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a b s t r a c t 

LLE data are important for simulation and design of extraction equipment. In this study, deep neural 

network (DNN) structure was proposed for modelling of the ternary liquid-liquid equilibrium (LLE). LLE 

data of (water + butyric acid + 5-methyl-2-hexanone) ternaries defined at three different temperatures 

of 298.2, 308.2, and 318.2 K and P = 101.3 kPa, were obtained experimentally and then correlated with 

nonrandom two-liquid (NRTL) and universal quasi-chemical (UNIQUAC) models. The performance of the 

proposed DNN model was compared with that of NRTL and UNIQUAC in terms of the root mean square 

errors (RMSE). RMSE values were obtained between 0.02-0.06 for NRTL and UNIQUAC, respectively. For 

DNN, the error values were obtained between 0.0 0 0 05-0.01 for all temperatures. According to the calcu- 

lated RMSE values, it was shown that proposed DNN structure can be better choice for the modelling of 

LLE system. Othmer-Tobias and Hand correlations were also used for the experimental tie-lines. Distribu- 

tion coefficient and separation factors were calculated from the experimental data. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Butyric acid is one of the best known carboxylic acid widely 

sed in chemical and food industries. It is found in animal fat or 

egetable oil and can be produced by using whole cell transfor- 

ation or can be obtained from carbohydrate and renewable re- 

ources. Raw material cost and other production costs comprise 

he most of the production expenditure. Therefore, developing an 

ffective recovery process using alternative recovery methods i.e., 

dsorption, electrodialysis, solvent extraction etc. is important in 

roducing from bio-based raw materials. In chemical and food in- 

ustry, when compared to the other separation methods, solvent 

xtraction method is much more preferable due to its low cost. 

lso, solvent extraction is the prominent extraction method be- 

ause most of the polar solvents can dissolve acids alone. Con- 

equently, it is used for obtaining pure chemical substances like 

rganometalics in many chemical industries like pharmaceutical 

r biomedical industries [1–5] . Appropriate solvent selection and 

etermining optimum operation conditions are important for sol- 

ent extraction. For this reason, water + butyric acid + 5-methyl- 
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-hexanone (5M2H, methyl isoamyl ketone) LLE data were deter- 

ined at 298.2 K, 308.2 K and 318.2 K and P = 101.3 kPa. The

olubility curves and the tie-lines were plotted and shown as the 

ernary phase diagrams for each system. Separation factors ( S) 

nd distribution coefficients ( D i ) were defined from the tie-line 

ata values to establish the extraction ability of the solvent. The 

thmer-Tobias [6] and Hand [7] correlations were used to test the 

eliability. 

Deep neural network (DNN) have been used in many engineer- 

ng fields such as digital mechanics, earth science, digital physics, 

ife sciences and chemistry. In the field of chemistry, it is used 

or modeling problems that are very difficult to solve and can- 

ot be solved analytically in subjects such as quantum chem- 

stry and molecular dynamics [8] . The first wave of application 

f DNN in pharmaceutical research and computational chemistry 

as emerged in recent years. DNN models have been used suc- 

essfully in the pharmaceutical industry, especially in the fields of 

rug design and drug discovery [9–14] . In studies in the field of 

hemical engineering, a DNN was trained by Zhang et al. as a pro- 

uctive model to guide the relationship between CO 2 adsorption 

f porous carbons and the corresponding textural properties. The 

rained DNN was also used to estimate the CO 2 adsorption capacity 

f unknown porous carbons [15] . Again, in the field of chemical en- 

https://doi.org/10.1016/j.fluid.2021.113094
http://www.ScienceDirect.com
http://www.elsevier.com/locate/fluid
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Nomenclature 

A i j NRTL binary interaction parameter ( A i j = �g i j /R ) 

A, B Othmer-Tobias equation constants 

A 

′ , B ′ Hand equation constants 

b Bias value 

B i j UNIQUAC binary interaction parameter ( B i j = 

�u i j /R ) 

D i Distribution coefficient of component i 

�g i j NRTL binary parameter for the interaction energy 

between components i and j relative to the inter- 

action energy of j with itself 

g i j NRTL energy parameter ( Jmol −1 ) 

N Number of the tie-lines 

P (x ) Penalty function 

q i Relative van der Waals surface area parameter 

R Universal gas constant 

R 2 Correlation factor for Othmer-Tobias and Hand 

equations 

RMSE Root mean square error 

r Penalty coefficient 

r i Relative van der Waals volume parameter 

S Separation factor 

T Temperature (K) 

�u i j UNIQUAC binary parameter for the interaction en- 

ergy between components i and j relative to the in- 

teraction energy of j with itself 

u i j UNIQUAC energy parameter ( Jmol −1 ) 

w i j Weight of input node j on node i 

x i Mole fraction of component i 

x i j Mole fraction of component i in phase j

x i jk Experimental mole fraction of component i in phase 

j along tie-line k 

Y i Output value of the neuron i 

Greek Letters 

αi j Nonrandomness parameter for component i and j

γi Activity coefficient of component i 

γi j Activity coefficient of component i in phase j

�(x ) Updated objective function 

Subscripts 

calc Calculated values 

exp Experimental values 

I Aqueous phase 

I I Solvent phase 

ineering, there is a master’s thesis study in which DNN approach 

s used for the simultaneous estimation of density, viscosity and 

eat capacity of ionic liquids [16] . In another study, a DNN model 

as presented by Haghighatlari et al. to accurately and effectively 

redict the refractive index of organic molecules and this was ap- 

lied to a library of 1.5 million compounds [17] . Apart from these 

tudies, modeling of extraction process and liquid-liquid equilib- 

ium data with DNN is a fairly new study topic in the literature 

nd in chemical engineering. 

