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cessful at the defense exam on 05.08.2020 and accepted by our jury as

APPROVED BY:
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Asst. Prof. Dr. Arif Selçuk Öğrenci (Co-advisor) . . . . . . . . . . . . . . . . . . . . . .

Kadir Has University

Asst. Prof. Dr. Baran Tander . . . . . . . . . . . . . . . . . . . . . .

Kadir Has University
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AIR QUALITY PREDICTION USING A HYBRID DEEP LEARNING

ARCHITECTURE

ABSTRACT

Air pollution prediction is related to the variables in environmental monitoring data

and modeling of the complex relationship between these variables. The objectives of

the thesis are to develop a supervised model for the prediction of air pollution by us-

ing real sensor data and to transfer the model between cities. A CNN+LSTM deep

neural network model was developed to predict the concentration of air pollutants in

multiple locations by using a spatial-temporal relationship. The 2D input (univari-

ate) contains the information of one pollutant; the 3D input (multivariate) contains

the information of all pollutants and meteorology. There are three methods em-

ployed according to the input-output type: Method-1 is based on univariate-input

and univariate-output; Method-2 is based on multivariate input and univariate-

output; Method-3 is based on multivariate input and multivariate output. The

study was carried out for different pollutants which are in publicly available data

of the cities of Barcelona, Kocaeli, and İstanbul. The hyperparameters were tuned

to determine the architecture that achieved the lowest test RMSE. Comparing the

performance of the CNN+LSTM network with a 1-hidden layer LSTM network, the

proposed model improved the prediction performance by the rates between 11%-53%

for PM10, 20%-31% for O3, 9%-47% for NOX and 18%-46% for SO2. After, the net-

work weights were transferred from the source domains to the target domain. The

model has a more reliable prediction performance with the transfer of the network

from Kocaeli to İstanbul because of the similarities between those two cities.

Keywords: Deep learning, air pollution, prediction, CNN, LSTM, trans-

fer learning.

i



HİBRİT DERİN ÖĞRENME MİMARİSİ KULLANARAK HAVA KALİTESİ

TAHMİNİ

ÖZET

Hava kirliliği tahmini, çevresel izleme verilerindeki değişkenlerle ve bu değişkenler

arasındaki karmaşık ilişkinin modellenmesiyle ilgilidir. Tezin amacı, gerçek sensör

verilerini kullanarak hava kirliliğinin tahmini için denetimli bir model geliştirmek

ve modeli şehirler arasında aktarmaktır. Mekansal-zamansal bir ilişki kullanarak

birden çok konumdaki hava kirleticilerinin konsantrasyonunu tahmin etmek için bir

CNN+LSTM derin sinir ağı modeli geliştirildi. 2B ve 3B girdi yapıları tanımlanır:

2D girdi (tek değişkenli) bir kirleticinin bilgisini içerir; 3D girdi (çok değişkenli)

tüm kirleticiler ve meteoroloji bilgilerini içerir. Girdi-çıktıya göre üç farklı yöntem

vardır: Yöntem-1 tek değişkenli girdi ve tek değişkenli çıktıya dayanır; Yöntem-

2, çok değişkenli girdi ve tek değişkenli çıktıya dayanmaktadır; Yöntem-3, çok

değişkenli girdi ve çok değişkenli çıktıya dayanmaktadır. Çalışma Barselona, Ko-

caeli ve İstanbul şehirlerinin kamuya açık verilerinde bulunan farklı kirleticiler için

yapılmıştır. Hiperparametreler, en düşük RMSE testine ulaşan mimariyi belir-

lemek için ayarlandı. CNN+LSTM ağının performansı 1 gizli katmanlı LSTM

ağıyla karşılaştırıldığında, önerilen model tahmin performansını PM10 için 11%-

53%, O3 için 20%-31%, NOX için 9%-47% ve SO2 için 18%-46% arasındaki oranlarla

geliştirdi. Ardından ağ ağırlıkları kaynak alanlardan hedef alana aktarıldı. Model,

ağın Kocaeli’den İstanbul’a aktarımı ile bu iki şehir arasındaki benzerliklerden dolayı

daha güvenilir bir tahmin performansına sahiptir.

Anahtar Sözcükler: Derin öğrenme, hava kirliliği, tahmin, CNN, LSTM,

transfer öğrenimi.
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Figure B.7 Histogram for the concentration of SO2 in İstanbul . . . . . . . 81
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İstanbul (Dataset-2) with meteorological data . . . . . . . . . . 105

Figure H.2 Scatter plot of Method-2 and Method-3 test results for SO2 in
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1. INTRODUCTION

1.1 Objective

We have two sets of research questions in this thesis.

i. How successful can we develop a supervised model for the prediction of air

pollution by using real sensor data obtained in different locations of a city?

What are the architectures and set of parameters that give an optimal level of

learning? How do those parameters change among different pollutants?

ii. How successful can we transfer a model obtained by training data of a city/region

to a different city? Are the parameters that give an optimal level of learning

the same for different cities?

The objective of the research is to develop a solution that can predict the hourly

concentration of the air pollutants (such as Nitrogen Oxides (NOX), Sulphur Dioxide

(SO2), Ozone (O3), and Particulate Matter (PM)) as indicator of air pollution with

or without use of meteorological information to obtain a smarter city environment.

The target of the research is to develop an algorithm

• to preprocess sensor data

• to fuse data from multiple sensor types and locations

• to determine the optimal deep learning model and hyperparameters for time

series prediction

• to predict air pollutants’ concentration using machine learning algorithms.

A model for the prediction will be developed based on past data that is a time
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series. The model will be developed separately for three cities (Barcelona, İstanbul,

Kocaeli) for which open data are available. An outcome of the research will be a

comparison of the sets of features for optimal performance.

The second target is to investigate the transferability of the model developed for a

city to other cities. Factors such as which features achieve optimal prediction per-

formance and which trained model has prediction ability on weight/feature transfer

of the target city are examined. The outcome will be a low-cost algorithm to predict

hourly air pollution and perform feature/weight transfer for multiple cities.

1.2 Motivation

Since air pollution is one of the significant threats to the health of society living in

cities worldwide, governments have considered clean air as a basic requirement of

health and well-being. WHO (World Health Organization) assessment points out

that more than 3 million premature deaths per year are caused by urban outdoor

and indoor air pollution [1]. Some air pollutants like O3 and Nitrogen Oxides (NOX)

can affect ecosystems and vegetation directly, so the quality of water and soil that

support the ecosystem get damaged [2]. Additionally, air pollution has negative

effects on the economy; a decrease in the lifetime of individuals, an increase in

medical cost, reducing productivity. European Commission offers the 2030 climate

and energy framework [3]. The framework includes EU-wide targets and policy

objectives for the period from 2021 to 2030 to enable the EU to implement its

commitments under the Paris Agreement. One of the key targets is to cut greenhouse

gas emissions by at least 40% from 1990 level.

Air pollution is shown to be the most important reason for serious illnesses causing

early deaths, such as heart and lung diseases, stroke, lung cancer. Around 400.000

premature deaths per year in the EEA39 (excluding Turkey) are caused by those

diseases [4]. Microscopic pollutants damage the lungs, heart, and brain by penetrat-

ing deep into the respiratory and circulatory system. According to World Health
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Organization, nine out of ten people breathe polluted air that is the reason for 7

million deaths every year because half of the world has no access to clean fuels and

technologies [5]. Not only people who have a chronic disease but also healthy peo-

ple may have problems because of air pollution. For example, breathing difficulties

or respiratory irritation may be caused as they are exposed to air pollution in the

long-term. Respiratory system diseases such as decreased lung function and asthma

occur in those exposed to either short or long term air pollution.

Air pollution can affect directly natural ecosystems and biodiversity. Nitrogen oxides

(NO, NO2) cause degradation by feeding excessive amounts of nitrogen nutrients

into terrestrial and aquatic ecosystems. As a result, new species invade the region

and the diversity of species changes. The high presence of NOX and SO2 causes

acidification of soil and water sources, leading to loss of biodiversity. As for ground-

level O3, it lowers the growth rates of crops and trees.

Particulate matter (PM) is made up of small particles in the air, such as dust, soot,

and drops of liquids. In urban areas, the majority of PM is created directly from

the burning of fossil fuels by automobiles, power plants, non-road type of equipment,

and industrial facilities. There is a relationship between increasing adverse health

effects and particulate matter even at lower-level concentration. Particles less than

10 microns in diameter are called coarse particulate matter (PM10) and they cause

nasal and upper respiratory tract health problems. They are one of the main reasons

for premature death from heart ailments, lung disease, and cancer.

Nitrogen Oxides, like Nitrogen Oxide and Nitrogen Dioxide, are produced by the

transportation sector. Since NO is converted to NO2 in sunlight, NOX which is a

combination of NO and NO2 can be measured as a parameter of the air pollution.

NOX exists in high concentrations around roadways and it can lead to asthma and

bronchitis and can cause a high risk of heart disease.

Although ozone in the high atmosphere protects us from ultraviolet radiation, ozone

at ground level irritates the respiratory system by being a part of smog. It is
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generated by the reactions of volatile organic compounds and nitrogen oxides, caused

by the combustion of fossil fuels. Exposure to ozone causes coughing, chest pain and

throat irritation in short-term exposure, as well as chronic obstructive pulmonary

disease, and decreased lung function in long-term exposure.

Sulfur Dioxide (SO2) spreads out into the air from vehicles (ship engines, heavy

equipment, diesel equipment) that burn fossil fuels containing sulfur (like coal). Eye

irritation, asthma, respiratory infections, and cardiovascular system failures can

be caused by Sulfur Dioxide. Besides, the combination of SO2 and water becomes

sulfuric acid which is the major component of acid rain and it leads to deforestation.

In light of this information, air quality standards are set as an important component

of national risk management and environmental policies in order to protect the public

health of citizens. Predicting the air pollution allows to detect the abnormality in the

region in advance so that some health improvements can be performed by different

air pollution reduction scenarios, necessary precautions can be taken, warnings and

health practices can be taken for the residents.

A smart city is an urban place that deploys different types of electronic devices and

various sensors to collect data from the environment and citizens. The informa-

tion derived from that data are used to manage resources and services efficiently in

traffic, transportation systems, information systems, community services, and util-

ities [6, 7]. It is a concept to develop a city using information and communication

technologies to enhance the quality and performance of urban services in terms of

economy, environment, people, mobility, governance, etc. The objectives of smart

cities are to (1) improve the quality of city life, (2) promote sustainable development,

and (3) raise public welfare [7, 8]. For more than a decade, since recent social and

environmental developments (climate change, economic restructuring, urban popu-

lation growth) have increased interest in smart city studies [9], city systems have

been developed to digitize city information. This information is processed and made

meaningful in software platforms in order to improve urban services such as trans-
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portation, health, education, culture, environment, etc. and to work in coalition in

terms of such services. Furthermore, enormous amount of information is gathered

from various disciplines by sensors located at many points of the city.

The European Union has developed strategies and programs to manage smart ur-

ban growth in order to deal with the high energy consumption and greenhouse gas

caused by the growing population in the metropolitan areas and to provide sustain-

able prosperity. European Innovation Partnership on Smart Cities and Communities

(EIP-SCC) is an initiative that is supported by the European Commission; brings

together cities, industries, small businesses, banks, and research institutions. It

is aimed to improve urban life by bringing sustainable solutions to city problems

in different fields such as energy, transportation, and communication [10]. Smart

city technologies offer authorities the opportunity to monitor city residents, infras-

tructures and interact with them directly. With these technologies, it is aimed to

increase the service quality and performance, as well as to reduce costs and resource

consumption by real-time responses.

The process of smart city data analysis can be approached in four stages: data

acquisition, data preprocessing, data analysis, service provision [11, 12]. (1) Data

acquisition is the process to collect and store smart city data coming from various

domains and sources; (2) data preprocessing is use of techniques to transform raw

data into an understandable format; (3) data analytics is to perform intelligent anal-

ysis by different machine learning techniques to discover knowledge about domains

and sources for applications; (4) service provision is the development of intelligent

services and applications.

Internet of Things (IoT) is a concept of a communication network that connects

any device (sensors, microcontrollers, transceivers, etc.) which collects and shares

data about the environment around them, to the Internet and to other devices.

The foresight that the number of internet-connected devices will exceed 50 billion

in the coming years [13] has made the IoT paradigm a global infrastructure for the
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information society. The aim of IoT concept is to make the Internet more immersive

and pervasive by easy access and interaction with various everyday life devices and

sensors used in smart city systems [14], for environment monitoring, smart health

care, public safety, intelligent transportation, etc. [15, 16, 17, 18, 19, 20].

United Nations reported that more than half of the world’s population has been

living in urban areas since 2018 and the number of people living in urban areas

will make up two-thirds of the total world population in 2050 [21]. In this case,

people living in urban areas become customers who need better conditions in terms

of environment, transportation, health, and so on. In recent years, the rapid devel-

opment of IoT makes accurate environmental monitoring possible with updates on

air pollution in real-time. IoT devices generate a huge amount of data continuously

from various places in the world. Artificial intelligence-based air pollution prediction

models for smart cities are able to process data that comes from a number of IoT

sensors placed over a large area. Such models use machine learning algorithms in

order to learn the correlation between features and make predictions accurately.

