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SUMMARY

In this paper, a practical approach is presented for designing broadband matching networks via reflection function
optimization. In the proposed algorithm, the input or output reflection function of the matching network is
expressed in terms of three real polynomials describing the matching network, load and generator reflection coef-
ficients. Next one of the polynomials is optimized to get minimum reflection function values in the passband. Then
matching network topology and element values are obtained via the formed input reflection coefficient expression.
Two examples are presented to explain the usage of the new approach. Copyright © 2016 JohnWiley&Sons, Ltd.

Received 23 February 2016; Accepted 28 April 2016

KEY WORDS: broadband matching; lossless networks; matching networks; real frequency techniques
1. INTRODUCTION

The broadband matching problem is regarded as the construction of a lossless two-port network
between a resistive or complex generator and complex load impedance, and where the transferred
power from generator to load is maximized in the passband [1, 2]. Usually transducer power gain
(TPG), which is defined as the ratio of power delivered to the load to the available power from the
generator, is used to measure the power transfer capacity of the matching network (Figure 1).

Broadband matching problems can be collected in two groups as single matching and double
matching problems. In the first type of problems, a resistive generator is matched to a complex load
[3]. On the other hand, if the power is transferred from a complex generator to a complex load, then
the problem is referred to as a double matching problem [4, 5].

In literature, there are lots of different techniques to design broadband matching networks. But they
can be grouped basically as the methods based on TPG optimization and the methods based on
modeling. In the first group, the selected free parameters are optimized until the desired gain level is
reached [6–15]. In the other group, first the values of any selected function are calculated, and then
a model is formed for these data [16–18].

But in the proposed approach, the input or output reflection function of the matching network is
optimized in the passband. In the next section, the rationale of the proposed approach is described.
2. RATIONALE OF THE PROPOSED APPROACH

Consider the double matching arrangement shown in Figure 1. Because the two-port is lossless, on the
imaginary axis of the complex frequency plane, input and output reflection functions ( ρ1 and ρ2) are
related by the following equation
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Figure 1. Double matching arrangement.
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ρ1j j2 ¼ ρ2j j2: (1)

Then the transducer power gain at real frequencies can be defined as

T pG ωð Þ ¼ 1� ρ1j j2 ¼ 1� ρ2j j2: (2)

This equation means that to get maximum flat TPG curve in the passband corresponds to get
minimum flat | ρ1|2 or | ρ2|2 curve. So it is necessary for ρ1 or ρ2 to be expressed in terms of any
parameters related to the matching network, load and generator. Now let us obtain these expressions.

Input reflection function ( ρ1) can be defined as

ρ1 ¼
z1 � z�G
z1 þ zG

(3)

where z1 is the normalized input impedance seen at port 1 when port 2 is terminated by the normalized
load (zL), zG is the normalized generator impedance and the upper asterisk denotes complex
conjugation.

In a similar manner, the reflection function at port 2 ( ρ2) can be defined as

ρ2 ¼
z2 � z�L
z2 þ zL

(4)

where z2 is the normalized output impedance seen at port 2 when port 1 is terminated in zG.
Now let us define the impedances zG and z1 at port 1 as

zG ¼ 1þ ΓG

1� ΓG
; z1 ¼ 1þ Γ1

1� Γ1
: (5)

Also let us define the impedances zL and z2 at port 2 as

zL ¼ 1þ ΓL

1� ΓL
; z2 ¼ 1þ Γ2

1� Γ2
: (6)

Γ1 and Γ2 can be written as a function of the scattering parameters (Sij, i, j=1, 2) of the matching
network and the reflection coefficient of the load and generator, respectively, as

Γ1 ¼ S11 þ S12S21ΓL

1� S22ΓL
; (7)

Γ2 ¼ S22 þ S12S21ΓG

1� S11ΓG
: (8)

Here the scattering parameters of the matching network can be expressed in Belevitch form as a
function of three real polynomials as follows [12]:
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BROADBAND MATCHING 135
S pð Þ ¼ S11 pð Þ S12 pð Þ
S21 pð Þ S22 pð Þ

� �
¼ 1

g pð Þ
h pð Þ μ f �pð Þ
f pð Þ �μh �pð Þ

� �
(9)

where p= σ + jω is the complex frequency variable, h is a real coefficient polynomial, g is a strictly
Hurwitz polynomial, f is a real monic polynomial which is constructed via the transmission zeros of
the matching network and μ is a constant (μ=±1).