In this study, liquid-liquid equilibrium (LLE) data of (water + 

utyric acid + 5M2H) ternaries defined at three different temper- 

tures of 298.2, 308.2, and 318.2 K and P = 101.3 kPa, were ob- 

ained experimentally and then correlated with nonrandom two- 

iquid model (NRTL) and universal quasi-chemical (UNIQUAC) mod- 

ls [18,19] . For the thermodynamic models, the binary interaction 

arameters were calculated and listed. Deep neural network (DNN) 

as used to model the system and performance of the proposed 

NN model was compared with that of NRTL and UNIQUAC in 
2 
erms of the root mean square errors (RMSE). Also, new tie-line 

ata were calculated by the proposed DNN model and results were 

hown in the ternary diagrams to form the solubility curves for all 

emperatures. 

. Materials and methods 

.1. Chemicals 

The chemicals of analytical grade were purchased from Merck. 

he purity of the chemical reagents was checked by gas chro- 

atography (GC) and was used without further purification. Struc- 

ural formulas of chemicals and their features were shown in the 

able 1 [20] . Distilled water was prepared in our laboratory. 

.2. Experimental procedures 

LLE data of (water + butyric acid + 5M2H) ternaries defined at 

hree different temperatures of 298.2, 308.2, and 318.2 K and P = 

01.3 kPa were obtained experimentally. Solubility curves and mu- 

ual solubility were determined by using the ‘Cloud Point’ method 

21,22] . The cloud point was determined by observing the tran- 

ition from a homogeneous to a heterogeneous mixture as indi- 

ated by the mixture turbidity (cloudiness) [23] . For this purpose, 

 special glass cell that was connected to the circulating water 

ath kept at constant temperature. Circulating water bath (NUVE 

S302 model) was equipped with a temperature controller capable 

f maintaining the temperature within ±0.1 K. The cell, designed 

o contain a solution from (50 to 200) cm 

3 , was filled with ho- 

ogeneous (butyric acid + water) mixtures prepared by mass. An 

lectronic Sartorius analytical balance with an accuracy of ±0.0 0 01 

 was used. The solvent was progressively added by means of the 

ITRONIC universal titrator (accurate to 0.01 ml). The end point 

as determined by observing the transition from a homogeneous 

o a heterogenous mixture. This pattern was convenient for pro- 

iding the water-rich side of the curves. The data for the solvent- 

ich side of the curves were therefore obtained by titrating the ho- 

ogeneous (butyric acid + solvent) with water until turbidity ap- 

eared. All mass fractions were determined and pointed in ternary 

hase diagrams. Therefore, miscible and immiscible area were de- 

ermined in diagrams for T = 298.2, 308.2, and 318.2 K. Then on 

he diagrams, several arbitrary points were chosen in the immis- 

ible area that shows mid-point for tie-lines. For all mid-points, 

ixtures were prepared and placed onto the thermostated shaker 

NUVE ST 30) for 90 min. Preliminary tests showed that these 

0 min durations were enough to achieve equilibrium. After shak- 

ng, all mixtures were centrifuged for 5 min with 30 0 0 rpm to 

eparate water-rich phase and solvent-rich phase. At the end of 

he centrifugate period, samples were taken from both phases and 

nalysed. Phases were transferred with special syringes to the sep- 

rate sample tubes. The liquid samples were analyzed by a Gas 

hromatograph (HP6890 model), equipped with thermal conduc- 

ivity detector (TCD) and flame ionization detector (FID). To ob- 

ain quantitative results, the internal standard method was ap- 

lied. Ethanol was used as an internal standard. Ultra1 (Methyl 

iloxane column, 50m x 320 μm x 0.17 μm) was utilized to dis- 

inguish butyric acid and water of samples. FID and TCD detec- 

or temperatures were kept at T = 493.2 K while injection port 

emperature was held at T = 473.2 K. Injections were performed 

n the split 70/1 mode. Helium was used as a carrier at a rate 

f 1.2 cm 

3 min 

−1 . Oven program was programmed starting from 

33.2 K hold for 2 min. The temperature was increased at a rate 

f 30 K/min and held for 2 min. And finally, the temperature was 

amped for 15 K/min and held at this temperature for 10 min. Or- 

anic compounds were analyzed by FID and water content was de- 
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Table 1 

Molecular Formula, Source, CAS Registry Number, Mass Fraction Purity and Purity Analysis Method of the Chemicals. 

Components Molecular formula Source CAS no. Mass fraction purity a Purity analysis method b 

butyric acid CH 3 (CH 2 ) 2 COOH Merck 107-92-6 > 0 . 99 GC 

5-methyl-2-hexanone CH 3 CO(CH 2 ) 2 CH(CH 3 ) 2 Merck 110-12-3 > 0 . 98 GC 

water H 2 O Distilled, lab. made 7732-18-5 GC 

a Purities were provided by the manufacturers; the chemicals were used without any additional treatment. 
b Gas chromatography. 

Fig. 1. (a) A simple schematic representation of a traditional ANN with input, hidden and output layers (b) DNN differ from ANN by having multiple hidden layers as 

depicted in the schematic diagram. 
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Fig. 2. Schematic diagram of the proposed model. 
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ermined using TCD detectors. The uncertainty of the compositions 

f the tie-lines were within 5 × 10 −4 mole fraction. 

.3. Deep neural network 

DNN is a subfield of machine learning related to algorithms in- 

pired by the structure and function of the brain called artificial 

eural networks (ANN) [8] . DNN simulates the human brain’s abil- 

ties such as observing, analyzing, learning and making decisions 

or complex problems, and can perform operations such as feature 

xtraction, transformation and classification, with or without su- 

ervision, by using large amounts of data [ 24,25 ]. 