1.3 Subject and Scope

In recent years, many countries have taken important steps towards developing smart

cities such as Santander, Barcelona, Singapore [22, 23, 24]. Many authorities began

to share data on the open data platform as a part of transparency initiatives, which

can be collected and documented to monitor the city. Numerous IoT devices used

in the smart city structure constitute the data sources. Artificial intelligence tech-

niques are used predominantly in computer science to process enormous amounts

of data, called Big Data, and to obtain useful information in order to develop effi-

cient applications [25]. Large scale sensor networks included in IoT and smart city

concepts have led to the emergence of Big Data. The integration and use of Big

Data from the large sensor network in smart city applications is a major research

challenge [26].
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Nowadays, air quality monitoring and forecasting projects have been carried out [27]

and such works point out some requirements for smart city air pollution applica-

tions. Changes in city conditions and behavior of people living there over time may

adversely affect the performance of the model, which is trained with old data. It

is necessary to train and optimize the model periodically with current information

[28].

Recent studies [29, 30, 31] show that the features of particulate diffusion related

to time and space must be considered to accurately model air pollution prediction.

Particulates in the air can pollute the surrounding environment by standstill at a

fixed location or moving between gaps in the air [29]. The particulate concentrations

are the main temporal factors that reflect the correlations between regions [30]. The

analysis only in the time domain may cause disregard of impacts between regions.

On the other hand, the analysis only based on spatial dependency may cause igno-

rance of the effects related to the diffusion of particulates over time. Therefore, to

design a reliable model, consideration of the spatial features and temporal features

together as proposed in this thesis, is needed in order to detect the regional historical

trend of air pollution and the interaction of pollutants between regions.

Data fusion is a process of getting data from multiple sources and combining it in a

way to achieve accurate and useful representation of real world environments. The

propagation of air pollutants is affected by meteorological conditions (like temper-

ature, humidity, wind direction, and strength) [32, 33] and temporal features are

determined by concentrations of pollution particulates [34, 35]. Such information is

gathered from various sensors that are deployed into the related city and must be

used from the prediction model together and at the same time.

Artificial intelligence and machine learning-based techniques are used for modeling,

learning, search, and optimization solutions in smart city applications [36, 11, 37,

29, 38, 39]. Machine learning algorithms are computational methods which improve

the learning performance of machine from complex data in order to be capable of
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solving nonlinear problems. The accumulation and easy access to big data in many

areas and the high accuracy of machine learning methods on these data have led

to a tendency to various machine learning methods in air quality studies [37, 29,

38, 39, 20]. Deep learning is a neural network-based machine learning method that

consists of multiple processing layers to learn representations of data with multiple

levels of abstraction and is able to discover complex structures from data in raw

forms without a sophisticated feature engineering. As a result of its deep modeling

feature, it can be used as an effective approach in solution of nonlinear problems.

The types of air pollutant sources have increased with urbanization, the dynamics of

the concentration of pollutant particles in the air has become more complex [37, 40].

Although numerical analysis and machine learning methods are widely used in air

pollution prediction [27, 31, 41] there are several drawbacks that affect negatively

prediction capability. Atmospheric condition is too complex to be represented by

certain regular behavior. Also, traditional machine learning methods ignore deep

relations with spatial information or temporal changes. The data used for air pol-

lution prediction is generally nonlinear, so a nonlinear modeling approach is more

suitable for such data.

Deep learning is a machine learning technique that can perform classification and

regression tasks directly from data by using large data sets. Deep neural network

architectures may contain a large number of hidden layers. Deep learning methods

use mostly neural networks and one of the most popular deep learning network

is Deep Convolutional Neural Networks (D-CNN). Feature representation of input

data are obtained through hidden layers by increasing the complexity of the learned

features. At the last layer, all features are combined to obtain feature maps that

represent the input.

Most machine learning methods require manual feature extraction. The extracted

features are used to create a model for classification or regression. Deep learning

extracts relevant features automatically from input data. Also, deep learning models
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can be called “end-to-end learning” where raw data are given to the network and

the network model performs a task (classification or regression), thus, the learning

process happens automatically.

Convolutional Neural Network (CNN) is a special type of neural networks which is

inspired by primate’s visual cortex structure. The topology of CNN is composed

of multiple learning stages that include a convolutional layer, nonlinear processing

units. Each layer performs multiple transformations by convolutional filters. Non-

linear processing units uses the output of kernel filters to provide learning from

abstraction and embed nonlinearity in the feature space. Different patterns and

activations are generated by nonlinearity for different responses to make possible

learning of semantic differences in data.

The topology of Convolutional Neural Network (CNN) is composed of multiple learn-

ing stages that include a convolutional layer and nonlinear processing units where

each layer performs multiple transformations by convolutional filters. Nonlinear pro-

cessing units use the output of kernel filters to provide learning from abstraction and

nonlinearity in the feature space. Different patterns and activations are generated

by nonlinear processing for different responses to make possible learning of semantic

differences in data. CNN is capable of extracting low-level features, mid-level fea-

tures, and high-level features automatically. Therefore the use of CNN reduces the

need for a synthesis of different feature extractors.

In feedforward neural network models, the input is passed through the network to

give the output. Input is labeled for supervised learning. In such networks, the

training progresses by updating the weights until the error in the output decreases

to a sufficiently small value.

Recurrent Neural Networks (RNN) are a type of neural network capable of holding

the state information, as well as producing an output according to an input. This

capability makes the RNN structure applicable to data that has a certain order. In

feedforward networks all outputs are independent of each other, on the other hand,
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the output depends on the previous computations in RNN.

RNN evaluates the inputs on the previous inputs and generates output by combining

the current and the previous information. Each RNN neuron has a feedback loop to

feed the output of the previous time step as the input of the next state. Recurrent

networks are used to understand the sequential information of input data such as

various time dependent sensors data. RNN performs the same task for each element

of input sequence by a memory that captures information to produce the correct

output.

Although the theory points out that RNN is capable to use information in long se-

quences, it is limited to looking back only a few steps to connect previous information

to the present task in the practice. If the gap between the relevant information and

the needed place is large, RNN becomes useless to learn the connection between the

information in different steps. This problem is called long term dependencies.

The Long Short-Term Memory (LSTM) is capable of reading, writing, and deleting

information from its memory, like the memory of a computer, thus it enables RNN

to remember their inputs over a long period. LSTM uses a different function from

RNN to compute the hidden state by combining the previous state, the current

memory, and the input. LSTMs have memory cells and each cell works with gates

that decide whether to store or delete information to learn whether the information

is important or not over time. As for another advantage of CNN and LSTM, those

models work based on parameter sharing. The main purpose of parameter sharing

is to reduce the parameters that the model has to learn. In CNN, convolutional

filters share the parameters while it is done by sharing the same weights by RNN in

sequence learning.

Many machine learning methods work well only when the training data and test

data have the same feature space and the same distribution. Most statistical and

machine learning models require the collection of new training data when the distri-

bution changes. This can cause a more difficult and expensive process to recollect
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training data and efforts to rebuild the learning model in real world applications.

It is assumed that training and test data which are used in machine learning tech-

niques are obtained from the same domain and have the same distribution. This

assumption does not apply to large systems with resources distributed over various

spatial locations.

Transfer learning focuses on methods that extract information from a data set and

reapply it in another data set. The data in different regions are represented by

different feature distributions and transfer learning provides that the model is able

to transfer knowledge from a source domain to a target domain where the domains

have a different distribution. In this study, transfer learning is used to support

the proposed CNN+LSTM deep neural network. The main purpose is to transfer

weights, so the features, from the source domain to the target domain in order to

improve the prediction accuracy in different cities.

1.4 Contribution and Impact

Smart city applications are supposed to process spatial and temporal data [28, 29,

42, 43] as particulates can pollute the surrounding environment by standstill at a

fixed location or moving between gaps in the air over time [29]. Air pollution depends

on meteorological conditions such as emissions, wind direction, wind strength, etc.

[29, 32, 33]. The analysis only in the time domain may cause disregard of impacts

between regions. On the other hand, the analysis based on only spatial dependency

may disregard diffusion of particulates over time. Additionally, changes in city

conditions and behaviour of people living there over time may affect negatively

the performance of the model that is trained with old data. Because each city’s

data have a different marginal probability distribution, it is necessary to train and

optimize the model at regular intervals with current data [28]. Another challenge

about air pollution prediction is that the system should alert residents of the city

in a short time, send necessary warnings to relevant authorities in order to take

precautions and interfere with the pollution. It is aimed to solve these challenges
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by developing a CNN+LSTM deep neural network model for hourly air pollution

prediction. The historical data from various locations in a city is processed and

the concentration of particles in the same locations is output as the next hour. In

addition, the proposed model is supported by the transfer learning method to obtain

a deep learning structure with the optimal set of hyperparameter values to use in

various cities.

In this study, data used by the model are collected from different cities in the

world and various points of these cities. Data includes information about both

pollutant concentrations and meteorological variables. One advantage of artificial

intelligence is the capability to extract relevant complex features from input data

automatically and learn the correlation between them for a successful prediction.

CNN improves the generalization and learning ability of the model by reducing

the size and complexity of data. Studies in the literature often include feature

engineering to determine the features to be input into the model. In this study, the

deep learning model automatically learns the features and the correlation between

them to extract the structure of the inputs.

Another advantage is that AI is capable to run different types of machine learning

algorithms at the same time to improve the learning performance of the air pollution

prediction system. Such AI models can process both spatial and temporal features

simultaneously from big data in a short time. The input of the proposed system

consists of both spatial and temporal information of the pollutants in the city. While

spatial features are based on the locations of the sensors, temporal features are based

on the historical hourly concentration of the pollutants. CNN is used to extract spa-

tial features from both pollutant concentrations data and meteorological data with

separate sensor locations. Various sensor data collected from different points of a

city are processed in order to predict not only local pollution that affects a small

area but also propagation pollution that affects the wider precinct. Information from

sensors located in different locations of a city is processed at the same time, thereby

revealing the air pollution relationship between locations. Meanwhile, LSTM is used
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to extract temporal information characteristics from different time series data and

it consolidates the nonlinear relationship between multivariable time series and air

pollutants. At the end of the study, not only the temporal effects on the concentra-

tion of a pollutant in the next hour but also spatial interaction contributes to the

prediction performance.

Spatial features of target locations are used to increase the prediction sensitivity

and explicitly consider meteorological impacts for pollutant propagation. Thus, the

proposed model uses temporal information based on historical data of target loca-

tions with high spatial or temporal similarity. There are two input structures for

the use in the system; 2-dimensional and 3-dimensional array. While 2D input con-

tains the historical information about only target pollutants at sensor locations, 3D

input contains both the historical information about the target pollutant and other

pollutants together. Thus, the 3D input structure ensures the model to consider the

effect of other pollutants (and meteorological data) on the presence of a pollutant

and to give prediction values for more than one pollutant as output at the same

time.

Transfer learning enables the model, which successfully performs a specific task on

a data (source domain), to be used on another data (target domain) with a different

distribution from the previous data. The task on the target domain can be the same

as the previous task or a new task related to the previous one. For transfer learning,

the last one or two learning layers of the pre-trained model are usually changed and

the model is tested on the target data after a short training process with the training

set of the new data. In this study, a pre-trained network that successfully predicts

the pollutant concentration in a certain city is supported by transfer learning to be

used to predict the same or different pollutants’ concentration in another city. The

pre-trained network is tested directly on the target city, then a short training process

is applied to the network and the performance on the test data are measured. In

this way, the contribution of the short training with the training set created from

the target domain to the prediction accuracy is investigated.
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2. LITERATURE

Summary of machine learning-based air quality studies in the literature is given in

Table 2.1. In these studies, the effects of spatial and temporal features on prediction

performance are analyzed and several machine learning algorithms are compared.

[34] compares three machine learning algorithms for accurate air pollution predic-

tion. Support Vector Machine (SVM), Artificial Neural Network (ANN), and model

trees (M5P) use historical pollutant concentration (O3, NO2, SO2, H2O) and mete-

orological data (temperature, humidity, wind speed) from June to August 2013. The

Air Quality Monitoring (AQM) network, a pilot initiative of Qatar Mobility Innova-

tions Center (QMIC), is used for data collection. Algorithms are run for univariate

and multivariate data. Prediction results with multivariate data are better than

univariate data because the dependency between target gases and other features

can be included in the prediction processes. Using M5P and SVM reduces RMSE

by 35.4%, 30.5%, and 58.7% compared to ANN in multivariate data for ground level

ozone (O3), Nitrogen Dioxide (NO2) and Sulfur Dioxide (SO2) respectively. While

the best PTA values in order of Ground-Level Ozone (O3).

In [38], the prediction model consists of 1D-CNN (1-Dimensional CNN) and Bi-

GRU (Bi-directional GRU). they use the UCI machine learning repository database

for PM2.5 data of the US Embassy in Beijing and Capital International Airport

meteorological data. Even though the embassy and airport are 17 km apart, the

same weather is experienced. Pollution, dew point, wind direction, wind speed and

temperature, air pressure, snowfall, and rainfall are selected as features from hourly

data between the 1st of January, 2010 to 31st of December, 2014. The model is

trained and tested with a combination of different features and the model gains bet-
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ter performance with inputs of pollution, temperature, wind speed, wind direction,

dew point. When the other features are included in the input, the complexity and

difficulty of learning increased. It is noted that the variants of RNN (LSTM and

GRU) have better performance than RNN, and they are better to learn local trend

information and long term dependencies while CNN is better in local feature learn-

ing and dimensionality reduction. Also, using Convolutional Based Gated Recurrent

Unit (CBGRU) reduces RMSE and MAE by 47.65% and 37.32% compared to Sup-

port Vector Regression (SVR), while the SMAPE values for CBGRU and SVRare

are 0.26 and 0.21 respectively.