These three polynomials { f,g,h} are related by the following Feldtkeller equation [7]

g pð Þg �pð Þ ¼ h pð Þh �pð Þ þ f pð Þf �pð Þ: (10)

It can be concluded from (10) that the strictly Hurwitz polynomial g ( p) is a function of the
polynomials h( p) and f ( p). If f (p) and h( p) are specified, then the scattering parameters of the
matching network can be obtained via (9).

In most applications, locations of transmission zeros of the matching network are decided by the
designer. Thus, the polynomial f (p) is usually formed by the designer who may use the following
form of f (p)

f pð Þ ¼ pm1∏
m2

i¼0
p2 þ a2i

� �
(11)

where m1 and m2 are nonnegative integers and ai’s are arbitrary real coefficients. In this form, the
transmission zeros are on the imaginary axis of the complex p-plane.

Finally substituting the relationships from (5), (7) and (9) in (3) yields the reflection function at port
1 as follows:

ρ1 ¼
1� ΓGð Þ μΓL h�ΓG* � g�

� �þ gΓG* � h
� �� �

ΓG* � 1
� �

μΓL h� � g�ΓGð Þ þ g � hΓGð Þ½ � : (12)

In a similar manner, substituting the relationships from (6), (8) and (9) in (4) yields the reflection
function at port 2 as follows:

ρ2 ¼
1� ΓLð Þ μ h� � g�ΓGð Þ þ ΓL* g � hΓGð Þ� �
ΓL* � 1
� �

μΓL h� � g�ΓGð Þ þ g � hΓGð Þ½ � : (13)

So if the polynomial f is formed, and the polynomial h is initialized, then the polynomial g is
obtained via (10), which yields the calculation of the reflection function at port 1 or port 2 via (12)
or (13) with the help of SG and SL.

In the simplified real frequency technique (SRFT), TPG is expressed in terms of the descriptive
polynomials (h, g and f ), generator and load reflection coefficients ΓG and ΓL, respectively. Then
TPG is optimized to get maximum power transfer [10, 11]. But in the proposed approach, the
reflection function at port 1 and port 2 have been written in terms of the same variables as seen in
(12) and (13). Then in light of (2), |ρ1|2 or |ρ2|2 is minimized to get maximum power transfer from
generator to load.

As the result, the following algorithm can be offered to design broadband matching networks with
lumped elements for both single and double matching problems. But the same algorithm can easily be
adapted to design distributed or mixed element broadband matching networks. The algorithm given in
[12–14] can also be used to design broadband matching networks. But it is substantially different from
the algorithm proposed here. In [12–14], transducer power gain is expressed in terms of impedances
and then it is maximized. TPG expression used in [12] can be obtained if (3) or (4) is substituted in
(2). But here, input or output reflection function is expressed in terms of three real polynomials
describing the matching network, load and generator reflection coefficients and then the selected
reflection function is minimized. Because (2) has not been used in the derivation of (12) and (13), it
is clear that the presented method here and the one in (12) are completely different from each other.
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2017; 45:133–140
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3. ALGORITHM

Inputs:
● ZL( given) =RL( given) + jXL( given), ZG( given) =RG( given) + jXG( given): Given (measured or calculated) load
and generator impedance data, respectively.
● ωi( given): Given measurement frequencies, ωi( given) = 2π fi( given).
● fnorm: Normalization frequency.
● Rnorm: Impedance normalization number in ohms.
● h0,h1,h2,…, hn: Initialized real coefficients of h(p). Here n is the degree of the polynomial and it is
also equal to the number of lossless elements in the broadband matching network. These coefficients
can be initialized as ± 1 in an ad hoc manner, or the approach explained in [19] can be used.f (p): A
monic polynomial. As explained this polynomial is formed by the designer via the transmission
zeros of the matching network. The form given in (11) is practical.δc: The stopping criteria of the
algorithm.
Outputs:
● Analytic form of the input scattering parameter of the two-port network given in the Belevitch form
of S11( p) = h(p)/g( p).
● Matching network topology with element values are obtained as the result of the synthesis of S11( p).
Synthesis is carried out in the Darlington sense. That is, S11(p) is synthesized as a lossless two-port
[20]. Also the synthesis process can be carried out by using impedance based Foster or Cauer
methods via z11( p) = (1 + S11( p))/(1�S11(p)) as explained in [21].
Computational Steps:
Step 1: Normalize the given frequencies with respect to fnorm and set all the normalized angular
frequencies ωi= fi(given)/fnorm.Normalize the given load and generator impedances by using the
impedance normalization number Rnorm; rL=RL( given)/Rnorm, xL=XL( given)/Rnorm, rG=RG( given) /Rnorm,
xG=XG ( given)/Rnorm over entire the passband.
Step 2: Compute the reflection coefficients ΓG ¼ zG�1

zGþ1 and ΓL ¼ zL�1
zLþ1.