Although DNN seems to be a recent past issue, its foundations 

ere laid in the 1940s with artificial intelligence. The first mathe- 

atical neural network (NN) was devised by McCulloch and Pitts 

n an attempt to model a biological neuron [26] . After this great 

reakthrough, Alan Turing, an English mathematician in 1950, said 

hat machine learning was possible. In 1965, Alexey Ivakhnenko 

athematically modeled the first computer-based multi-parameter 

ata sets and applied them to NN. This work laid the foundation 

f modern DNN used today [8] . In the 20 0 0s, the strengthening

f GPU and CPU hardware accelerated the development of DNN. 

hese developments have led to a renaissance in ANN [9,10] . 

One way to understand DNN models is to compare them with 

NN. A comparison of the structure of an ANN and DNN is given 

n Fig. 1 [27] . The main difference between them is the scale and

omplexity of the neural network [10] . A typical structure of an 

NN and a neuron of a hidden layer unit are represented in Fig. 1 a.

NN usually has three layers: an input layer, a hidden layer and 

n output layer [27] . Nodes (also called neurons) or units in each 

ayer are connected to nodes in adjacent layers. Each link has a 

eight value. The inputs are multiplied by the respective weights 

nd added up in each unit. The sum then undergoes a transfor- 

ation based on the activation function; this is, in most cases, a 
3 
igmoid function, a hyperbolic tangent function. The output value 

 i of the neuron i is calculated as shown in Eq. (1) . The output of

he function is then fed as input to the unit in the next layer. The

esult of the first output layer is used to solve the problem [10,25] .

Finding the correct weights is called training the neural net- 

ork. Training of the NN is performed by iterative modification of 

he weight values in the network so as to optimize the error be- 

ween the actual value and the predicted values [10] . 

 i = f ( 
∑ 

j 

x j w i j + b) (1) 

here x j refers to the input variables, w i j is the weight of input 

ode j on node i , b is bias value and function f is the activation 

unction to transform the linear combination of input signal from 

nput nodes to an output value. The training of an ANN is done by 

terative modification of the weight values in the network to opti- 

ize the errors between predicted and true value typically through 

he back-propagation methods [10] . Unlike the ANN, DNN models 

se more than one non-linear hidden layers for feature extraction 
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Fig. 3. Neuron model. 
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nd transformation, and each layer can have different functions 

8,10,15,27] . 

.4. The NRTL and UNIQUAC models 

To represent liquid-liquid equilibrium systems, generalized ther- 

odynamic models that relate excess Gibbs energy to the compo- 

ition of liquids have been proposed by various researchers. These 

odels, described as activity coefficient models, show the depen- 

ence of composition and temperature on the activity coefficient. 

nce the activity coefficients are obtained, the compositions of the 

pecies in the equilibrium phases can also be calculated. The NRTL 

nonrandom two-liquid) and UNIQUAC (universal quasi-chemical) 

hermodynamic models are the most widely used activity coef- 

cient models in the literature [28,29] . The NRTL and UNIQUAC 

odels [18,19] were applied to correlate the experimental tie-line 

ata. The activity coefficient for any component i in a multicom- 

onent system is given by the following equation for the NRTL 
Fig. 4. NRTL, UNIQUAC and experimental phase diagram

4 
odel: 

n γi = 

∑ C 
j=1 τ ji G ji x j ∑ C 

k =1 G ki x k 
+ 

C ∑ 

j=1 

[
x j G i j ∑ C 

k =1 G k j x k 

(
τi j −

∑ C 
k =1 x k τk j G k j ∑ C 

k =1 G k j x k 

)]
(2) 

here, 

 i j = exp (−αi j τi j ) (3) 

i j = 

g i j − g j j 

RT 
τ ji = 

g ji − g ii 

RT 
(4) 

C is the number of the components in the mixture and x j is 

he mole fraction of component j. R is the universal gas constant 

nd T is the absolute temperature. g i j and g ji ( g i j = g ji ) are NRTL

nteraction energies between species i and j. τi j , τ ji and αi j are the 

djustable NRTL model parameters for the binary pair i − j. αi j is 

he nonrandomness parameter of the NRTL equation and usually 

aries from about 0.2 to 0.47 ( αi j = α ji ). τi j and τ ji ( τi j � = τ ji ) are

he energy parameters between type i and type j molecules. The 

NIQUAC model equation is shown as: 

n γi = ln ( �i /x i ) + 

(
Z / 2 

)
q i ln ( θi / �i ) + l i − ( �i /x i ) 

C ∑ 

j=1 

x j l j 

+ q i 

[ 

1 − ln 

( 

C ∑ 

j=1 

θ j τ ji 

) 

−
C ∑ 

j=1 

(
θ j τ i j ∑ C 

k =1 θk τk j 

)] 

(5) 

here, 

i = 

x i r i ∑ C 
i =1 x i r i 

(6) 

i = 

x i q i ∑ C 
i =1 x i q i 

(7) 

 i = 

(
Z 

2 

)
(r i − q i ) − (r i − 1) (8) 
 of LLE data at T = 298.2 K and P = 101.3 kPa. 
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Fig. 5. NRTL, UNIQUAC and experimental phase diagram of LLE data at T = 308.2 K and P = 101.3 kPa. 

Fig. 6. NRTL, UNIQUAC and experimental phase diagram of LLE data at T = 318.2 K and P = 101.3 kPa. 
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ij = exp 

( 

−
(
u ij − u jj 

)
RT 

) 

τji = exp 

( 

−
(
u ji − u ii 

)
RT 

) 

(9) 

In these equations, u ji and u i j are the UNIQUAC interaction en- 

rgies between species i and j ( u i j = u ji ). τi j and τ ji ( τi j � = τ ji ) are

he energy parameters between type i and type j molecules. �i 

nd θi are the volume and area fraction for species i . Z is the lat- 

ice coordination number and generally it is set to the value 10. r i 
nd q i are volume and surface area parameters for the pure com- 

onents and calculated from the following equations: 

 i = 

∑ 

k 

v (i ) 
k 

R k (10) 
5 
 i = 

∑ 

k 

v (i ) 
k 

Q k (11) 

 k (group-volume) and Q k (group-area) values are determined for 

ach functional group and are available in the literature [19] . v (i ) 
k 

enotes the number of functional groups of type k in i . 