[29] proposes a spatial-temporal deep neural network (ST-DNN) model to predict

air quality. The model uses historical data including temporal information, the

concentration of pollutants (PM2.5 and PM10), and meteorological characteristics

(wind speed, wind direction, temperature, humidity) as input, then they predicted

the future PM2.5 concentration as output. Two real-world data sets (76 locations

in 23 cities in Taiwan and locations from Beijing) are used in experiments. Data

include measurements from January 2014 to September 2017 and it is divided by

2:1 ratio as the training set and test set. The model is constructed by combining

a Convolutional Neural Network (CNN), Adaptive Temporal Extractor (ASE), and

Long Short-Term Memory (LSTM). Air quality and meteorological condition data

are input to ASE and LSTM whereas terrain information is input to CNN. Since the

convolution layer can extract the temporal delay factor from surrounding features

by learning spatial information, the proposed model provides a long time frame

prediction.

In [44], they apply a regression technique by ANFIS modeling to conduct a time

series prediction for air pollution. According to the model, the concentration of an

air pollutant in the current time depends on the concentration of pollutants in the

past 5 days. O3, SO2, CO, NO2 are considered with 24 hours time series length.

The input data are separated randomly into three data sets for training, validation,

and test. While the training data set contains 305 points, the validation test sets
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contain 25 points. They use two approaches, regression modeling, and ANFIS. The

ANFIS model is constructed with an input layer, one hidden layer that consists

of fifteen membership functions, and an output layer. The input layer is with five

input variables that represent the contamination rate for consecutive five days. The

output layer gives a single output variable that is the predicted contamination rate

for the next day. The RMSE of ANFIS was measured as 0.17 for CO, 0.25 for

SO2, 0.20 for O3, and 0.16 for NO2. The RMSE of the semi-experimental regression

model was measured as 0.21 for CO, 0.27 for SO2, 0.24 for O3, and 0.16 for NO2.

Therefore, the ANFIS model is observed as a more accurate prediction model for air

pollution than the regression model. The comparison between error values related

to different pollutants points out that the ANFIS model designed for NO2 has the

least error value for short-term contamination prediction.

[45] uses Hidden Markov Models (HMM) and LSTM DNN prediction model with

airborne-pollution data sources in Melbourne Urban Area (Victoria, Australia). Air

pollutants (PM2.5, PM10, SO2, CO, and O3), Air Quality Index (AQI), and meteo-

rological attributes (temperature, relative humidity, wind speed, wind direction) are

used as part of the model. The data collected from January 2017 to January 2019

are normalized to values between 0 and 1 and input to the model, the outcome is

the predicted value set of the target pollutant for different time lags. The RMSE

values are measured as 2.62 in Traralgon, 6.77 in Mooroolbark, 1.92 in Alphington,

and 3.85 in Melbourne. When the prediction system was applied in the Melbourne

Urban Area (Australia), the prediction accuracy increased up to 3% for some of the

monitoring stations.

Also in [37], they combine CNN and LSTM as the air quality prediction model.

CNN convolutional layer is used to extract features and reduce the complexity by

its sharable local weights while LSTM is used for time series pollutant prediction

with long-term dependency. They select Shangai as the target city and collect data

manually between 2015 and 2017 with pollutant and meteorological information.

The data of 2015-2016 is used as training data while the data of 2017 is used as
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test data. The input features are PM2.5 concentration, temperature, wind speed,

wind direction, humidity, and other pollutant concentration. The output is the

predicted sequence of PM2.5 values for the target city Shangai. With the comparison

of the CNN+LSTM model with RNN, CNN, and LSTM, the performance of the

CNN+LSTM model is the best for long-term sequence prediction. RNN and CNN

show the same value for RMSE where CNN+LSTM (proposed model) reduces RMSE

by 41.45% compared to CNN and RNN.

[39] uses a model that combined bi-directional LSTM (BLSTM) and Inverse Dis-

tance Weighting (IDW) to predict the concentration of PM2.5 in Guangdong, China.

Hourly data are collected from 100 locations in Guangdong to build time series

samples between January 1 and December 31, 2017. Unlike CNN-LSTM combined

models that are temporal first, IDW-BLSTM is a spatial first mechanism. Results

show that the proposed model IDW-BLSTM, BLSTM, CNN-LSTM, and LSTM

reach RMSE values close to each other.

In [46], they compare Multilayer Perceptron (MLP) and CNN for PM10 concentra-

tion prediction with different model hyperparameters. The data set from a public

database of a Mexican government (Secretariat of Environment (SEDEMA by its

acronym in Spanish)) contains the hourly measurements of 7 different variables in

Mexico City. The information about PM10 concentration and meteorology (tem-

perature, wind speed, wind direction, relative humidity, solar ultraviolet type A,

solar ultraviolet type B from 2000 to 2018 is used for the prediction system. They

observed 13 different models built based on MLP and CNN with various hyperpa-

rameter combinations and various activation functions (sigmoid, ReLU, linear). The

best prediction result in terms of test RMSE is obtained with 2-Dimensional CNN

(2DCNN) with sigmoid activation function. According to the comparison of the

RMSE values observed with MLP and CNN, The lowest RMSE value was measured

as 18.77 with the 2DCNN structure.

[47] shows the performance comparison between univariate and multivariate pre-
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Table 2.1: Proposed architectures and their performances in literature

Reference Features Output Architecture Performance

Shaban et al. [34]

Concentration of target

pollutant (O3, NO2, SO2)

Concentration of

target pollutant
ANN

RMSE(O3)=26.4

RMSE(NO2)=25.7

RMSE(SO2)=74.1

Concentration of target

pollutant and meteorological

data

Concentration of

target pollutant
ANN

RMSE(O3)=11.6

RMSE(NO2)=25.7

RMSE(SO2)=107.6

Tao et al. [38]
Concentration ofPM2.5 and

meteorological data

Concentration of

PM2.5

RNN RMSE=20.94

LSTM RMSE=17.31

Soh et al. [29]
Concentration of pollutants

and meteorological data

Concentration of

PM2.5

ST DNN with

ANN, LSTM

and CNN

MAE=3.40

Zeinalnezhad et al. [44]

contamination rate of

target pollutant for

consecutive five days

the predicted contamination

of target pollutant rate for

the next day

ANFIS

RMSE(SO2)=0.25

RMSE(O3)=0.20

RMSE(NO2)=0.16

Semi-experimental

Regression

RMSE(SO2)=0.27

RMSE(O3)=0.24

RMSE(NO2)=0.16

Qin et al. [37]
Concentration of air pollutants

and meteorological data

Concentration of

PM2.5

CNN RMSE=30.66

LSTM RMSE=17.95

CNN+LSTM RMSE=14.30

Ma et al. [39]
Concentration of

PM2.5

Concentration of

PM2.5

ANN RMSE=11.20

LSTM RMSE=8.98

CNN+LSTM RMSE=8.40

diction for PM10 concentration with LSTM. The PM10 concentration data set is

provided by the Regional Agency for Environmental Protection of Abruzzo (ARTA)

and contains time series measurements from January 2009 to December 2017 in

Pescara, Italy. The study is done for both univariate and multivariate prediction

by using the dependencies of PM10 on the various combinations of local environ-

ment features (temperature, humidity, pressure, tropopause height, cloud fraction,

24 hours accumulated precipitation). The model reached the lowest RMSE as 9.36

with multivariate prediction and the LSTM is found as an efficient time series pre-

diction model. Additionally, an increase in the number of features causes a decrease

in prediction performance as it increases the complexity of the input.

As for transfer learning methods for air quality, [48] proposes a model called Multi-

view Transfer Learning Semi-Supervised learning for Air quality Estimation (MT-
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SAE) to transfer features from urban areas to non-urban areas. They use three

types of features that are terrain, spatial, and temporal. Real air quality data set

(Air Quality Index (AQI), PM10, PM2.5, SO2, NO2, CO, O3) and meteorological

data set (weather, temperature, wind speed, humidity) are collected hourly from

three cities in China (Hangzhou, Ningbo, Wuxi). Also, terrain data set is taken

from OpenStreetMap with geographical shapes. Results show that adding terrain

features in the learning process doesnt make a significant improvement in prediction

for urban areas.

In [49], they implement a model called Flexible multimOdal tRAnsfer Learning

(FLORAL) that is based on multi-modal transfer learning in order to transfer knowl-

edge between cities (from Beijing to Shanghai). The data set contains four main

subjects; road networks (endpoints, length, level of capacity), Point of Interests

(POI) (name, address, coordinates, category of a venue), hourly meteorological

data (weather, temperature, humidity, barometer pressure) and taxi trajectories

from February 2nd to May 26th, 2014. The model classifies output as six categories

according to the air quality level. As a result, FLORAL outperforms baselines (some

of which use transfer methods) up to 50%.

Lastly, [50] uses Bidirectional Long Short-Term Memory and transfer learning to

predict air quality and compare its performance with other commonly seen models.

They conducted a case study in Guangdong, China. The data are collected from

all the monitoring stations in the city for three years and contain the hourly PM2.5

concentration. Transfer learning helps to improve the prediction accuracy of BLSTM

at larger temporal resolutions up to 40%.
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3. METHODOLOGY

The first aim of the thesis is to predict the concentration of pollutants in the next

hour in more than one location in a city at the same time. The second aim is to

transfer knowledge between data sets that have different distribution for air pollution

prediction accuracy in cities. The study can be split into three parts according to

the type of input-output representation:

Method-1: To predict the concentration of one pollutant, the 2-dimensional array

containing the information of one pollutant in past hours is input to the model.

Input consists of the historical data of one pollutant in all locations; output is the

predicted concentration of that pollutant in all locations in the next hour.

Method-2: To predict the concentration of one pollutant, the 3-dimensional array

containing the information of all pollutants in past hours is input to the model.

Input is the historical data of all pollutants in all locations; output is the predicted

concentration of one pollutant in all locations in the next hour.

Method-3: To predict the concentration of all pollutants at the same time, the 3-

dimensional array containing the information of all pollutants is input to the model.

Input is the historical data of all pollutants in all locations; output is the predicted

concentration of all pollutants in all locations in the next hour.

Time series data are provided from open data services that are offered by the Mu-

nicipality of Barcelona and the Republic of Turkey Ministry of Environment and

Urbanization. İstanbul, Kocaeli, and Barcelona are chosen in order to evaluate

the performance of the proposed methods in different cities. Although information

about air pollution is available for all cities, meteorological data are available only
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Table 3.1: Explanation of the methods according to the input-output type

Method Input Structure Input Output

Method-1 2-dimensional array

Historical information

of target pollutant

(univariate input)

Predicted value for

the concentration

of target pollutant

(univariate output)

Method-2 3-dimensional array

Historical information

of all pollutants and

meteorological data

(multivariate input)

Predicted value for

the concentration

of target pollutant

(univariate output)

Method-3 3-dimensional array

Historical information

of all pollutants and

meteorological data

(multivariate input)

Predicted values

for the concentration

of all pollutants

(multivariate output)

for İstanbul and Kocaeli. O3, NO2 and PM10 were selected as target pollutants

for the city of Barcelona, while PM10, SO2 and NOX were selected in the city of

Kocaeli. Since the information of all these pollutants is available in İstanbul data,

two separate time series databases have been created for İstanbul: (1) data set con-

taining features of the same pollutants as Barcelona and (2) data set containing

features of the same pollutants as Kocaeli.

In both air quality and meteorology data, there are “duplicate data” at the begin-

ning, which means that some consecutive hours have the same values. Firstly, all

duplicate data are cleaned and linear interpolation is applied to fill in missing values

in the data, then the data are normalized to scale the values into a certain range.

Data normalization is a method of preprocessing that scales the data to a certain

range. Data normalization has an important place in machine learning methods

since it reduces the data redundancy caused by the wide variation of the range of

the values in the data [51]. Numerical data obtained at different scales are scaled

within a specific range to make the distribution of the data regular. Thus, the bias

effect of the features with relatively larger magnitudes in the data set is removed.
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Without normalization, features with larger quantities would be more dominant on

the analysis results since the clustering depends on a distance measure.

There are two types of input for the neural network: 2D and 3D array. These input

structures hold both spatial and temporal features together. Where the 2D array

consists of only the historical information of target pollutants, the 3D array contains

all pollutants’ concentration and meteorological information. Thus, the model uses

both the interaction between different pollutants and the effects of meteorological

features (temperature, pressure, wind speed, and direction, etc.) on particles in a

location and neighboring locations. Table 3.2 explains the data properties used for

the methods in this thesis.

Table 3.2: Explanation of the data properties used for the methods

Properties Method-1 Method-2 Method-3

2D Input YES NO NO
Input Structure

3D Input NO YES YES

Normalized Data YES NO NO
Data Normalization

Non-Normalized Data YES YES YES

Meteorological Data NO YES YES

Transfer Learning NO YES YES

The first step of machine learning model design is to determine the layers and their

properties. Therefore, the number of layers, filter type and the number of filters,

and the number of hidden units are determined for the CNN+LSTM deep learning

model. Then, various pooling methods are added to the CNN part of the model (max

pooling, average pooling, etc.) and optimal architecture and hyperparameter values

are determined by train-testing with different activation functions (ReLU, sigmoid).

For transfer learning, weight transfer from the source domain to the target domain

is made by changing the fully connected layer which is the last learning layer of deep

neural network.
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3.1 Data

Barcelona Air Quality Data: Air quality historical data for Barcelona is taken

from The Open Data BCN which is a service managed by the Municipal Data Of-

fice [52]. Real-time hourly measurement is made for O3 (tropospheric ozone), NO2

(Nitrogen dioxide), PM10 (Suspended particles) by all the stations throughout Cat-

alonia. Note that the historical resources include only data from the stations in

Barcelona (Ciutadella, Eixample, Gracia, Palau Reial, Poblenou, Sants, Vall He-

bron). Data consist of hourly information from 06/13/2018 to 01/31/2019 and it is

collected from 3 sensors located in 7 different locations of Barcelona. This informa-

tion includes the location label of sensors, date and time, and the concentration of air

pollutants (O3, NO2, PM10). The distance between selected locations in Barcelona

is not more than 5 km.