Step 3: Form the strictly Hurwitz polynomial g ( p) from (10).
Step 4: Calculate the values of the input or output reflection functions via (12) or (13), respectively.
Step 5: Calculate the error via ε(ω) = | ρ1|2 or ε(ω) = | ρ2|2, then δ=

P
ε(ω).

Step 6: If δ is acceptable (δ≤ δc), stop the algorithm and synthesize S11(p). Otherwise, change the
initialized coefficients of the polynomial h(p) via any optimization routine and return to step 3.
4. EXAMPLES

4.1. Example 1

In the first example, a double-matching problem is solved. The normalized load and generator
impedance data are given in Table I. It should be noted that the given load data can easily be
Table I. Given normalized load and generator impedance data.

ω rL xL rG xG

0.0 1.0000 0.0000 1.0000 0.0000
0.1 0.8621 �0.3448 1.0000 0.1000
0.2 0.6098 �0.4878 1.0000 0.2000
0.3 0.4098 �0.4918 1.0000 0.3000
0.4 0.2809 �0.4494 1.0000 0.4000
0.5 0.2000 �0.4000 1.0000 0.5000
0.6 0.1479 �0.3550 1.0000 0.6000
0.7 0.1131 �0.3167 1.0000 0.7000
0.8 0.0890 �0.2847 1.0000 0.8000
0.9 0.0716 �0.2579 1.0000 0.9000
1.0 0.0588 �0.2353 1.0000 1.0000
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BROADBAND MATCHING 137
modeled as a capacitor CL=4 in parallel with a resistance RL=1 (i.e. RL//CL type of impedance), and
the generator data as an inductor LG=1 in series with a resistance RG=1 (i.e. RG+LG type of
impedance). Because the given impedance data are already normalized, skip step 1. For comparison
purposes, the same example is solved here via the simplified real frequency technique (SRFT) and
the method proposed in [12].

The polynomial h ( p) is initialized as h(p) =�p4 + p3�p2 + p�1 in an ad hoc manner. Also the
polynomial f (p) is selected as f (p) = 1, because a low-pass matching network is desired. Then the
proposed algorithm is run, and the following input scattering parameter of the broadband matching
network is obtained

S11 pð Þ ¼ h pð Þ
g pð Þ where

h pð Þ ¼ �2:8451p4 � 2:6280p3 � 0:0913p2 � 1:7304pþ 0:4744;

g pð Þ ¼ 2:8451p4 þ 6:0921p3 þ 5:3999p2 þ 3:8774pþ 1:1068:

If the obtained input scattering parameter or the corresponding impedance function is synthesized,
the matching network seen in Figure 2 is obtained. The normalization frequency and impedance
normalization number is selected as fnorm=1 GHz and Rnorm=50 Ω, respectively, then the real
element values are calculated as L1 = 14.033nH, L2 = 13.025nH, C1 = 5.2286pF, C2 = 6.0578pF,
n=0.6315, CL=12.732pF, RL=50Ω, LG=7.9577nH and RG=50Ω.

As seen in Figure 3, the obtained performance of the system looks very good. But, if it is desired, it
can be improved by considering the losses via any CAD tool having realistic element models [22]. For
comparison purposes, the performance obtained by means of the offered algorithm here, via SRFT and
via the proposed method in [12] are depicted in Figure 3. Also the input and output reflection curves
are given in Figure 3. Because there is a transformer in the matching network, it is natural that there
will be no power transfer at DC. If this section of Figure 3 were drawn by zooming in, it could be seen.

The algorithm is coded in Matlab, and the problem is solved ten times. The average elapsed time is
1.9665 s. It is 1.9011 s via SRFT and 1.6434 s via the method proposed in [12].

The ripple factor τ2 for the curves in the passband can be calculated as

τ2proposed ¼
T pGmax � T pGmin

T pGmin
¼ 0:8712� 0:6707

0:6707
¼ 0:2989;

τ2SRFT ¼ τ2Re f 9 ¼
0:8520� 0:7142

0:7142
¼ 0:1929:

It is clear that the method proposed in [12] and SRFT have nearly the same performance. On the
other hand, the proposed method here has the largest ripple factor and elapsed time. But it can be
concluded that the proposed method here as an alternative method generates pretty good initials for
the commercially available design packages.