.5. Proposed DNN model 

In this study, a DNN structure was proposed for the estimation 

f activity coefficient models of ternary liquid-liquid equilibrium 

ystems. This DNN consists of three inputs, two hidden layers with 

hree neurons in each and three outputs, as shown in Fig. 2 . The

xperimental datas ( x , x and x ) were applied to this proposed
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Table 2 

Experimental Solubility Curve Data for Water (1) + Butyric acid (2) 

+ 5-Methyl-2-Hexanone (3) Ternary Systems at T = (298.2, 308.2, 

and 318.2) K and P = 101.3 kPa a . 

298.2 K 308.2 K 318.2 K 

x 1 x 2 x 1 x 2 x 1 x 2 

0 . 0579 b 0.0000 0.0428 b 0.0000 0.1156 b 0.0000 

0.0916 0.1128 0.0837 0.1128 0.1176 0.1123 

0.1606 0.2203 0.1381 0.1598 0.1305 0.2189 

0.2527 0.2738 0.1980 0.1961 0.1804 0.2911 

0.2891 0.3324 0.2427 0.2725 0.2146 0.3789 

0.3698 0.3596 0.3343 0.3128 0.2548 0.4262 

0.4536 0.3659 0.3748 0.3575 0.3160 0.4478 

0.5534 0.3592 0.4260 0.3493 0.6328 0.3034 

0.5930 0.3411 0.7883 0.1967 0.7397 0.2318 

0.6744 0.2917 0.8163 0.1723 0.8204 0.1654 

0.7462 0.2367 0.8780 0.1163 0.8735 0.1183 

0.8151 0.1759 0.9155 0.0813 0.9149 0.0810 

0.8745 0.1210 0.9755 0.0221 0.9494 0.0491 

0.9168 0.0806 0.9978 b 0.0000 0.9778 0.0211 

0.9339 0.0647 0.9990 b 0.0000 

0.9707 0.0284 

0 . 9992 b 0.0000 

a Standard uncertainties u are u(x) = 0.003. u(T) = 0.2 K and u(P) 

= 0.7 kPA. 
b Mutual solubility value. 
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NN structure as input and activity coefficients ( γ1 , γ2 and γ3 ) 

ere selected as output data. Bias values are assumed to be zero. 

The training process that takes place in the perceptron is shown 

n the Fig. 3 . Mathematical model of neuron called perceptron is a 

undamental unit of a NN [30] . The ReLU function introduced by 

ef [31] was used as the activation function in the proposed DNN 

tructure. It has been shown that the ReLU function, which has 

 strong biological and mathematical basis, improves the training 

f DNN and provides a significant performance increase in DNN 

ompared to other activation functions. Therefore, it is the most 

sed activation function in DNN today [32] . ReLU function works 

y thresholding values at 0, i.e., f (x ) = max (0 , x ) . Simply put, it

ives a linear function if x ≥ 0 , and equals 0 when x < 0 . So, any

egative value is returned as zero by the ReLU function ( Fig. 3 ). 

At the first step, γ values that satisfies LLE conditions shown in 

q. (12) were obtained. 

 

I γ I = x II γ II , i = 1 , 2 , 3 (12) 
i i i i 

able 3 

xperimental, NRTL Model and UNIQUAC Model Calculated Tie-Line Data for Water (1) +

nd 318.2) K and P = 101.3 kPa with RMSE values a . 

NRTL Model U

Water-rich phase Solvent-rich phase W

x 11 x 21 x 13 x 23 

Exp. Model Exp. Model Exp. Model Exp. Model E

T = 298 . 2 K; RMSE = 0 . 0146 

0.9860 0.9860 0.0134 0.0134 0.1436 0.1418 0.1759 0.1738 0

0.9746 0.9746 0.0247 0.0247 0.2681 0.2829 0.3042 0.3159 0

0.9718 0.9718 0.0275 0.0275 0.3715 0.3392 0.3636 0.3474 0

0.9643 0.9643 0.0350 0.0350 0.5575 0.5421 0.3582 0.3683 0

T = 308 . 2 K; RMSE = 0 . 0419 

0.9913 0.9913 0.0065 0.0064 0.1709 0.2062 0.1730 0.1502 0

0.9859 0.9859 0.0118 0.0116 0.2752 0.2285 0.2787 0.3106 0

0.9835 0.9835 0.0142 0.0140 0.3655 0.2278 0.3485 0.3722 0

0.9762 0.9762 0.0214 0.0217 0.4562 0.5020 0.3624 0.3552 0

0.9685 0.9685 0.0290 0.0304 0.5556 0.5200 0.3416 0.4270 0

T = 318 . 2 K; RMSE = 0 . 0255 

0.9882 0.9882 0.0109 0.0109 0.1437 0.1388 0.1730 0.1949 0

0.9871 0.9871 0.0120 0.0120 0.1826 0.1632 0.2974 0.2387 0

0.9812 0.9812 0.0177 0.0177 0.2337 0.2595 0.4190 0.4445 0

0.9798 0.9798 0.0191 0.0191 0.3139 0.3391 0.4423 0.4278 0

a Standard uncertainties u are u(x) = 0.0 0 05, u(T) = 0.2 K and u(P) = 0.7 kPA. 

6 
here, i is the component index. I and II show water-rich and 

olvent-rich phases, respectively. 