Kocaeli and İstanbul Air Quality Data: Hourly historical data provided by

Republic of Turkey Ministry of Environment and Urbanization [53] contains the

concentration of various pollutants (Sulfur Dioxide(SO2), Nitrogen Oxides(NOX),

Tropospheric Ozone (O3), Particulate Matters (PM), etc.) and meteorological data

(temperature, relative humidity, air pressure, wind speed and direction) for cities

Kocaeli and İstanbul. The data are collected from sensors distributed in different

locations in each city. Kocaeli data are for the dates between 11/14/2017 17.00 and

4/11/2020 23.00 (total of 21103 hours) and İstanbul data are for the dates between

01/01/2015 00.00 - 04/11/2020 23.00 (total of 46272 hours). Kocaeli data consist

of information collected from 7 locations in the city (Alikahya, Dilovası, Gebze,

Gölcük, Körfez, Yalova, Yeniköy) and the data from 3 locations (Alikahya, Gebze,

Körfez) are chosen for this study. İstanbul data consist of information collected

from 7 locations in the city (Başakşehir, Esenyurt, Kağıthane, Silivri, Sultanbeyli,

Sultangazi, Şile) and the data from 3 locations (Silivri, Esenyurt, Sultangazi) are

chosen for this study. While selecting the locations in Kocaeli and İstanbul, access

to the information of target pollutants and missing data percentage were taken into

consideration. The approximate distance between selected locations in Kocaeli and
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İstanbul is as follows. In Kocaeli, the distance between Gebze and Körfez is 25 km,

the distance between Gebze and Alikahya is 18 km. As for İstanbul, the distance

between Silivri and Esenyurt is 37 km, the distance between Esenyurt and Sultangazi

is 17 km.

3.2 Time Series Data Set Preparation

3.2.1 Rolling-Window

For the time series problem, the “rolling-window” method [54] is used in order to

create time series input for the deep learning model. This method constructs one

sample for each time record t by using the values [t0 − d, t0) as the features of the

target value at t0. The example in Figure 3.1 shows how the rolling window method

works. If d and s represent the frame size and the step size respectively, the values

of the past d time record points are taken as features and the value of the time step

t0 is taken as the target value, then the frame is slid s steps for the next sample.

Figure 3.1: Rolling window method for the time series data
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3.2.2 Input Structure of CNN

After the rolling-window method, a 2D sample model (given in Figure 3.2) is con-

structed in order to be used as input of the Convolutional Neural Network.

Figure 3.2: mxn input matrix for Convolutional Neural Network where m is the

number of locations and n is the number of time step.

For the prediction with Method-1, the matrix in Figure 3.2 is input to the model to

obtain an output with mx1 size that represents the predicted values of concentration

of the pollutant in each location. Because of CNN’s ability to process 3D structures,

the input shape can be rearranged as given in Figure 3.3 where m, n, and k represent

the number of location, the number of the time step, and the number of pollutants

respectively. The 3D input structure is used for the prediction with Method-2 and

Method-3.

3.3 Artificial Neural Networks

Artificial Neural Networks are computational models that simulate the way biolog-

ical neural systems perform and composed by a set of artificial neurons connected

to each other. Each connection between neurons has a weight that is the strength

of the connection. Weights representing the synapses in biological neural networks

decide how much influence the input has on the output. The goal of the training

process is to update those weights to decrease the loss (error) at the output. Bias

(or offset) is an extra input to neurons and used with the purpose that there is an
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Figure 3.3: mxnxk input matrix for Convolutional Neural Network

activation in the neuron even when all the inputs are zero. The activation func-

tion (or transfer function) is used to introduce nonlinearity to neural networks. In

literature, there are several activation functions such as hyperbolic tangent (tanh),

sigmoid, Rectifier Linear Unit (ReLU).

yi = `i(
∑
j

wijvj) (3.1)

The working principle of a neuron in the network is given in Figure 3.4 where `i(.)

is the activation function of the neuron i, wij is the weight from node j to node i.

The output value of the neuron j is calculated as the weighted sum of the values of

the neuron’s input nodes is passed through the activation function (Equation 3.1).
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Figure 3.4: Working principle of a neuron

Feedforward networks and Backpropagation:

Figure 3.5 is a representative of a feedforward neural network, xi is the ith input and

yj is the jth output. The input layer is the first layer of the network, takes input

signals to pass them on the next layer without any operations applied to the input

values. Hidden layers are the collection of neurons that apply different transforma-

tions to the data. The last hidden layer transfers the values to the output layer.

Each neuron in a fully connected layer connects to every neuron in the next layer.

The output layer is the last in the neural network, gives the prediction/classification

result as output.

Figure 3.5: Feedforward Neural Network structure
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Learning is a process performed by iteratively updating each one of the weights in a

neural network to minimize the loss function that formulates the difference between

desired and actual values for a sample of data. Input values are fed to the feed-

forward neural network and the prediction value is obtained from the output layer.

The output is then compared with the target value to calculate error by using a loss

function.

Back-propagation is a training algorithm that uses the derivative of the loss function

with respect to each parameter in the neural network [55]. For back-propagation,

the derivative of the error is calculated by using the chain rule, then the derivatives

are used to calculate the gradients of the other layers. This process is repeated until

all gradients for each weight in the neural network is done. The learning rate is

a hyperparameter used in optimization, adjusts the amount of the weight update.

The gradients calculated by the back-propagation are multiplied by the learning rate

and the multiplication is subtracted from the weight values to reduce the error.

Gradient descent is an optimization algorithm that iteratively updates the learnable

parameters of the network to minimize the loss. The aim is to find the direction

in which the loss function has the steepest rate of increase. Then, the parameters

are updated in the negative direction of the gradient with a step size determined

according to the learning rate.

The gradient update is calculated with Equation 3.2 where ∆wj is the weight update

computed as in Equation 3.3:

wj := wj + ∆wj (3.2)

∆wj = −η ∂`
∂wj

(3.3)
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Generally, stochastic gradient descent (SGD) method is used to train the neural

networks by mini-batches, it is also called mini-batch gradient descent. Where n

is defined as the mini-batch size, the average gradient of the loss function `i with

respect to weight wj is calculated by Equation 3.4.

∂`

∂wj

=
∂

∂wj

1

n

n∑
i=1

`i (3.4)

The process steps to calculate the gradient in a feedforward neural network are as

follows:

i. Propagate a sample forward through the network to produce a value vj at each

neuron and output ŷ at the last layer.

ii. Compute a loss function value `(y, ŷ) at each output node k.

iii. Calculate δk for each output node k by the Equation 3.5:

δk =
∂`(yk, ŷ)

∂ŷ
`′k(αk) (3.5)

iv. Calculate δj for each node in the prior layer:

δj = `′(αj)
∑

δkwkj (3.6)

δj represents the derivative of the total loss function concerning that node’s incoming

activation αj, can be expressed as ∂`/∂αj.

∂`

∂wjj′
= δjvj′ (3.7)

A CNN+LSTM deep learning model structure is given in Figure 3.6 where the

feature maps obtained from CNN are input to the LSTM after flattening.
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Figure 3.6: CNN+LSTM Deep Learning structure

3.3.1 Convolutional Neural Network (CNN)

Convolutional Neural Network is a type of Artificial Neural Networks and initially

used to process image data. CNN is a category of deep learning that is the structure

of a multilayer perceptron with more than one hidden layer. Hidden layers of a

typical CNN consist of a convolutional layer, pooling layer, activation function, and

flatten layer.

Convolutional Layer: Convolutional layer is a set of neurons that act like convo-

lutional filters to generate feature maps. Input data are split into small blocks in

this layer, and each block convolves with a specific set of weights. A different set of

features are obtained by sliding convolutional filter on the input data with the same

weights. Equation 3.8 displays the convolution operation:

F k
l = (A ∗Kk

l ) (3.8)

where A is the input matrix, Kk
l represents the lth convolutional filter of the kth

layer, F k
l represents the output feature map of the convolutional layer.

Pooling Layer: Pooling is a local operation that reduces the spatial size of the

representation to reduce the number of parameters. This layer determines the similar

information in the local region and outputs the dominant response. Features that
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are the output of the convolutional layer can occur at different locations in the

image. Thus, their exact location becomes less important. The model uses the

features’ approximate position relative to others. Pooling provides generalization

via extracting similar information and decrease the size of feature maps.

Pl = fp(F
l) (3.9)

The calculation for pooling is given in Equation 3.9, where F l and Pl represent the

lth input and outputfeature maps and fp(.) is the pooling function.

Activation Function: Activation function is used for learning of complicated and

nonlinear complex patterns. The calculation for activation function is defined in

Equation 3.10 where fA(.) is a nonlinear activation function which is used at the

output of convolutional layer, F k
l , and T k

l is the output of the kth layer for lth input.

T k
l = fA(F k

l ) (3.10)

If a linear function is defined for activation, a linear calculation is made no matter

how many neurons there are in the layer. Therefore, having a nonlinear activation

function is an essential part of the neural network. Sigmoid is a nonlinear activation

function (Equation 3.11) that is used where the output is desired between 0 and 1.

The graph of the sigmoid function is given in Figure 3.7a.

σ (z) =
1

1 + e−z
(3.11)

ReLU is a commonly used activation function in deep neural networks and it takes

the range [0, ∞). f(z) is zero when z is less than zero and f(z) is equal to z when
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z is greater than or equal to zero (Equation 3.12. The graph of ReLU function is

given in Figure 3.7b.

f (z) = max (0, z) (3.12)

The graph of the sigmoid activation function

The graph of the ReLU activation function

Figure 3.8: Two nonlinear activation functions used in neural networks

Flatten Layer: Flatten layer transforms the multi-dimensional array of features

into a vector before the fully connected layer.

Fully Connected Layer: The fully connected layer analyzes the output of all

previous layers globally by making a nonlinear combination of features, it is imple-

mented at the end of the network for the classification/regression task.

3.3.2 Recurrent Neural Networks

Feed-forward networks only process information forward to remember what they

have learned during training. On the other hand, in recurrent networks, they re-

member what they have learned from prior inputs. Thus, the result depends not
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only on the current information but also on the previous information. Recurrent

structures differ from feed-forward structures since they use the output as input in

the next process. The connections between nodes are set to exhibit temporal dy-

namic behaviour. RNNs have stored states called gated state or gated memory that

can be replaced by another network or graph (it is a part of LSTM).

The reason they have memory is that an input set coming in a specific order has

a meaning for the output. Feed-forward networks are inadequate on this type of

data (such as speech or handwritten text). In the RNNs, the output is influenced

not only by the weights applied on inputs but also by a hidden state vector that

represents the context based on prior inputs and outputs. Therefore, the network

can produce different outputs by the same input that depends on the previous inputs

in the series.

Recurrent Neural Network (RNN) has loops that allow information to pass from one

step to the next. Figure 3.9 displays a loop of RNN with hidden state A, input xt

and output ot, and an RNN structure that is made by unrolled loop.

Figure 3.9: Recurrent Neural Network structure

xt is input and ot is the output at time step t, where At is the hidden state (or

called as memory) of the network. At captures information about the sequence and

performs its operation based on the previous state and the current input by using a

nonlinear function. The output ot and xt+1 are then used as the input for the next

step t+ 1. The network keeps remembering the context during training in this way.
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Generally, Deep Neural Networks (DNNs) use different parameters at each layer.

However, RNNs use the same parameters as weights (W ) in all steps to perform the

same task at each layer of the network with different inputs.

In RNN, the distance between the relevant information and the point where it is

needed to make a prediction can be very wide [56]. Hidden state activations of RNN

are affected by other local activations closest to them. That is the reason RNN has a

short-term memory. In this situation, RNN cannot learn this long-term dependency

since this problem causes vanishing/exploding gradient problem. Long Short-Term

Memory (LSTM) is used to capture long-term dependencies in a sequence data.

3.3.3 Long Short-Term Memory

RNNs use one nonlinear function in each hidden state through the repeating network

model. Unlike RNNs, LSTMs use more than one nonlinear function at the hidden

state A to remember information for long periods and this more complex unit is

called a memory cell.

The repeating module in an LSTM contains four interacting layers connected in a

special way, which are also called as gate. Information received from outside can

be stored, written to the memory cell, and read via these gates. These gates decide

when information is stored, written, read, or deleted by the cell. The diagram in

Figure 3.10 represents a basic RNN cell representation, predictions are generated

via a combination of previous predictions and new information. Their units (called

memory, selection, and ignoring) are added to this cell to make an LSTM cell model.

Each unit has its neural network and nonlinear function.

In the second diagram (Figure 3.11), a memory is added to the cell to decide by

using previous information for a long time. The signs of + and x express element-

based addition and element-based multiplication. A copy of those predictions is held

on by the memory unit. The multiplication gate decides which data and how much

of it will be used by multiplying weights and the information in memory. While
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Figure 3.10: An RNN cell model

Figure 3.11: The RNN cell model with memory unit

some of them are forgotten, some of them are remembered and added back to the

prediction.

In the third diagram (Figure 3.12), the selection unit is added to the cell and acts like

a filter that keeps memories inside and let predictions to get out. New information

and previous predictions are used to decide what should be kept internal and what
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Figure 3.12: The RNN cell model with memory and selection units

Figure 3.13: An LSTM cell model

should be released as a prediction. Thus, a few predictions are selected to be released

as the prediction for that moment. The last unit, ignoring unit, is added in diagram-

4 (Figure 3.13) to set apart information that is not relevant immediately, thus they

cannot affect the predictions in memory that are going forward.