4.2. Example 2

In this example, a single matching problem is solved. The load is selected as a monopole antenna. The
normalized impedance data for the antenna are provided over 20�100MHz in Table II. fnorm is
selected as 100MHz.
Figure 2. Designed lumped-element double-matching network; proposed: l1 = 1.7635, l2 = 1.6368,
c1 = 1.6426, c2 = 1.9031, n= 0.6315, SRFT and Ref [12]: l1 = 1.8698, l2 = 1.7935, c1 = 1.5506, c2 = 1.7878,

n= 0.5997.
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Figure 3. Performance of the matched system designed with lumped elements.

Table II. Normalized impedance data for the antenna.

ω rL xL

0.20 0.60 �6.00
0.30 0.80 �2.20
0.40 0.80 0.00
0.45 1.00 1.40
0.50 2.00 2.80
0.55 3.40 4.60
0.60 7.00 7.60
0.65 15.0 8.80
0.70 22.4 �5.40
0.75 11.0 �13.0
0.80 5.00 �10.8
0.90 1.60 �6.80
1.00 1.00 �4.40
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The polynomial h(p) is initialized as h(p) =�p3� p2�p� 1 in an ad hoc manner. Also the
polynomial f( p) is selected as f ( p) = 1. Then the proposed algorithm is run, and the following input
scattering parameter of the broadband matching network is obtained

S11 pð Þ ¼ h pð Þ
g pð Þ

where

h pð Þ ¼ 1:9591p3 � 2:8216p2 þ 2:6432p� 1:3231;
g pð Þ ¼ 1:9591p3 þ 3:1625p2 þ 3:1639pþ 1:6585:
Figure 4. Designed lumped-element single-matching network; proposed: l1 = 0.65477, l2 = 1.2929,
c1 = 1.5524, n= 2.9814, SRFT and Ref [12]: l1 = 0.85236, l2 = 1.542, c1 = 1.3962, n= 2.4902.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2017; 45:133–140
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Figure 5. Performance of the matched antenna.

Table III. Comparison of the alternative solutions.

Method Element type Need transformer Convergence rate Need modeling Ripple factor

Proposed Lumped, distributed, mixed Yes Fast No Modest
SRFT Lumped, distributed, mixed Yes Fast No Low
Ref [12–14] Lumped, distributed, mixed Yes Fast No Low
Ref [16] Lumped, distributed, mixed Yes Slow Yes High
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After synthesizing the obtained input scattering parameter or the corresponding impedance function,
the matching network seen in Figure 4 is obtained. The normalization frequency and impedance
normalization number is selected as fnorm=100 MHz and Rnorm=50 Ω, respectively, then the real
element values are calculated as L1 = 1.0421nH, L2 = 2.0577nH, C1 = 2.4707nF, n=2.9814 and
RG=50Ω.

The same problem is solved via the method proposed in [12] and SRFT with the same initials. For
comparison purposes, the performance obtained by means of the offered algorithm here, via SRFT and
via the proposed method in [12], are depicted in Figure 5. Also the input and output reflection curves
are given in Figure 5.

From Figure 5, it is clear that the method proposed in [12] and SRFT have the same performance,
which is better than the performance of the proposed method from 20 MHz to 48 MHz frequency
band. On the other hand, the performance of the proposed method is better from 48 MHz to
95 MHz. So it can be concluded that the proposed method here generates pretty good initials for the
commercially available CAD tools for final optimization by using practical element models.

In Table III, the proposed method is compared with some different solutions in the literature for the
same examples; for the sake of comparing the different methods, element type used in the matching
networks, need for a transformer, the relative convergence rates, need for modeling and ripple factor
levels are given in the table.
5. CONCLUSION

Usually commercially available computer-aided design (CAD) tools are utilized to design broadband
matching networks. Because the matching network topology and initial element values are unknown
and the system performance is highly nonlinear in terms of the element values, these packages may
not generate acceptable solutions. Therefore, in this paper, a new initialization method is proposed
for CAD tools.

In the proposed method, the input or output reflection function of the matching network is expressed
as a function of the descriptive polynomials of the matching network and load and generator reflection
Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2017; 45:133–140
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coefficients. Then this function is minimized over the interested frequency band via the offered
algorithm.

Finally, the formed input scattering parameter (or the corresponding input impedance function) is
synthesized, and the desired matching network topology with initial element values is obtained.
Obviously, the performance of the matching network may be improved by considering the losses via
any CAD tool having realistic element models.

In the proposed method, the polynomial f ( p) is constructed by using the transmission zeros of the
matching network, so they are under the control of the designer. Single and double matching
problems can also be solved via the proposed method.

Two examples have been presented to design broadband matching networks with lumped elements.
It was shown that the proposed method generates pretty good initials for CAD tools. So it is concluded
that the offered algorithm can be used to generate initials for commercially available CAD packages to
design broadband matching networks for microwave communication systems.
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