To obtain non-zero activity coefficients satisfying Eq. (12) , the 

ollowing objective function is minimized and corresponding DNN 

eights were obtained for the given experimental data. 

 1 = 

N ∑ 

j=1 

3 ∑ 

i =1 

(x I 
i j 
γ I 

i j 
− x II 

i j 
γ II 

i j 
) 2 

(x I 
i j 
γ I 

i j 
+ x II 

i j 
γ II 

i j 
) 2 

(13) 

here x I 
i j 

and x II 
i j 

refer to the experimental mole fraction of com- 

onent i of water-rich and solvent-rich phase, respectively, along 

ie-line j, γ I 
i j 

, and γ II 
i j 

are the corresponding activity coefficients 

nd N shows the number of the tie lines. 

Two steps hybrid optimization method was used to calculate 

NN, NRTL and UNIQUAC model parameters. First, the simulated 

nnealing (SA) algorithm which is a probability-based heuristic al- 

orithm inspired by the fact that the atoms of the solids gradually 

ool down, was applied and then Nelder-Mead simplex search al- 

orithm [33] was used for the optimization of the weights [34,35] . 

fter the achieving the equilibrium condition, the activity coeffi- 

ient values are obtained using the proposed DNN model. 

After minimizing the first objective function, the obtained coef- 

cients were used for testing. At the test step, DNN weight coef- 

cients that are obtained by minimizing F 1 were used to correlate 

xperimental tie lines. For this purpose, only mole fraction of wa- 

er obtained from the water-rich phase x I 
1 k 

, are given to the pro- 

osed DNN system and then the mole fractions x I 
2 k 

, x II 
1 k 

and x II 
2 k 

ere determined by minimizing the following objective function, 

 2 = 

3 ∑ 

i =1 

(x I 
ik 
γ I 

ik 
− x II 

ik 
γ II 

ik 
) 2 

(x I 
ik 
γ I 

ik 
+ x II 

ik 
γ II 

ik 
) 2 

, k = 1 , 2 , ..., N (14) 

ith constraints, 0 < x I 
2 k 

< 1 , 0 < x II 
1 k 

< 1 , 0 < x II 
2 k 

< 1 and x II 
1 k 

+
 

II 
2 k 

< 1 . Where subscript k represents k th tie line. 

The penalty function method is used for our constrained opti- 

ization problem [36–38] . The constraint function that is shown 

n Eq. (14) is converted to an unconstrained optimization problem 

y introducing some penalty terms. The general expression of the 

nconstrained function is as follows: 

(x ) = F 2 (x ) + rP (x ) (15) 

here, r and P (x ) show scalar optimization constant and penalty 

unction, respectively. The penalty coefficient r was selected as 100. 
 Butyric acid (2) + 5-Methyl-2-Hexanone (3) Ternary Systems at T = (298.2. 308.2. 

NIQUAC Model 

ater-rich phase Solvent-rich phase 

x 11 x 21 x 13 x 23 

xp. Model Exp. Model Exp. Model Exp. Model 

T = 298 . 2 K; RMSE = 0 . 0288 

.9860 0.9860 0.0134 0.0134 0.1436 0.1491 0.1759 0.1782 

.9746 0.9746 0.0247 0.0247 0.2681 0.2692 0.3042 0.3144 

.9718 0.9718 0.0275 0.0275 0.3715 0.3143 0.3636 0.3443 

.9643 0.9643 0.0350 0.0349 0.5575 0.4776 0.3582 0.3816 

T = 308 . 2 K; RMSE = 0 . 0261 

.9913 0.9913 0.0065 0.0064 0.1709 0.1576 0.1730 0.1655 

.9859 0.9859 0.0118 0.0118 0.2752 0.2899 0.2787 0.2862 

.9835 0.9835 0.0142 0.0142 0.3655 0.3800 0.3485 0.3274 

.9762 0.9762 0.0214 0.0215 0.4562 0.5057 0.3624 0.3646 

.9685 0.9685 0.0290 0.0306 0.5556 0.6346 0.3416 0.3462 

T = 318 . 2 K; RMSE = 0 . 0567 

.9882 0.9882 0.0109 0.0108 0.1437 0.1273 0.1730 0.1699 

.9871 0.9871 0.0120 0.0119 0.1826 0.2196 0.2974 0.2102 

.9812 0.9812 0.0177 0.0179 0.2337 0.3606 0.4190 0.4570 

.9798 0.9798 0.0191 0.0194 0.3139 0.3838 0.4423 0.4877 
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Table 4 

Experimental and DNN Model Calculated Tie-Line Data for Water (1) + Butyric acid (2) 

+ 5-Methyl-2-Hexanone (3) Ternary Systems at T = (298.2. 308.2. and 318.2) K and P

= 101.3 kPa with RMSE values a . 

Water-rich phase Solvent-rich phase 

x 11 x 21 x 13 x 23 

Exp. Model Exp. Model Exp. Model Exp. Model 

T = 298 . 2 K; RMSE = 0 . 0026 

0.9860 0.9860 0.0134 0.0134 0.1436 0.1436 0.1759 0.1758 

0.9746 0.9746 0.0247 0.0247 0.2681 0.2673 0.3042 0.2974 

0.9718 0.9718 0.0275 0.0275 0.3715 0.3657 0.3636 0.3640 

0.9643 0.9643 0.0350 0.0350 0.5575 0.5578 0.3582 0.3577 

T = 308 . 2 K; RMSE = 0 . 0122 

0.9913 0.9913 0.0065 0.0065 0.1709 0.1709 0.1730 0.1731 

0.9859 0.9859 0.0118 0.0120 0.2752 0.2970 0.2787 0.3062 

0.9835 0.9835 0.0142 0.0143 0.3655 0.3510 0.3485 0.3411 

0.9762 0.9762 0.0214 0.0213 0.4562 0.4600 0.3624 0.3590 

0.9685 0.9685 0.0290 0.0293 0.5556 0.5544 0.3416 0.3453 

T = 318 . 2 K; RMSE = 0 . 0 0 0 05 

0.9882 0.9882 0.0109 0.0109 0.1437 0.1437 0.1730 0.1730 

0.9871 0.9871 0.0120 0.0120 0.1826 0.1826 0.2974 0.2974 

0.9812 0.9812 0.0177 0.0177 0.2337 0.2336 0.4190 0.4189 

0.9798 0.9798 0.0191 0.0191 0.3139 0.3139 0.4423 0.4423 

a Standard uncertainties u are u(x) = 0.0 0 05, u(T) = 0.2 K and u(P) = 0.7 kPA. 