3.4 Transfer Learning

A domain D = {χ, P (X)} is defined by two parts:
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i. Feature space χ

ii. Marginal probability distribution P (X), where X = {x1, x2, . . . , xn} ∈ χ

where X denotes a particular learning sample where χ is the space of all possible

feature vectors, and xi is the ith feature vector where n is the number of feature

vectors in X. A task T = {Y, f(.)} is defined by two parts:

i. A label space Y = {y1, y2, . . . , ym}

ii. An objective function f(.) which is not observed but can be learned from the

training data by pairs {xi, yi}

where f(.) predicts the corresponding label yi ∈ Y of a new instance x, and f(x)

can be defined as f(x) = P (y|x).

Within the scope of transfer learning, there are a source domain DS and a target

domain DT , defined in the following equations.

DS = {(xS1 , yS1), . . . , (xSn , ySn)} (3.13)

DT = {(xT1 , yT1), . . . , (xTn , yTn)} (3.14)

The source instance and its corresponding class label are denoted by xSn ∈ χS and

ySn ∈ YS. The target instance and its corresponding class label are given as xTn ∈ χT

and yTn ∈ YT . The source task and the target task are denoted as TS and TT . The

source prediction function and target prediction function are represented as fS(.)

and fT (.).

Transfer learning aims to improve the learning of the target predictive function fT (.)
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in given target domain DT using the knowledge in source domain DS and source

task TS where DS 6= DT or TS 6= TT where the target task is given as TT .

The condition DS 6= DT refers that either χS 6= χT or PS(X) 6= PT (X), and

TS 6= TT refers that either YS 6= YT or fS(.) 6= fT (.). If the target domain is same as

source domain and their learning tasks are the same, the learning problem becomes

a traditional machine learning problem [57].

Transfer learning can be classified into three categories [58]: (1) inductive transfer

learning, (2) unsupervised transfer learning, and (3) transductive transfer learning.

In inductive transfer learning the source task and target task are different from

each other, (TS 6= TT ). Unsupervised transfer learning is similar to inductive trans-

fer learning but focuses on unsupervised learning tasks in the target domain. In

transductive transfer learning source and target tasks are the same while the source

domain is different but related to the target domain (TS = TT , DS 6= DT ).

According to different relations between the source domain and target domain, trans-

ductive transfer learning is classified into two parts. (a) The feature space of the

source domain is different from the target domain (χS 6= χT ). (b) There is no dif-

ference in source and target domains but the marginal probability distributions of

input data are different (χS = χT , PS(X) 6= PT (X)). Note that, in the case where

χS = χT it is called as homogeneous transfer learning, while the case where χS 6= χT

is defined as heterogeneous transfer learning [59].
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Figure 3.14: Representation of transfer learning between two neural network

models

3.5 Performance Metrics

There are two common performance metrics used to evaluate the prediction perfor-

mance of the system.

Root Mean Square Error (RMSE) is a common performance measure by calculating

as following equation:

RMSE =

√√√√ 1

n

n∑
i=1

(y − ŷ)2 (3.15)

In Equation 3.15, n represents the number of instances, where y and ŷ are the actual

and predicted values of the target feature respectively.

Mean Absolute Error (MAE) measures average magnitude of the errors without

considering their direction. Equation 3.16 gives the calculation of MAE:
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MAE =
1

n

(
n∑

i=1

|ŷi − yi|
)

(3.16)

ŷi and yi are the prediction and actual values for the ith hour, n is the number of

measurements.
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4. IMPLEMENTATION

The flowchart is shown in Figure 4.1 for the proposed air pollution prediction system

in this thesis. Firstly, the data were preprocessed for cleaning and interpolation, and

the interpolated data were normalized because of the variety of variables’ range.

Then, the interpolated time series data set was created according to the certain

frame size values with different data separation methods. After the 2-dimensional

and 3-dimensional input structures are defined as the CNN input, a deep learning-

based time series prediction system has been implemented using the CNN+LSTM

model by using MATLAB Deep Network Designer Tool. Hyperparameter tuning

was performed to increase the prediction performance of the model, the model was

applied to the data of the three cities with various hyperparameter values to obtain

the optimal network properties. Lastly, the pre-trained neural network, which had

been trained with the previous data of a city, was run with transfer learning on

another city’s data that has a different distribution. RMSE and correlation coeffi-

cient between target and predicted outputs are measured to evaluate the prediction

performance.

The model hyperparameters were optimized during the training and test processes.

After deciding on neural network properties and hyperparameter values, the model

was run 15 times for each method to select the neural network that reaches the

lowest validation RMSE to use on test data. RMSE and correlation coefficient for

the test were measured to evaluate the prediction performance of the model. If the

test RMSE value dropped to the desired level, the results were simulated. Otherwise,

the network was redesigned and trained by changing properties and hyperparameters

such as hidden layer type and number, neuron number, activation function.
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Method-1: A 2-dimensional array containing the information of target pollutant’s

concentration in past hours is input to the prediction model to obtain a predicted

value for the concentration of that pollutant in the next hour.

Method-2: A 3-dimensional array containing the information of all pollutants’ con-

centration and meteorological information in past hours is input to the prediction

model to obtain a predicted value for the concentration of the target pollutant in

the next hour.

Method-3: A 3-dimensional array containing the information of all pollutants’ con-

centration and meteorological information in past hours is input to the prediction

model to obtain predicted values for the concentration of all pollutants in the next

hour.

It is mentioned that all methods output the predicted concentration of target pol-

lutants in all locations at the same time.

Firstly, Method-1 was employed for non-normalized Barcelona data to predict the

actual concentration value of the target pollutant. Then it was performed for the

normalized data to compare the performance with the results of non-normalized

data. Later, all three methods were performed with normalized data for each city.

Besides, both air quality data and meteorological data were used for Kocaeli and

İstanbul (in Method-2 and Method-3) to select the appropriate features for the best

prediction performance. Therefore, temperature, relative humidity, air pressure,

wind speed, and wind direction were added to the input in Method-2 and Method-3

along with the concentration of pollutants. However, meteorological data could not

be used in the studies since there is only air pollution information in Barcelona data.

For transfer learning, deep neural networks that were successful with Barcelona and

Kocaeli data were tested on İstanbul data by transferring weights. Also, transfer

learning performance has been evaluated in cases where different pollutants’ informa-

tion exist in the target domain and source domain (for example, between Barcelona

and Kocaeli).
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Figure 4.1: Flowchart of proposed air pollution prediction system
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4.1 Data Preprocessing

4.1.1 Linear Interpolation

Linear interpolation is a curve fitting method to find a value between two points on

a curve by using linear polynomials. There are two known value pairs (x1, y1) and

(x2, y2), the point (x0, y0) between those two points is specified with Equation 4.1:

y0 =
(y2 − y1)
(x2 − x1)

(x2 − x0) + y1 (4.1)

In the data preprocessing phase, all duplicate data were cleaned, then linear in-

terpolation was applied in places where there was missing values for at most five

consecutive points. If the number of consecutive missing points were more than five,

they are left as missing. A missing value rate was decided as a threshold to deter-

mine which locations were going to be used for pollutant concentration prediction.

The histograms are given in Figures 4.2, 4.3 and 4.4 and the time series graphs are

given in Figures 4.5, 4.6 and 4.7 for Barcelona.

Figure 4.2: Histogram for the concentration of O3 in Barcelona
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Figure 4.3: Histogram for the concentration of NO2 in Barcelona

Figure 4.4: Histogram for the concentration of PM10 in Barcelona
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Figure 4.5: Hourly concentration of O3 in Barcelona

Figure 4.6: Hourly concentration of NO2 in Barcelona
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Figure 4.7: Hourly concentration of PM10 in Barcelona

4.1.2 Data Normalization

Min-Max Normalization:

The redundancy effect is that the features with very large values relative to other

features have a big numerical effect on weight update during the training of the

network. It has a negative impact on the metrics used to measure prediction success

performance after testing. In order to solve these problems, the data were normalized

with the min-max normalization method and time series input-output data sets were

created with the normalized data.

Min-max normalization is a robust technique that converts data to a common range.

Based on the min-max normalization, the smallest and largest values become equal

to 0 and 1 respectively, and other values in the data set are spread to the interval

[0, 1] by Equation 4.2:

k′ =
(k −min(k))

max(k)−min(k)
(4.2)
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Where k is the original value and k′ is the normalized value, max(k) and min(k)

are also the maximum and the minimum values in the data set respectively.

4.2 Hyperparameter Tuning

Hyperparameter is a variable that is set before applying the learning algorithm to

the data. Hyperparameters can be related to model selection tasks such as topology

and size of the network, or the optimization and training process such as the learning

rate. Hyperparameters and their domain/range are given as follows.

Frame Size: Frame size is taken as integer values in the interval [8, 15].

Step Size: The step size of the time series sample is taken as 1 in this study.

Data Separation: Data can be split by 70%-15%-15% or 80%-10%-10% for train-

ing, validation, and test data sets.

Sample Selection: There are three sample selection methods: random, sequen-

tial and consecutive. Random selection means that when the data split into sets,

training, validation and test samples are selected randomly from the data. Figure

4.8 shows the sequential and consecutive selection methods. Sequential validation

type refers to the selection of validation samples sequentially from the training data

set by using validation frequency where the data split into training and test consec-

utively. As for consecutive validation type, the data are split into three pieces for

training, validation and test respectively.

Validation Frequency: Validation frequency is the number of iterations between

evaluations of validation metrics and taken as 10, 15 and 20 respectively. It also

refers to the period of selecting the validation sample from the training set when

the sample selection type is sequential.

Mini-batch Size: Mini-batch size per iteration is taken as 30, 70, 100, 150 and
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200 for training progress according to the amount of the time series data set.

Number of the epoch: In this study, the early stopping method is used to de-

termine when to stop training the model. The training process is stopped if the

validation error has not improved in the previous consecutive epochs.

Number of Convolutional Layer: The CNN part of the model is constructed

with one, two and three convolutional layers respectively.

Pooling Layer: The CNN part of the network is built without a pooling layer,

with an average pooling layer, and with a max-pooling layer.

Filter Size: In the CNN part of the model, the filters with size 2x2 and 3x3 are

used.

Number of Filters: In the CNN part of the model, the number of filters is taken

as 4, 5, and 10.

Number of LSTM Layer: The LSTM part of the model is constructed with one

and two LSTM layers.

Number of Hidden Units in LSTM Layer: The number of hidden units is

taken as 25, 50, 75, 100, 150 and 200.

Activation Function: Rectifier Linear Unit (ReLU), hyperbolic tangent (tanh)

and sigmoid are used as activation functions.

Learning Rate: 0.001, 0.005, 0.01 are taken as learning rate.
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Figure 4.8: Consecutive and sequential sample selection types
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5. RESULTS

A deep neural network structure has been developed to predict future concentrations

of air pollutants by using pollutant concentration and meteorological information

from past hours. For this purpose, the layers and their properties (the number of

layers, the number of the filter, filter size, type of pooling, type of activation function,

the number of the hidden neuron) with the best RMSE results were determined. The

model structure of the proposed CNN+LSTM deep learning prediction model and

its properties are given in Table 5.1 where the parameters are as follows:

• m: number of locations

• n: number of time steps

• k: number of features

• nk: number of convolutional filters

• nl: number of LSTM units

• no: number of neurons in fully connected layer.

Also, adding a pooling layer did not improve the success of the model. Hence,

it caused a higher RMSE and unstable training performance. Since the pooling

layer is generally used for a huge input data structure (such as an image with high

resolution) to reduce the information to select the representative features, it loses

the main features of a smaller input data.

The deep learning model was run 15 times for all combinations of hyperparameter

values to predict the pollutant concentration by each method. Then the best results

were chosen according to the lowest RMSE values, test RMSE and the correlation

coefficient were measured. As a result, the average of test RMSE with the random
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Table 5.1: Proposed deep learning model’s layers and their properties

Layer

Number

Layer

Name
Layer Type Properties

1 input layer Sequence Input
Sequence input with

mxnxk dimensions

2 fold Sequence Folding Sequence folding

3 conv 1 Convolution
nk 2x2 convolutions

with stride [1 1] and padding ’same’

4 activation 1 ReLU ReLU

5 conv 2 Convolution
nk 2x2 convolutions

with stride [1 1] and padding ’same’

6 activation 2 ReLU ReLU

7 unfold Sequence Unfolding Sequence unfolding

8 flatten Flatten Flatten

9 lstm 1 LSTM
LSTM with nl hidden

units

10 activation 3 ReLU ReLU

11 fc Fully Connected
no fully connected

layer

12 activation 4 ReLU, Sigmoid ReLU, Sigmoid

13 regression Regression Output mean-squared-error

selection method is lower than the results with consecutive and sequential sample

selection methods. Also, the learning rate was taken as 0.005 because it generally

reached the lowest RMSE.

The main purpose of using ReLU after the fully connected layer is to eliminate

negative values since the concentration of pollutants in the air cannot be negative.

When Method-1 was performed for prediction with non-normalized data by using

ReLU, the correlation between the target and predicted values are better than the

results done with normalized data. However, ReLU causes prediction result to

exceed target value. To prevent this problem, the sigmoid activation function was
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used at the end of the fully connected layer, thus the prediction results were kept

in the range [0,1]. Although the use of sigmoid function in the last layer could not

capture the peak points in the time series prediction, the results are better than

results with ReLU. Moreover, the neural network was run by setting the activation

function of each hidden layer as the sigmoid. Results show that using sigmoid

in each layer causes the prediction model to fail. In conclusion, compared to other

pollutants, the model has lower test RMSE for the PM10 concentration in Barcelona,

Kocaeli, and İstanbul.

