the conformations (Fig. 10 (b)). The greatest number of con
formations in HDAC5− CHEMBL2426361 complex showed 1 H-bonds, 
and one conformation with 3 H-bonds (Fig. 10 (b)). The largest number 
of H-bonds seen in HDAC7-ZINC000009640741 complex was 3 in one 
conformation and the average number of H-bonds formed was found to 
be 2 (Fig. 10 (c)). HDAC7− CHEMBL1968496 complex showed one 

Fig. 8. The radius of gyration (Rg) plots of (a) HDAC4 systems; (b) HDAC5 systems; (c) HDAC7 systems; and (d) HDAC9 systems.  
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Fig. 9. The potential energy plots of (a) HDAC4 systems; (b) HDAC5 systems; (c) HDAC7 systems; and (d) HDAC9 systems.  

Fig. 10. Number of hydrogen bonds profile of (a) HDAC4 complexes; (b) HDAC5 complexes; (c) HDAC7 complexes; and (d) HDAC9 complex.  
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conformation with 4 H-bonds, and many with 3 H-bonds in the first 
53 ns. In addition, most of the conformations formed 2 H-bonds during 
the first 57 ns of the simulation, and thereafter, the complex retained in 
average 1 H-bond till the end of the simulation (Fig. 10 (c)). Lastly, 
HDAC9− CHEMBL1761559 complex formed up to 3 H-bonds in several 
conformations during the simulation and consisted of at least 1 H-bond 
over time (Fig. 10 (d)). 

Throughout the MD simulations, all the examined inhibitors were 
found to be stable and stayed interacted to their respective proteins at 
physiological condition. MD simulation approach has been effectively 
performed to assess the stability of different HDACs inhibitors. Several 
inhibitors were tested for their selectivity against all HDACs classes by 
performing short MD simulation for 5 ns (Thangapandian et al., 2012). 
In another study, novel HDAC inhibitors were investigated along with 
Vorinostat and tested against class II HDACs, in which their structural 
stability was subjected to short 5 ns MD run (Tambunan et al., 2013). In 
the present study, all the seven selected compounds-HDAC complex 
systems, the apo-proteins, and the known-inhibitor-HDACs complexes 
were subjected to a long 100 ns MD simulation. Analysis of the MD 
trajectories were found to be satisfied and all other parameters were 
consistent throughout the simulation including the RMSD, RMSF, Rg, 
and potential energy. 

3.4. Binding free energy (MM-PBSA) calculations 

CaFE tools were used in the present study to calculate average free 
binding energy of the studied isoform selective compounds (Table 5). 
The tools calculate the free binding energy average using the MM-PBSA 
method in addition to the standard deviation/error for each protein- 
ligand complex. The binding energy represents the interaction be
tween the protein and the ligand (e.g., the released energy throughout 
the formation of the bonds). Higher binding affinity between the ligand 
and protein complex is identified by lesser binding energy. The total 
binding energy is a summation of electrostatic, van der Waals, SASA and 
polar solvation energy. Even though the free binding energy calculation 
using MM-PBSA method is not entirely related to the experiments, this 
method would still deliver a rational binding affinity for protein-ligand 
complex (Ngo and Li, 2012; Chakraborty and Das, 2017; Koukoulitsa 
et al., 2016). Herein, based on the MM-PBSA calculations, 
CHEMBL2177655 compound displayed more negative energy than 
CHEMBL3126309 compound when bonded to HDAC4, and thus more 
binding affinity. The two selective compounds of HDAC5 were re-ranked 
according to the free binding energy predictions, where 
CHEMBL2426361 revealed more negative energy than 
ZINC000033260361. The same observation was seen with the two 
HDAC7 inhibitors, CHEMBL1968496 showed more negative energy 
than ZINC000009640741, which was ranked first after the molecular 
docking study. The MM-PBSA calculations revealed more negative 
binding energies compared to the molecular docking study suggesting 
again that the selected compounds could possibly be promising hits in 
the discovery of class IIa HDACs selective inhibitors. 

4. Conclusions 

To overcome challenges in drug discovery, structure-based drug 
design was applied in the present study through in silico screening of 
~10,000,000 drug-like compounds retrieved from ZINC15, ChEMBL, 
and NCI databases against class IIa HDAC enzymes. Combined HTS and 
molecular docking approaches were performed to guarantee the highest 
binding affinity and specificity of the studied compounds. A total of 15 
compounds obtained from the virtual screening (5 compounds for 
HDAC4; 3 compounds for HDAC5; 6 compounds for HDAC7; and 1 
compound for HDAC9) have displayed specificity for their correspond
ing isoform by applying similar selectivity criteria employed by other 
reported studies on selective inhibitors for HDACs. In addition, reported 
compounds have revealed drug-like properties and their physicochem
ical properties (ADMET) were found to be in an acceptable range. 
Moreover, molecular dynamics simulation was carried out to evaluate 
the structural dynamics and the stability of apo-proteins of the isoforms, 
the selective inhibitor-protein complexes, and their known inhibitor- 
protein complexes. While systems are solvated in the presence of 
water molecules, all the studied compounds persisted bound to their 
respective isoform throughout the 100 ns MD simulation. Comparative 
examinations of the trajectories after the MD simulations (including 
RMSD, RMSD, Rg, and potential energy parameters) in addition to the H- 
bond number suggested the stability of the complexes over time. The 
free binding energy predictions using MM-PBSA approach showed high 
affinity of the selected compounds toward their corresponding HDAC 
isoforms. These findings suggest that the reported inhibitors could be 
used for further optimization and undergo in vitro examination for 
designing of selective inhibitors for class IIa HDACs. 
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