Fig. 7. DNN and experimental phase diagram of LLE data at T = 298.2 K and P = 101.3 kPa. 
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ccording to the constraints of the Eq. (14) , the penalty function 

as defined the sum of the quadratic loss functions as shown in 

q. (16) . 

 (x ) = 

m ∑ 

j=1 

max [0 , p j (x )] 2 

p 1 = x I 2 k − 1 

p 2 = x II 1 k − 1 

p 3 = x II 2 k − 1 

p 4 = −x I 2 k 

p 5 = −x II 1 k 

p 6 = −x II 2 k 

p 7 = x II + x II − 1 (16) 
1 k 2 k 

7 
he objective functions shown in Eqs. (13) and (14) were also used 

or the optimization of the NRTL and UNIQUAC model parameters. 

fter the optimization process, errors between experimental and 

ll models were calculated using Root Mean Square Error (RMSE) 

hat is given as follows: 

MSE = 

√ ∑ N 
k =1 

∑ 3 
j=1 

∑ 3 
i =1 (x exp. 

i jk 
− x calc. 

i jk 
) 2 

6 N 

(17) 

.6. Tie-lines, distribution coefficients and separation factor 

To test the consistency of the experimental tie- lines, the 

thmer-Tobias [6] ( Eq. (18) ) and Hand [7] ( Eq. (19) ) correlations

ere used. 

n 

(
1 − x 33 

x 33 

)
= A + B ln 

(
1 − x 11 

x 11 

)
(18) 

n 

(
x 23 

x 

)
= A 

′ + B 

′ ln 

(
x 21 

x 

)
(19) 
33 11 
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Fig. 8. DNN and experimental phase diagram of LLE data at T = 308.2 K and P = 101.3 kPa. 

Fig. 9. DNN and experimental phase diagram of LLE data at T = 318.2 K and P = 101.3 kPa. 
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here x 11 is mole fraction of water in water-rich phase; x 21 and x 23 

re mole fractions of the butyric acid in water-rich and solvent-rich 

hases, respectively; x 33 is mole fraction of the solvent in solvent- 

ich phase.The slope of the lines gives the parameters B and B ′ , 
nd the constants give the parameters A and A 

′ . The correlation 

oefficients and correlation factor ( R 2 ) values were determined by 

he least-squares method. The linearity of the lines and the cor- 

elation factors being approximately to 1 indicates the degree of 

onsistency of the related data. 

In order to evaluate the efficiency of 5M2H in the recovery of 

utyric acid from its aqueous solutions, distribution coefficients 

 D i ) for water ( i = 1 ) and butyric acid ( i = 2 ) and separation fac-

or ( S) were calculated using the following equations: 

 i = 

x i 3 
x 

(20) 

i 1 

8 
 = 

D 2 

D 1 

(21) 

istribution coefficient of acid provided the extraction capacity of 

olvent which was the first criteria in choosing an extraction pro- 

ess. The higher distribution coefficient value means less solvent 

eeded in extraction. 

. Results and discussions 

The experimental solubility curves data of ternary systems (wa- 

er + butyric acid + 5M2H) at T = 298.2, 308.2, and 318.2 K at

 = 101.3 kPa are respectively tabulated in Table 2 . 5M2H has 

een used as a solvent by other researchers in the literature [39–

1] . The experimental tie-line and calculated NRTL [18] and UNI- 
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Table 5 

DNN Model Calculated Tie-Line Data for Water (1) + Butyric acid 

(2) + 5-Methyl-2-Hexanone (3) Ternary Systems at T = (298.2. 

308.2. and 318.2) K and P = 101.3 kPa. 