5.1 Method-1

In order to evaluate the results of the Method-1, 2D samples from non-normalized

Barcelona data were produced and each one’s historical information was used to

predict the concentration in µg/m3. The neural network with the best validation

RMSE value was tested and performance metrics were calculated. The test RMSE

values are 37.29, 29.58, and 13.87 for O3, NO2 and PM10 respectively while the

correlation coefficients are 0.87, 0.79, and 0.96. A scatter plot for the prediction

result of PM10 concentration with the best performance is in Figure 5.1, the graph

of the predicted and target values are given in Figure 5.2.

In the second stage, the data of Barcelona was used for normalized values, and

the same process was repeated for the new data sets, results with using ReLU and

sigmoid after fully connected layer is shown in Figure 5.3 and Figure 5.4.

Because of the normalized data by the min-max normalization method, the target

values are between 0 and 1. Although using the ReLU activation function after

the fully connected layer eliminated the negative values resulting from prediction, it

continued to hold high values. Therefore, when the predicted value is higher than

the target value, ReLU holds this exceeding value. On the other hand, sigmoid

limits the prediction values obtained after the fully connected layer to the range [0,

1]. In order to solve the problem of ReLU, sigmoid is set as the activation function
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Figure 5.1: Results of Method-1 for the prediction of PM10 concentration in

Barcelona (with non-normalized air pollution data)

Figure 5.2: Graph of the predicted and target values for the prediction of PM10

concentration in Barcelona (with non-normalized air pollution data) by Method-1
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of the last learning layer in the designed neural network. Sigmoid gave the best

performance metrics values.

Figure 5.3: Results of Method-1 for the prediction of PM10 concentration in

Barcelona (with normalized air pollution data)

Figure 5.4: Graph of the predicted and target values for the prediction of PM10

concentration in Barcelona (with normalized air pollution data) by Method-1

The test RMSE with sigmoid was obtained as 0.06, 0.09 and 0.06 for O3, NO2 and

PM10 respectively where the test RMSE with ReLU was observed as 0.28, 0.39 and

0.42.
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5.2 Method-2

3D samples were created from normalized data to predict the concentration of one

target pollutant in the next hour by using the historical information of all pollutants

in a city’s data. The pollutants have different concentration value ranges and the

normalization prevents the effect of numbers that are too large compared to the

others during weight update. Also, since sigmoid’s ability to limit the prediction

values to a range between 0 and 1, the use of sigmoid instead of ReLU in the fully

connected layer decreases the test RMSE. The test RMSE was calculated as 0.07

for Barcelona and 0.09 for Kocaeli, the relationship between target and predicted

values are shown in Figure 5.5 for Barcelona and Figure 5.7 for Kocaeli.

Figure 5.5: Scatter plot of target and predicted concentrations for PM10 in

Barcelona (with air pollution data) by Method-2 and Method-3

İstanbul data consist of information about five pollutant’s concentration (O3, NO2,

PM10, SO2, NOX). To compare the prediction performance of the proposed deep

learning model in three cities, two different time series data sets were prepared

from İstanbul data. While, the first time series data set was created from the

information of the same pollutants with Barcelona (O3, NO2, PM10), the second

data set was created by using the information of the same pollutants with Kocaeli

(PM10, SO2, NOX). The test RMSE values for Dataset-1 and Dataset-2 in İstanbul

were measured as 0.08 and 0.09 respectively. The relationship between target and
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Figure 5.6: Graph of the predicted and target values for the prediction of PM10

concentration in Barcelona (with normalized air pollution data) by Method-2 and

Method-3

predicted values in İstanbul is shown in Figure 5.9 for Dataset-1 and in Figure 5.11

for Dataset-2.

Figure 5.9: Scatter plot of target and predicted concentrations for PM10 in

İstanbul (with air pollution data) by Method-2 and Method-3 (Dataset-1)
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Figure 5.7: Scatter plot of target and predicted concentrations for PM10 in

Kocaeli (with air pollution data) by Method-2 and Method-3

Figure 5.10: Graph of the predicted and target values for the prediction of PM10

concentration in İstanbul (with Dataset-1) by Method-2 and Method-3

5.3 Method-3

Method-3 was performed to predict the concentration of all pollutants at the same

time in a city. The input contains the historical information of all air pollutants in

all locations, and the target is the concentration of all pollutants in the next hour.

3D samples created with only normalized pollutant concentrations were input to
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Figure 5.8: Graph of the predicted and target values for the prediction of PM10

concentration in Kocaeli (with normalized air pollution data) by Method-2 and

Method-3

the system. Sigmoid is used instead of ReLU as the activation function in the fully

connected layer since it provides a decrease in the test RMSE due to its ability to

limit the prediction values to a range between 0 and 1.

Where test RMSE in Barcelona was calculated 0.07, the test RMSE in Kocaeli was

calculated as 0.10 for Method-3. The relationship between target and predicted

values are shown in Figure 5.5 for Barcelona and Figure 5.7 for Kocaeli. The graph

of the target-predicted values are given in Figure 5.6 for Barcelona and Figure 5.8

for Kocaeli.

As for the results of İstanbul, the test RMSE was measured as 0.09 for Dataset-1

and 0.10 for Dataset-2. The relationship between target and predicted values in

İstanbul is shown in Figure 5.9 for Dataset-1 and Figure 5.11 for Dataset-2. The

graph of predicted-target values in İstanbul are shown in Figure 5.10 for Dataset-1

and Figure 5.12 for Dataset-2.
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Figure 5.11: Scatter plot of target and predicted concentrations for PM10 in

İstanbul (with air pollution data) by Method-2 and Method-3 (Dataset-2)

Figure 5.12: Graph of the predicted and target values for the prediction of PM10

concentration in İstanbul (with Dataset-2) by Method-2 and Method-3

Results with Meteorological Information

To observe the contribution of meteorological information to the prediction per-

formance, past meteorological information such as temperature, relative humidity,

air pressure, wind speed, and wind direction were added to the input as features.

CNN+LSTM deep learning model was used for prediction, the results were obtained
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with sigmoid after fully connected layer. Meteorological data were used for Kocaeli

and İstanbul since they are available for only these two cities. The results given in

Table 5.2 were observed when sigmoid was used as the activation function for the

last learning layer. For the prediction of PM10 concentration, using meteorological

information (MI) data with air quality (AQ) data reduced the RMSE value by 10%

with Method-2 and Method-3 in İstanbul. However, it increased RMSE by 12% with

Method-2 and 30% with Method-3 in Kocaeli. For the prediction of SO2, adding

MI to the input caused a 15% increase with Method-2 but a 10% decrease with

Method-3 in Kocaeli. On the other hand, there was any change in the test RMSE

in İstanbul. As for the prediction of NOX concentration, the use of MI data with

AQ data caused an increase in both two cities. The RMSE increased by about 45%

in İstanbul and 25% in Kocaeli with Method-2; it increased by 33% in Kocaeli and

10% in İstanbul with Method-3.

Table 5.2: Test RMSE results for Kocaeli and İstanbul with air quality (AQ) and

meteorological information (MI) data

Kocaeli İstanbul
Pollutant Study

with AQ Data with AQ+MI Data with AQ Data with AQ+MI Data

Method-2 0.08 0.09 0.08 0.07
PM10

Method-3 0.07 0.09 0.09 0.08

Method-2 0.07 0.08 0.09 0.09
SO2

Method-3 0.09 0.08 0.10 0.10

Method-2 0.08 0.10 0.09 0.13
NOX

Method-3 0.09 0.12 0.10 0.11

5.4 Transfer Learning

The source domain and target domain were determined to create a deep neural

network model supported by transfer learning. Transductive transfer learning was

selected for the transfer of the weights of the pre-trained CNN+LSTM model. In

transductive transfer learning, the source task and target task are the same, the

source domain and target domain are different but related. Since the model has

better prediction performance for PM10 concentration than other pollutants in all
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cities according to the test RMSE, transfer learning was used to predict PM10

concentration by methods Method-2 and Method-3. Barcelona and Kocaeli were

selected as the source domain where the weights transfer from, to obtain a more

accurate prediction system on İstanbul data, then weight transfer was done between

Barcelona and Kocaeli.

Firstly, pre-trained networks that had been trained with the source domain were

applied to target domains without any training process with the training data set of

the target domain. Then, the fully connected layer, which is the last learning layer

of the pre-trained network, was replaced with a new one. The network with the new

fully connected layer was trained with the target city’s training data. The learning

rate was set as 0.001 for the training of transfer learning training.

The graphs in Figure 5.14 show the predicted and target values for PM10 concen-

tration in İstanbul with transfer learning, and Figure 5.13 shows the relationship

of target-predicted values with transfer learning results. Kocaeli data are selected

as the source domain and Dataset-2 for İstanbul is selected as the target domain.

Test RMSE values of transfer learning for Method-2 and Method-3 were calculated

as 0.12 and 0.09 respectively.

There are three main results from studies with transfer learning. Firstly, testing

pre-trained neural networks on the target domain without any training process with

the target city’s data has better prediction performance than the studies done with

a short training process with the target city’s data. Secondly, weight transfer from

Kocaeli to İstanbul reached more accurate test results than the weight transfer from

Barcelona to İstanbul. Thirdly, transferring weights between Barcelona and Kocaeli

did not show any improvement of performance to predict PM10 concentration by

Method-2 and Method-3.
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Figure 5.13: Scatter plot for PM10 concentration in İstanbul by Method-2 with

transfer learning, pre-trained neural network with Kocaeli data are tested on

İstanbul data.

Figure 5.14: Scatter plot for PM10 concentration in İstanbul by Method-3 with

transfer learning, pre-trained neural network with Kocaeli data are tested on

İstanbul data.
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6. CONCLUSION

In this study, a CNN+LSTM deep neural network model was developed to predict

the future concentrations of air pollutants in different cities based on spatial and

temporal features.

Air pollution is one of the most important reasons for early death diseases such as

heart and lung diseases, stroke, lung cancer, asthma. Some air pollutants like O3

and Nitrogen Oxides (NOX) affect ecosystems and vegetation directly, get damage

to water and soil that support the ecosystem. Also, air pollution has socio-economic

effects like a decrease in the lifetime of individuals, an increase in medical cost,

reducing productivity.

In recent years, the rapid development of IoT and smart cities make accurate envi-

ronmental monitoring possible with updates on air pollution in real-time. Artificial

intelligence-based air quality prediction models for smart cities can process data that

comes from several IoT sensors placed over a large area and use machine learning

algorithms to learn the correlation between features and make predictions accu-

rately. The design of a reliable model needs to consider both spatial and temporal

features to detect the regional historical trend of air pollution and the interaction

of pollutants between regions.

Table 6.1 explains three different methods used in this study according to the in-

put and output. Method-1 uses one pollutant’s historical information to predict

the concentration of that pollutant in the next hour. Method-2 uses historical in-

formation of three pollutants as input and outputs the concentration of one target

pollutant in the next hour. Then, meteorological features are added to observe the
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contribution of meteorological conditions to the prediction accuracy. In Method-3,

the input contains the historical information of three pollutants, and the output is

the concentration of three pollutants in the next hour, and the change in results is

observed by adding meteorological data to the input. All three methods give the

output as the concentration of the target pollutant/pollutants in all locations at the

same time.

Table 6.1: Explanation of the methods used in the implementation

METHOD INPUT STRUCTURE INPUT OUTPUT

Method-1 2-dimensional array

Historical information

of one pollutant

(univariate input)

Predicted concentration of

one pollutant in the next hour

(univariate output)

Method-2 3-dimensional array

Historical information

of three pollutants

(multivariate input)

Predicted concentration of

one pollutant in the next hour

(univariate output)

Method-3 3-dimensional array

Historical information

of three pollutants

(multivariate input)

Predicted concentration of

three pollutants in the next hour

(multivariate output)

First of all, Barcelona, Kocaeli, and İstanbul were chosen as target cities of the

study. Air quality data included in the open-source of Barcelona’s City Hall Open

Data Service contains hourly air pollution information between June 13, 2018, and

January 31, 2019. In this data, the concentrations of the three pollutants are given

in µg/m3. The data for Kocaeli and İstanbul are released as an open-source data

bank of the Republic of Turkey Ministry of Environment and Urban. The hourly

data contain information in between 11/14/2017 17.00 - 4/11/2020 23.00 for Kocaeli

and in between 01/01/2015 00.00 - 04/11/2020 23.00 for İstanbul. There is air

quality information (concentration of pollutants in µg/m3) and meteorological data

(temperature, relative humidity, air pressure, wind speed, and wind direction).

Especially in Barcelona, the distances between locations (Eixample, Palau Reial,

Vall Hebron) are not so far as to change the meteorological information between loca-

tions, therefore, only air pollution data were input to the deep learning model. In ad-

dition, the distance between selected three locations in the other two cities (Körfez,
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Gebze and Alikahya for Kocaeli; Silivri, Esenyurt, and Sultangazi for İstanbul) is

so much that it can lead to changes in the values of meteorological features. Table

6.2 shows the hyperparameter values that are set to reach the optimal prediction

performance in each city.