Water-rich phase Solvent-rich phase 

x 11 x 21 x 31 x 13 x 23 x 33 

T = 298 . 2 K

0.9900 0.0096 0.0004 0.1104 0.1633 0.7263 

0.9875 0.0121 0.0004 0.1302 0.1718 0.6980 

0.9840 0.0155 0.0005 0.1598 0.2091 0.6311 

0.9810 0.0185 0.0005 0.1899 0.2466 0.5635 

0.9775 0.0219 0.0006 0.2324 0.2848 0.4828 

0.9755 0.0238 0.0007 0.2580 0.2977 0.4443 

0.9740 0.0254 0.0006 0.3303 0.3651 0.3046 

0.9725 0.0268 0.0007 0.3517 0.3628 0.2855 

0.9700 0.0292 0.0008 0.4090 0.3678 0.2232 

0.9675 0.0317 0.0008 0.4765 0.3677 0.1558 

0.9650 0.0343 0.0007 0.5413 0.3605 0.0982 

T = 308 . 2 K

0.9940 0.0053 0.0007 0.1237 0.1584 0.7179 

0.9915 0.0069 0.0016 0.1825 0.2043 0.6132 

0.9890 0.0094 0.0016 0.2437 0.2710 0.4853 

0.9855 0.0124 0.0021 0.3085 0.3158 0.3757 

0.9845 0.0134 0.0021 0.3317 0.3313 0.3370 

0.9815 0.0162 0.0023 0.3842 0.3523 0.2635 

0.9800 0.0176 0.0024 0.4066 0.3567 0.2367 

0.9780 0.0195 0.0025 0.4350 0.3592 0.2058 

0.9750 0.0225 0.0025 0.4766 0.3578 0.1656 

0.9725 0.0251 0.0024 0.5120 0.3528 0.1352 

0.9100 0.0758 0.0142 0.5877 0.3334 0.0789 

T = 318 . 2 K

0.9900 0.0091 0.0009 0.1315 0.1071 0.7614 

0.9890 0.0101 0.0009 0.1357 0.1340 0.7303 

0.9865 0.0125 0.0010 0.1465 0.1880 0.6655 

0.9855 0.0134 0.0011 0.1513 0.2067 0.6420 

0.9845 0.0144 0.0011 0.1570 0.2276 0.6154 

0.9835 0.0153 0.0012 0.1638 0.2516 0.5846 

0.9825 0.0163 0.0012 0.1730 0.2814 0.5456 

0.9815 0.0173 0.0012 0.1884 0.3257 0.4859 

0.9810 0.0178 0.0012 0.2146 0.3849 0.4005 

0.9806 0.0182 0.0012 0.2260 0.3979 0.3761 

0.9805 0.0185 0.0010 0.2977 0.4501 0.2522 

Table 6 

NRTL and UNIQUAC Binary Interaction Parameters for the Water (1) + 

Butyric acid (2) + 5-Methyl-2-Hexanone (3) Ternary Systems at T = 

(298.2, 308.2 and 318.2) K. 

NRTL model ( αi j 
a ) UNIQUAC model 

i, jb A i j = (g i j − g j j ) /R B i j = (u i j − u j j ) /R 

T = 298 . 2 K 1,2 1520.484 233.148 

2,1 −477.973 −52.850 

1,3 1962.615 159.660 

3,1 404.255 503.586 

2,3 437.040 45.946 

3,2 −157.203 34.913 

T = 308 . 2 K 1,2 1033.091 405.039 

2,1 1701.439 53.879 

1,3 1676.420 293.226 

3,1 770.519 663.875 

2,3 −228.910 112.848 

3,2 666.328 −26.641 

T = 318 . 2 K 1,2 1061.730 −262.027 

2,1 1410.060 13902.592 

1,3 2167.379 −183.900 

3,1 942.490 717.348 

2,3 13.602 −6.882 

3,2 623.421 210.087 

a αi j = 0 . 2 for T = 298 . 2 K, αi j = 0 . 37 for T = 308 . 2 K and T = 318 . 2 K. 
b i-j pair of components: water (1), butyric acid (2), 5-methyl-2- 

hexanone (3). 

Table 7 

The Volume ( r i ) and Surface Area ( q i ) Struc- 

tural Parameters for the UNIQUAC Model. 

Component r q 

Water 0.920 1.400 

Butyric acid 3.551 3.152 

5-Methyl-2-Hexanone 5.270 4.492 

Table 8 

Fitting Parameters in Hand and Othmer-Tobias Equations for the Water + Butyric 

acid + 5-Methyl-2-Hexanone Ternary Systems ( R 2 : regression coefficient). 

Temperature 

Hand correlation Othmer-Tobias correlation 

A ′ B ′ R 2 A B R 2 

T = 298.2 K 9.9346 2.6700 0.9033 11.9770 3.0522 0.8829 

T = 308.2 K 7.1548 1.6877 0.9840 9.6088 2.1721 0.9872 

T = 318.2 K 12.0180 2.9172 0.9285 12.5370 2.9664 0.9382 

Table 9 

Experimental Values of the Distribution Coefficients ( D i ) for the 

Water (1) and Butyric acid (2) and the Separation Factors ( S) at 

T = 298.2 K, T = 308.2 K, T = 318.2 K and P = 101.3 kPa. 

D 1 D 2 S

T = 298.2 K 0.15 13 90 

0.28 12 45 

0.38 13 35 

0.58 10 18 

T = 308.2 K 0.17 27 155 

0.28 24 85 

0.37 25 66 

0.47 17 36 

0.57 12 21 

T = 318.2 K 0.15 16 110 

0.18 25 134 

0.24 24 99 

0.32 23 72 
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9 
UAC [19] models data of the studied systems were reported in 

able 3 and Figs. 4–6 , in which x i 1 and x i 3 refer to mole fractions

f the i th component in the water-rich and solvent-rich phase, 

espectively. Fig. 4 also shows tie-lines and solubility curve data 

aken from [39] . The DNN and experimental data results were pre- 

ented in Table 4 . The RMSE values for NRTL, UNIQUAC and DNN 

odels, were also given in Tables 3 - 4 . From Tables 3 - 4 , when com-

ared with NRTL and UNIQUAC, it can be seen that, the minimum 

MSE values are obtained using the proposed DNN model. For 

RTL and UNIQUAC, while RMSE values were obtained between 

.0146 and 0.0567, for DNN, these values were between 0.0 0 0 05 

nd 0.0122. The calculated tie-line data were obtained for various 

ater mole fraction values and results are presented in Table 5 . 

or different temperature values, calculated and experimental tie- 

ines with solubility curve data are given in Figs. 7–9 . From the 

gures, it can be said that, the solubility curve data and tie-line 

ata agree well with the calculated data obtained from the pro- 

osed DNN method. In LLE calculation, it is important to use true 

quilibrium compositions that satisfy the isoactivity condition. A 

lobal stability test like the Gibbs-Duhem equation can be used to 

uarantee the stability of the solution. The thermodynamics con- 

istency of our proposed DNN model data is tested using Gibbs- 

uhem equations. However, the Gibbs-Duhem equation could not 

e achieved and we think this is due to numerical derivative cal- 

ulation errors. 

The optimized NRTL and UNIQUAC binary interaction param- 

ters of the researched ternary systems are reported in Table 6 . 

he volume ( r i ) and area ( q i ) structural parameters for the UNI-

UAC model are given in Table 7 . The Othmer-Tobias and Hand 

orrelations are shown in Figs. 10 and 11 . The correlation coeffi- 
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Table 10 

Comparison of Separation Factors (Highest Values) for the (Water + Butyric Acid + Solvent) ternary 

Systems at different temperatures and P = 101.3 kPa. 

Ternary System Solvent Type S T, K Reference Number 

water + BA + 5M2H ketone 90 298.2 This study 

water + BA + 5M2H ketone 155 308.2 This study 

water + BA + 5M2H ketone 134 318.2 This study 

water + BA + methyl isoamyl ketone ketone 154.6 298.2 [39] 

water + BA + butanal aldehyde 88.05 293.15 [42] 

water + BA + butanal aldehyde 100.16 308.15 [42] 

water + BA + butanal aldehyde 97.89 323.15 [42] 

water + BA + isoamyl acetate ester 133.7 298.2 [39] 

water + BA + dimethyl maleate ester 13.03 298.2 [43] 

water + BA + 1-heptanol alcohol 106.8 298.2 [44] 

water + BA + 1-heptanol alcohol 96.8 308.2 [44] 

water + BA + 1-heptanol alcohol 95.3 318.2 [44] 

water + BA + decanol alcohol 208 298.2 [45] 

water + BA + decanol alcohol 173 308.2 [45] 

water + BA + decanol alcohol 135 318.2 [45] 

water + BA + n-butanol alcohol 39.47 293.15 [42] 

water + BA + n-butanol alcohol 36.48 308.15 [42] 

water + BA + n-butanol alcohol 30.03 323.15 [42] 

water + BA + undecanol alcohol 85.20 298.2 [46] 

Fig. 10. Othmer-Tobias plot for LLE data of the water + butyric acid + 5-methyl-2- 

hexanone ternary systems at T = (298.2, 308.2, and 318.2) K and P = 101.3 kPa. 

Fig. 11. Hand plot for LLE data of the water + butyric acid + 5-methyl-2-hexanone 

ternary systems at T = (298.2, 308.2, and 318.2) K and P = 101.3 kPa. 
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Fig. 12. Comparison of Separation Factors (Highest Values) for the (Water + Butyric 

Acid + Solvent) ternary systems at different temperatures and P = 101.3 kPa. 
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ients and correlation factor ( R 2 ) values are given in Table 8 . The

eparation factors and distribution coefficients for the ternary sys- 

ems were presented in Table 9 . For similar ternary aqueous sys- 

ems, the comparison of the highest values of the separation fac- 
10 
ors obtained in this study and previously reported in the litera- 

ure [39,42–46] are given in Table 10 and Fig. 12 . As can be seen,

xtracting capabilities of the solvents not only depend on the sol- 

ent type but also depend on the temperature. The highest and 

owest separation factor values was obtained for decanol [45] , and 

imethyl maleate [43] , respectively at 298 K. In this study, in addi- 

ion to propose a new model, we also examined the effect of tem- 

erature on equilibrium data by performing precise temperature 

ontrol. The separation factors were calculated as 90, 155 and 134 

t 298.2 K, 308.2 K, and 318.2 K, respectively. The separation fac- 

or value given by the researchers who have examined the same 

ystem in the literature [39] for 298.2 K is closer to the result we 

ound for 308.2 K. Figs. 13 and 14 show the distribution coefficients 

f butyric acid ( D 2 ) and separation factors ( S) as a function of the

ole fraction of butyric acid in water-rich phase ( x 21 ) for 5M2H at 

 = 298.2, 308.2, and 318.2 K, respectively. 

. Conclusions 

In this study, modelling of LLE data are considered using NRTL, 

NIQUAC and DNN model. Experimental LLE data of the ternary 

ystems (water + butyric acid + 5M2H) were measured at T = 

98.2, 308.2, and 318.2 K temperatures and at P = 101.3 kPa. No 

ata on these ternary systems at 308.2 K and 318.2 K have been 

ound in the literature. Performance of the proposed DNN model is 
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Fig. 13. Distribution coefficients of butyric acid ( D 2 ) as a function of the mole frac- 

tion of butyric acid in water-rich phase ( x 21 ) for water (1) + butyric acid (2) + 5- 

methyl-2-hexanone (3) ternary systems at T = (298.2, 308.2, and 318.2) K and P = 

101.3 kPa. 

Fig. 14. Separation factors ( S) as a function of the mole fraction of butyric acid in 

water-rich phase ( x 21 ) for water (1) + butyric acid (2) + 5-methyl-2-hexanone (3) 

ternary systems at T = (298.2, 308.2, and 318.2) K and P = 101.3 kPa. 
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ompared to well known NRTL and UNIQUAC models by means of 

MSE. From the calculated RMSE values, when compared to NRTL 

nd UNIQUAC models, it was shown that the proposed model gives 

uch lower RMSE values. Since the activity coefficient models 

ave a non-linear structure, the ReLU activation function is used 

or all layers to introduce this nonlinearity to the proposed DNN 

odel. Also the number of the parameters used in DNN is much 

ore than that of NRTL and UNIQUAC. Therefore it can be said 

hat the proposed DNN model outperforms to UNIQUAC and NRTL 

odels. Also the experimental results were successfully correlated 

ith the Othmer-Tobias and Hand correlation methods. Distribu- 

ion coefficients ( D ) and the separation factors ( S) values do not 

hange with temperature. Based on the D and S, it can be said that 

M2H is suitable for the extraction of butyric acid from aqueuos 

olution. 
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