Table 6.2: Optimal hyperparameter values for the air pollution prediction model

Hyperparameter Barcelona Kocaeli İstanbul

Data Separation

(Training, Validation, Test)
80%-10%-10% 70%-15%-15% 70%-15%-15%

Sample Selection random random random

Number of Convolutional

Layer
2 2 2

Number of Convolutional

Filter (for one layer)
5 10 10

Number of LSTM Layer 1 1 1

Number of LSTM Unit

(for one layer)
75 100 125

Activation Function Sigmoid Sigmoid Sigmoid

Mini-Batch Size 30 100 200

Learning Rate 0.005 0.005 0.005

Frame Size [8, 15] [8, 15] [8, 15]

The first objective of the thesis is to develop a supervised model for the predic-

tion of air pollution from real sensor data obtained in different locations and to

set the parameters that give an optimal level of learning based on the best perfor-

mance metrics values achieved for the largest number of pollutants and cities. The

CNN+LSTM based neural network predicts the hourly concentration of the air pol-

lutants, in certain environmental factors (such as air pollution and meteorological

information). While convolutional layers extract the relationships between locations

for spatial features, LSTM layers extract temporal information characteristics from

time series data. The nonlinear relationship between multivariable time series and

air pollutants were combined, and the effects of air pollution and meteorological
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data on prediction performance were observed. Generally, although the model se-

lection task-related hyperparameters do not change among different pollutants, the

parameters related to the training process change among the pollutants and the

cities. The data properties and methods that give the best prediction results for

different cities are given in Table 6.7.

Using different activation functions at the end of the network provided different

prediction performance for each function. Although the use of ReLU after the fully

connected layer eliminates negative values and it is useful while working with non-

normalized data, it also leads to exceeding the target value for each pollutant while

working with normalized data. On the other hand, sigmoid limits the prediction

value between 0 and 1 in the last layer and improves the prediction performance.

However, at higher target values, it brings the result of sigmoid prediction to lower

points than the target value and the difference between prediction-target becomes

more clear as the target value increases. Considering the test RMSE values, the

error for the results with sigmoid is less than the error observed with ReLU. This is

because the sigmoid captures small target values and ReLU gives prediction results

exceeding the target values. Additionally, when using sigmoid in each learning layer

in the neural network, the prediction model has failed. Therefore, the optimal use

of the activation functions is ReLU in each hidden layer and sigmoid in the fully

connected layer.

Table 6.3: Explanation of the methods and the data used for different cities

Properties Barcelona Kocaeli İstanbul

Air Pollutants O3, NO2, PM10 PM10, SO2, NOX O3, NO2, PM10, SO2, NOX

Meteorological Data NO
Temperature, Humidity, Pressure,

Wind Speed and Direction

Temperature, Humidity, Pressure,

Wind Speed and Direction

Method-1 YES NO NO

Method-2 YES YES YES

Method-3 YES YES YES

While O3, NO2 and PM10 were selected as the pollutants in Barcelona, PM10, SO2

and NOX were selected in Kocaeli. For İstanbul, there are two different time series

data sets; Dataset-1 was created from the information of the same pollutants with
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Barcelona, Dataset-2 was created from the information of the same pollutants with

Kocaeli. The model can catch the trend in test data for PM10 concentration, but the

difference between target and predicted values increases at extreme points. In other

words, the higher the target value, the higher the prediction error. In Barcelona,

although both two methods have the same test RMSE values for all pollutants

(0.12 for O3, 0.11 for NO2, and 0.07 for PM10), Method-2 has higher correlation

coefficients than Method-3 (Table 6.4). The correlation coefficient between target

and predicted concentration was measured as 0.87 for O3, 0.83 for NO2, and 0.95 for

PM10 with Method-2; 0.82 for O3, 0.73 for NO2, and 0.94 for PM10 with Method-3

(Table 6.5). In Kocaeli, Method-2 reached the RMSE values of 0.08 for PM10, 0.07

for SO2 and 0.08 for NOX ; Method-3 reached 0.07 for PM10, 0.09 for SO2 and 0.08

for NOX . In İstanbul, Method-2 reached the RMSE values of 0.12 for O3, 0.11 for

NO2, 0.09 for NOX , 0.09 for SO2 and 0.08 for PM10; Method-3 reached 0.11 for

O3, 0.10 for NO2, 0.10 for NOX , 0.10 for SO2 and 0.08 for PM10 (Table 6.6).

Table 6.3 explains the methods and the data properties used in different cities. Test

RMSE values for PM10 prediction in Barcelona and Kocaeli are generally the same.

In Barcelona, the RMSE value for O3 and NO2 in Barcelona is 5% higher than the

RMSE value for PM10. Although there was a 0.01 difference between RMSE values

for different pollutants in Kocaeli, the model could not catch the trend in the test

set for NOX and SO2 and generally produced predicted values lower than the target

values. In İstanbul, the RMSE value for Nitrogen-based pollutants (NOX and NO2)

is 0.04 higher than the RMSE for PM10. The highest RMSE value was observed for

O3 and measured as 0.11. In general, the model gave lower prediction values than

the target values in the studies for İstanbul when Method-2 was used.

Since the İstanbul data set is larger than the Barcelona and Kocaeli data set, İstanbul

has more training samples than the other two cities. Nevertheless, RMSE values for

O3, NO2, and NOX are approximately the same as for other cities, while RMSE

values for PM10 and SO2 are higher than for the other two cities.
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Table 6.4: Performance metrics for prediction results of Barcelona data

Performance Metrics for Barcelona

Pollutant Method Test RMSE Correlation Coefficient

Method-2 0.12 0.87
O3

Method-3 0.12 0.82

Method-2 0.11 0.83
NO2

Method-3 0.11 0.73

Method-2 0.07 0.95
PM10

Method-3 0.07 0.94

Table 6.5: Performance metrics for prediction results of Kocaeli data

Performance Metrics for Kocaeli

Pollutant Method Test RMSE Correlation Coefficient

Method-2 0.08 0.85
PM10

Method-3 0.07 0.86

Method-2 0.07 0.74
SO2

Method-3 0.09 0.74

Method-2 0.08 0.77
NOX

Method-3 0.09 0.79
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Table 6.6: Performance metrics for prediction results of İstanbul data

Performance Metrics for İstanbul

Pollutant Method Test RMSE Correlation Coefficient

Method-2 0.12 0.89
O3

Method-3 0.11 0.86

Method-2 0.11 0.82
NO2

Method-3 0.10 0.69

Method-2 0.08 0.75
PM10

Method-3 0.08 0.70

Method-2 0.09 0.79
SO2

Method-3 0.10 0.68

Method-2 0.09 0.86
NOX

Method-3 0.10 0.78

Samples were created by using the 3D input structure to be used for Method-2

and Method-3 by adding meteorological features (temperature, relative humidity,

air pressure, wind speed, and wind direction) to the historical air pollution data.

As a result, adding meteorological information to the input for both Kocaeli and

İstanbul generally increased the RMSE value by 10% to 40%. In other words,

using only pollutants’ concentrations as features makes the model more successful.

When looking at the results in İstanbul, the use of meteorological data improves

the prediction performance for PM10 concentration with both two methods with

an improvement rate of about 12%. On the other hand, it caused an increase

between 30% to 40% for the prediction of NOX concentration. In Kocaeli, the use

of meteorological data with air quality data improves the prediction performance

only for SO2 concentration with Method-3 (with an improvement rate of 10%). It

resulted in an increase in RMSE value of 12% to 33% for other pollutants.
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Table 6.7: Data properties and methods that give the best prediction results

Properties Barcelona Kocaeli İstanbul

Pollutant PM10 PM10 PM10

Test RMSE 0.07 0.07 0.07

Method Method-2 & Method-3 Method-3 Method-2

Input Structure 3-dimensional array 3-dimensional array 3-dimensional array

Data Normalization YES YES YES

Meteorological Data - NO YES

Features

Historical hourly

concentration of pollutants

(O3, NO2, PM10)

Historical hourly

concentration of pollutants

(PM10, SO2, NOX)

Historical hourly

concentration of pollutants

(PM10, SO2, NOX) and

meteorological conditions

Input Type Multivariate Multivariate Multivariate

Output Type Univariate & Multivariate Multivariate Univariate

When looking at the results of the ANFIS model proposed with [44], the RMSE

values are calculated as 0.25 for SO2, 0.20 for O3, and 0.16 for NO2. The algorithm

proposed in this thesis reached a lower test RMSE for these pollutants in all three

cities (Tables 6.4, 6.5, and 6.6) than the study in [44]. Method-2 and Method-3

is done with multivariate input, which is called ”multivariate prediction” in [47].

Multivariate prediction results observed by Method-2 and Method-3 were compared

with other multivariate prediction studies in the literature [29, 47]. For this pur-

pose, the RMSE values reached by those studies were divided by the range of target

pollutants in the cities where the studies were conducted. Thus, the RMSE values

were converted into the same scale with the RMSE values in which this thesis was

evaluated. In [29], the ANN prediction model is proposed to compare the perfor-

mances of univariate and multivariate prediction. The RMSE value was calculated

as 0.47 for O3 and 0.11 for SO2 by the prediction with univariate input, 0.21 for

O3, and 0.15 for SO2 by the prediction with multivariate input. Our CNN+LSTM

model reached lower RMSE for O3 in Barcelona and İstanbul, and SO2 Kocaeli and

İstanbul than the study [29]. In the second study done with multivariate input,

they proposed an LSTM model to predict the PM10 concentration in time series

data [47]. The RMSE value was calculated as 0.08 for prediction performance with

both univariate and multivariate input. Looking at the results of our model with
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multivariate input, the RMSE value was measured as 0.07 in Barcelona and Kocaeli,

while it was 0.08 in İstanbul.

Table 6.8: Comparison of the prediction performance between 1-hidden layer

LSTM model and CNN+LSTM model in Barcelona

Test RMSE Results in Barcelona

Pollutant Method LSTM CNN+LSTM Improvement Rate

Method-2 RMSE=0.16 RMSE=0.12 25%
O3

Method-3 RMSE=0.15 RMSE=0.12 20%

Method-2 RMSE=0.13 RMSE=0.11 15%
NO2

Method-3 RMSE=0.12 RMSE=0.11 8%

Method-2 RMSE=0.11 RMSE=0.07 36%
PM10

Method-3 RMSE=0.14 RMSE=0.07 50%

Table 6.9: Comparison of the prediction performance between 1-hidden layer

LSTM model and CNN+LSTM model in Kocaeli

Test RMSE Results in Kocaeli

Pollutant Method LSTM CNN+LSTM Improvement Rate

Method-2 RMSE=0.12 RMSE=0.07 42%
PM10

Method-3 RMSE=0.17 RMSE=0.08 53%

Method-2 RMSE=0.12 RMSE=0.09 25%
SO2

Method-3 RMSE=0.13 RMSE=0.07 46%

Method-2 RMSE=0.12 RMSE=0.09 25%
NOX

Method-3 RMSE=0.13 RMSE=0.08 39%

To compare the prediction performance of the proposed CNN+LSTM deep neural

network, a 1-hidden layer LSTM network is used to predict the concentration of

the pollutants. The LSTM network was built with one input layer, one hidden

LSTM layer of 75 units (neurons), a fully connected layer, and an output layer.

Data sets used in the CNN+LSTM model were used to train and test the LSTM

network, then test RMSE results were measured. When the RMSE results of the

LSTM network and the CNN+LSTM deep neural network are compared, it is seen

that the CNN+LSTM model is more successful. By modeling the inter-regional
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Table 6.10: Comparison of the prediction performance between 1-hidden layer

LSTM model and CNN+LSTM model in İstanbul

Test RMSE Results in İstanbul

Pollutant Method LSTM CNN+LSTM Improvement Rate

Method-2 RMSE=0.13 RMSE=0.11 31%
O3

Method-3 RMSE=0.15 RMSE=0.12 20%

Method-2 RMSE=0.10 RMSE=0.10 0%
NO2

Method-3 RMSE=0.10 RMSE=0.11 -10%

Method-2 RMSE=0.09 RMSE=0.08 11%
PM10

Method-3 RMSE=0.10 RMSE=0.08 20%

Method-2 RMSE=0.10 RMSE=0.10 0%
SO2

Method-3 RMSE=0.11 RMSE=0.09 18%

Method-2 RMSE=0.11 RMSE=0.10 9%
NOX

Method-3 RMSE=0.17 RMSE=0.09 47%

spatial relationship, CNN learns the spread of pollutants into the environment and

the interaction between each other. Tables 6.8, 6.9, and 6.10 give the comparison

of prediction performance between 1-hidden layer LSTM network and CNN+LSTM

deep neural network in terms of the improvement rate. The CNN+LSTM model has

improvement rates between 11% to 53% for the prediction of PM10 concentration.

The test RMSE was dropped from 0.11 and 0.14 to 0.07 with both methods in

Barcelona, from 0.12 to 0.07 with Method-2 and from 0.17 to 0.08 with Method-

3 in Kocaeli, from 0.09 and 0.10 to 0.08 with both methods in İstanbul. For the

prediction of O3 concentration with Method-2, CNN+LSTM model decrease RMSE

from 0.16 to 0.12 by the improvement rate of 25% in Barcelona, from 0.13 to 0.11

by the improvement rate of 31% in İstanbul. CNN+LSTM model decreased the test

RMSE from 0.15 to 0.12 by the improvement rate of 20% for O3 prediction with

Method-3 in Barcelona and İstanbul. For the prediction of NO2 concentration in

Barcelona, the CNN+LSTM model dropped RMSE from 0.13 and 0.12 to 0.11 by the

improvement rate of 15% and 8% respectively. As for SO2, CNN+LSTM decreased

the RMSE from 0.12 to 0.09 by the improvement rate of 25% with Method-2 and
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0.13 to 0.07 by the improvement rate of 46% with Method-3 in Kocaeli. On the

other hand, it decreased the RMSE from 0.11 to 0.09 by the improvement rate of

18% with only Method-3 in İstanbul. Lastly, the CNN+LSTM model improved the

prediction performance of 1-hidden layer LSTM by the rates between 9% to 47%. In

Kocaeli, it has a 25% improvement rate by reducing the RMSE with Method-2 from

0.12 to 0.09 and 39% improvement rate by reducing the RMSE with Method-3 from

0.12 to 0.09. In İstanbul, the RMSE was dropped from 0.11 to 10 with Method-2

by the improvement rate of 9% and 0.17 to 0.09 with Method-3 by the improvement

rate of 47%.

The second principle objective is to transfer a model between cities and examine

which trained model has prediction ability on weight transfer of the target city and

whether the parameters that give an optimal level of learning the same for different

cities.

There are three types of transfer learning, transductive transfer learning is in which

source and target tasks are the same where the domains have a different marginal

probability distribution. In this study, transductive transfer learning is proposed

to support the CNN+LSTM deep learning model. There are two ways to apply

transfer learning to the target domain. Either the model can test directly on the

target city’s test data set, or a short training process with the target city’s training

data set can be applied to the network by setting a small learning rate before testing.

The training process with the target domain’s data set didn’t increase the prediction

accuracy, the lowest RMSE was observed when the model is applied directly to the

target domain.

Also, the best transfer learning success has been achieved in weight transfer for

Method-2 and Method-3 from Kocaeli to İstanbul, transfers between Barcelona-

İstanbul or Barcelona-Kocaeli caused higher test RMSE than the transfer between

Kocaeli-İstanbul. The reason is that Kocaeli and İstanbul are neighbor cities and

have similar air pollution and meteorological characteristics. On the other hand,
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the characteristics of Barcelona are not related to the other two cities.

Generally, the model selection task-related hyperparameters with optimal prediction

performance are the same for different cities. However, the training process-related

parameters and their values change according to cities.

Although a common deep neural network structure was determined, the transfer

of the model did not increase the prediction performance in the target city. For a

prediction model with high accuracy, it would be better to train the model with the

data of each city and to set training related hyperparameters.
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APPENDIX A: Descriptive Statistics

Table A.1: Descriptive sStatistics for Barcelona Data (before data preprocessing)

Barcelona (11/06/11/2018 09:00:00 AM - 31/01/31/2019 11:00:00 PM)

Location Pollutant Min Max Average St. Dev. Median

Ciutadella

O3(µg/m
3) 1 190 28.84 35.92 32

NO2 (µg/m3) 1 131 20.58 36.28 34

PM10(µg/m
3) - - - - -

Eixample

O3(µg/m
3) 1 174 24.76 31.86 28

NO2 (µg/m3) 6 197 22.76 52.52 51

PM10(µg/m
3) 6 109 9.90 26.33 26

Gracia

O3(µg/m
3) 1 167 27.28 39.18 37

NO2 (µg/m3) 1 168 23.96 45.07 42

PM10(µg/m
3) 1 85 9.41 23.85 23

Palau Reial

O3(µg/m
3) 1 351 27.39 42.69 41

NO2 (µg/m3) 1 146 19.29 27.62 22

PM10(µg/m
3) 4 48 6.465745 17.77050 18

Poblenou

O3(µg/m
3) - - - - -

NO2 (µg/m3) 3 121 19.79515 37.47208 35

PM10(µg/m
3) 4 113 11.48295 24.743890 24

Sants

O3(µg/m
3) - - - - -

NO2 (µg/m3) 3 165 19.60329 32.543846 27

PM10 (µg/m3) - - - - -

Vall Hebron

O3(µg/m
3) 1 187 30.38234 51.56068 49

NO2 (µg/m3) 2 114 18.88299 28.698912 23

PM10(µg/m
3) 2 38 6.332675 19.06212 20
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Table A.2: Descriptive sStatistics for Kocaeli Data (before data preprocessing)

Kocaeli MTHM (114/141/2017 17:00:56 PM - 4/4/11/2020 11:00:56 PM

Location Pollutant Min Max Average St. Dev. Median

Alikahya

PM10( µg/m
3 ) 1.25 314.93 48.66 31.92 40.90

SO2( µg/m
3 ) 1.00 169.64 6.29 10.54 2.71

NOX( µg/m3 ) 1.00 619.22 63.08 61.60 43.00

Gebze

PM10( µg/m
3 ) 1.01 540.65 29.45 27.76 22.16

SO2( µg/m
3 ) 1.00 221.90 11.42 18.65 7.70

NOX( µg/m3 ) 1.00 1950.68 111.28 163.11 56.40

Krfez

PM10( µg/m
3 ) 4.91 604.40 46.15 27.01 39.84

SO2( µg/m
3 ) 1.00 312.91 7.77 14.24 3.24

NOX( µg/m3 ) 1.20 609.96 63.55 62.11 44.08

Table A.3: Descriptive Statistics for İstanbul Data (before data preprocessing)

İstanbul MTHM (1/11/2015 12:00:56 AM - 4/4/11/2020 11:00:56 PM)

Esenyurt

PM10( µg/m
3 ) 1.00 985.00 76.97 73.07 56.13

SO2( µg/m
3 ) 1.00 220.26 6.56 6.49 4.57

NO2( µg/m
3 ) 0.02 152.26 25.14 17.44 20.61

NOX( µg/m3 ) 0.08 1421.69 88.16 118.64 51.74

O3( µg/m
3 ) 1.00 924.91 33.46 25.91 29.70

Silivri

PM10( µg/m
3 ) 1.00 782.49 34.32 27.28 27.90

SO2( µg/m
3 ) 0.01 83.61 3.28 4.23 1.91

NO2( µg/m
3 ) 0.64 272.27 24.34 19.31 17.39

NOX( µg/m3 ) 0.24 1101.74 45.29 68.73 22.92

O3( µg/m
3 ) 0.01 783.92 56.19 31.93 58.99

Sultangazi

PM10( µg/m
3 ) 1.37 454.46 59.04 39.81 51.03

SO2( µg/m
3 ) 0.01 86.41 4.08 4.68 2.93

NO2( µg/m
3 ) 0.01 175.34 34.38 20.87 30.28

NOX( µg/m3 ) 0.05 1046.46 74.38 72.62 54.39

O3( µg/m
3 ) 1.00 710.22 35.46 24.42 34.29
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APPENDIX B: Histogram for the Concentration of

Pollutants in Cities

Figure B.1: Histogram for the concentration of PM10 in Kocaeli

Figure B.2: Histogram for the concentration of SO2 in Kocaeli
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Figure B.3: Histogram for the concentration of NOX in Kocaeli

Figure B.4: Histogram for the concentration of O3 in İstanbul
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Figure B.5: Histogram for the concentration of NO2 in İstanbul

Figure B.6: Histogram for the concentration of PM10 in İstanbul
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Figure B.7: Histogram for the concentration of SO2 in İstanbul

Figure B.8: Histogram for the concentration of NOX in İstanbul
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APPENDIX C: Time Series Graphs

Figure C.1: Hourly concentration of PM10 in Kocaeli

Figure C.2: Hourly concentration of SO2 in Kocaeli
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Figure C.3: Hourly concentration of NOX in Kocaeli

Figure C.4: Hourly concentration of O3 in İstanbul
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Figure C.5: Hourly concentration of NO2 in İstanbul

Figure C.6: Hourly concentration of PM10 in İstanbul
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Figure C.7: Hourly concentration of SO2 in İstanbul

Figure C.8: Hourly concentration of NOX in İstanbul
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APPENDIX D: Results of Barcelona

Figure D.1: Scatter plot of Method-1 test results for O3 in Barcelona with

non-normalized data
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Figure D.2: Scatter plot of Method-1 test results for NO2 in Barcelona with

non-normalized data
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Figure D.3: Scatter plot of Method-1 test results for PM10 in Barcelona with

non-normalized data

Figure D.4: Graph of the target-predicted values of Method-1 test results for O3

in Barcelona with non-normalized data
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Figure D.5: Graph of the target-predicted values of Method-1 test results for

NO2 in Barcelona with non-normalized data

Figure D.6: Graph of the target-predicted values of Method-1 test results for

PM10 in Barcelona with non-normalized data
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Figure D.7: Scatter plot of Method-1 test results for O3 in Barcelona with

normalized data

Figure D.8: Scatter plot of Method-1 test results for NO2 in Barcelona with

normalized data
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Figure D.9: Scatter plot of Method-1 test results for PM10 in Barcelona with

normalized data

Figure D.10: Graphs of the target-predicted values of Method-1 test results for

O3 in Barcelona with normalized data
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Figure D.11: Graphs of the target-predicted values of Method-1 test results for

NO2 in Barcelona with normalized data

Figure D.12: Graphs of the target-predicted values of Method-1 test results for

PM10 in Barcelona with normalized data
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Figure D.13: Scatter plot of Method-2 and Method-3 test results for O3 in

Barcelona with normalized data

Figure D.14: Scatter plot of Method-2 and Method-3 test results for NO2 in

Barcelona with normalized data
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Figure D.15: Scatter plot of Method-2 and Method-3 test results for PM10 in

Barcelona with normalized data

Figure D.16: Graphs of the target-predicted values of Method-2 and Method-3

test results for O3 in Barcelona with normalized data
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Figure D.17: Graphs of the target-predicted values of Method-2 and Method-3

test results for NO2 in Barcelona with normalized data

Figure D.18: Graphs of the target-predicted values of Method-2 and Method-3

test results for PM10 in Barcelona with normalized data
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APPENDIX E: Results of Kocaeli

Figure E.1: Scatter plot of Method-2 and Method-3 test results for PM10 in

Kocaeli with normalized data

Figure E.2: Scatter plot of Method-2 and Method-3 test results for SO2 in

Kocaeli with normalized data
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Figure E.3: Scatter plot of Method-2 and Method-3 test results for NOX in

Kocaeli with normalized data

Figure E.4: Graphs of the target-predicted values of Method-2 and Method-3 test

results for PM10 in Kocaeli with normalized data

97



Figure E.5: Graphs of the target-predicted values of Method-2 and Method-3 test

results for SO2 in Kocaeli with normalized data

Figure E.6: Graphs of the target-predicted values of Method-2 and Method-3 test

results for NOX in Kocaeli with normalized data

98



APPENDIX F: Results of İstanbul Dataset-1

Figure F.1: Scatter plot of Method-2 and Method-3 test results for O3 in İstanbul

(Dataset-1) with normalized data

Figure F.2: Scatter plot of Method-2 and Method-3 test results for NO2 in

İstanbul (Dataset-1) with normalized data
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Figure F.3: Scatter plot of Method-2 and Method-3 test results for PM10 in

İstanbul (Dataset-1) with normalized data

Figure F.4: Graphs of the target-predicted values of Method-2 and Method-3 test

results for O3 in İstanbul (Dataset-1) with normalized data
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Figure F.5: Graphs of the target-predicted values of Method-2 and Method-3 test

results for NO2 in İstanbul (Dataset-1) with normalized data

Figure F.6: Graphs of the target-predicted values of Method-2 and Method-3 test

results for PM10 in İstanbul (Dataset-1) with normalized data
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APPENDIX G: Results of İstanbul Dataset-2

Figure G.1: Scatter plot of Method-2 and Method-3 test results for PM10 in

İstanbul (Dataset-2) with normalized data

Figure G.2: Scatter plot of Method-2 and Method-3 test results for SO2 in

İstanbul (Dataset-2) with normalized data
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Figure G.3: Scatter plot of Method-2 and Method-3 test results for NOX in

İstanbul (Dataset-2) with normalized data

Figure G.4: Graphs of the target-predicted values of Method-2 and Method-3

test results for PM10 in İstanbul (Dataset-2) with normalized data
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Figure G.5: Graphs of the target-predicted values of Method-2 and Method-3

test results for SO2 in İstanbul (Dataset-2) with normalized data

Figure G.6: Graphs of the target-predicted values of Method-2 and Method-3

test results for NOX in İstanbul (Dataset-2) with normalized data

104



APPENDIX H: Results with Meteorological Data

H.1 Results for İstanbul Dataset-2

Figure H.1: Scatter plot of Method-2 and Method-3 test results for PM10 in

İstanbul (Dataset-2) with meteorological data

Figure H.2: Scatter plot of Method-2 and Method-3 test results for SO2 in

İstanbul (Dataset-2) with meteorological data
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Figure H.3: Scatter plot of Method-2 and Method-3 test results for NOX in

İstanbul (Dataset-2) with meteorological data

Figure H.4: Graphs of the target-predicted values of Method-2 and Method-3

test results for PM10 in İstanbul (Dataset-2) with meteorological data
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Figure H.5: Graphs of the target-predicted values of Method-2 and Method-3

test results for SO2 in İstanbul (Dataset-2) with meteorological data

Figure H.6: Graphs of the target-predicted values of Method-2 and Method-3

test results for NOX in İstanbul (Dataset-2) with meteorological data
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H.2 Results for Kocaeli

Figure H.7: Scatter plot of Method-2 and Method-3 test results for PM10 in

Kocaeli with meteorological data

Figure H.8: Scatter plot of Method-2 and Method-3 test results for SO2 in

Kocaeli with meteorological data
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Figure H.9: Scatter plot of Method-2 and Method-3 test results for NOX in

Kocaeli with meteorological data

Figure H.10: Graphs of the target-predicted values of Method-2 and Method-3

test results for PM10 in Kocaeli with meteorological data
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Figure H.11: Graphs of the target-predicted values of Method-2 and Method-3

test results for SO2 in Kocaeli with meteorological data

Figure H.12: Graphs of the target-predicted values of Method-2 and Method-3

test results for NOX in Kocaeli with meteorological data
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Figure H.13: Graphs of the target-predicted values for PM10 in İstanbul

(Dataset-2) with transfer learning
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