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DEVELOPMENT OF NOVEL AND POTENT INHIBITORS FOR GABA-AT 

ENZYME VIA IN SILICO SCREENING METHODS 

 

ABSTRACT 

γ-aminobutyric acid aminotransferase (GABA-AT) is a pyridoxal 5′-phosphate (PLP)-

dependent enzyme which degrades γ-aminobutyric acid (GABA) in the brain. GABA is 

an important inhibitory neurotransmitter that plays important neurological roles in the 

brain. Therefore, GABA-AT is an important drug target which regulates the GABA level. 

Novel and potent drug development to inhibit GABA-AT is still very challenging task.  

In this study, we aimed to devise some novel and potent inhibitors against GABA-AT 

using computer-aided drug design (CADD) tools. However, the human GABA-AT 

crystal structure is not available yet, and we built the 3D structure of human GABA-AT 

based on the crystal structure of pig’s liver (Sus Scrofa) enzyme as a template. The 

generated model was validated with numerous tools such as ProSA and PROCHECK. A 

set of selected well-known inhibitors have been tested against the modeled GABA-AT. 

Molecular docking studies have been accomplished via application of Genetic 

Optimization for Ligand Docking (GOLD), Vina and Autodock 4.2 software to search 

for potent inhibitors. The best two candidate inhibitors have been computationally 

examined for absorption, distribution, metabolism, elimination and toxicity descriptors 

(ADMET) and Lipinski’s rule of 5. Lastly, molecular dynamics (MD) simulations were 

carried out to inspect the ligands’ binding mode and stability of the active site of human 

GABA-AT over time. The top ranked ligands exhibited reliable stability throughout the 

MD simulation. The selected compounds are promising candidates and might be tested 

experimentally for the inhibition of human GABA-AT enzyme. 

 

 

Keywords: Gaba aminotransferase, homology modeling, virtual screening, ADMET 

descriptors, Lipinski’s rule of five, molecular dynamics simulation, GABA-AT selective 

inhibitors. 
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ÖZET 

γ-aminobütirik asit aminotransferaz (GABA-AT) piridoksal 5′-fosfat (PLP)- 

kofaktörlü bir enzimdir ve beyinde γ-aminobutirik asit (GABA) miktarını 

azaltır. GABA, beyinde önemli nörolojik görevleri olan  engelleyici 

(inhibitory) bir nörotransmiterdir. GABA seviyesini düzenleyen GABA-AT 

enzimi de önemli bir ilaç hedefidir. GABA-AT'yi inhibe etmek için yeni ve 

güçlü ilaç geliştirme, hala çok zorlu bir görevdir. Bu tez çalışmasında, 

bilgisayar destekli ilaç tasarımı (CADD) araçlarını kullanarak GABA-AT'ye 

karşı bazı yeni ve güçlü inhibitörler tasarlamayı amaçladık. Ancak, insan 

GABA-AT enziminin kristal yapısı henüz mevcut değil ve  bu çalışmada 

domuz karaciğeri (Sus Scrofa) GABA-AT enziminin mevcut olan kristal 

yapısı şablon olarak kullanılarak  insan GABA-AT'nin üç boyutlu  yapısı 

holoji modelleme yöntemi ile  oluşturulmuştur. Oluşturulan model, ProSA 

ve PROCHECK gibi  araçları kullanılarak doğrulanmıştır. Deneysel 

inhibisyon değeri iyi bilinen bir dizi seçilmiş inhibitörler, GABA-AT'ye 

karşı test edilerek hesapsal değerler elde edilmiştir. Hesapsal ve deneysel 

değerler karşılaştırılarak modellenen enzimin doğruluğu sağlanmıştır. 

Potansiyel inhibitörleri taramak için moleküler yerleştirme (doklama) 

metotlarından , Genetik Optimizasyon (GOLD), Vina ve Autodock 4.2 

yazılımları kullanılmıştır. En iyi iki aday inhibitör, absorpsiyon, dağıtım, 

metabolizma, eliminasyon ve toksisite tanımlayıcıları (ADMET) ve 

Lipinski'nin 5 kuralı için hesaplamalı olarak incelenmiştir. Son olarak, 

ligandların bağlanma modunu ve insan GABA-AT'nin aktif bölgesinin 

zaman içindeki kararlılığını  incelemek için moleküler dinamik (MD) 

simülasyonları gerçekleştirilmiştir. En iyi ligandlar, MD simülasyonu 

boyunca güvenilir bir kararlılık göstermişlerdir.  Seçilen bileşikler umut 

verici ilaç adaylardır ve insan GABA-AT enziminin inhibisyonu için 

deneysel olarak test edilebilecek niteliktedir. 

 

 

 

 

Anahtar Kelimeler: Gaba aminotransferaz, homoloji modelleme, sanal 

tarama, ADMET tanımlayıcıları, Lipinski'nin beş kuralı, moleküler dinamik 

simülasyonu, GABA-AT seçici inhibitörleri. 
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1. INTRODUCTION 

 

1.1 Neurological Disorders and GABA-AT 

In order to understand the involvement of gamma-aminobutyric acid (GABA) in 

neurological disorders, we should understand the mechanism between normal brain and 

GABA. In the normal brain, the glia and neurons are regulating GABA. Poor regularity 

of GABA will lead to a huge effect on the brain functions and it will be the major factor 

for the neurological disorders (Kim & Yoon, 2017). The disturbing of GABA occurs in 

the brain either of mutation or systemic issues and ecological impacts (Al-Obaidi, 

Elmezayen, & Yelekçi, 2020). There are different types of electrochemical signaling and 

all of them carried out with neurotransmitters, when these neurotransmitters disturbed, 

the function of the brain will also be affected (Yizhar et al., 2011). As growing old the 

possibility of occurring the neurological disorders will increase resulting in Alzheimer 

disease and Parkinson disease and Epilepsy (Masten, Faden, Zucker, & Spear, 2009). 

Also, the newborn could have these disorders but with lower probability. Even for other 

stages of life, these diseases could be occurring but the major cause will be growing old 

(Visser, Danielson, Bitsko, Perou, & Blumberg, 2013). These disorders classified lately 

in 2016 by the National Institute of Mental Health (NIMH) as early, mature and late stages 

(Christensen et al., 2018). 

 

1.1.1 Epilepsy 

The distribution of epilepsy is around 10 for every 1000 human and the coverage is 

different between diverse races and different countries. Based on multiple studies and 

statistics epilepsy is more common in men more than women (Solomon & McHale, 

2012). There are two types of the most prevalent epilepsy: generalized seizures and focal 

seizures. Generalized seizures appear in hemispheres, on the other hand, focal seizures 
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appear in a precise and specific place of the brain, these types depended on the duration 

and the age of the patient (Pearl, 2018). Epilepsy is more related to GABAᴬ receptor, 

GABA Aminotransferase (GABA-AT) and GABA concentration in the brain (Kaila, 

Ruusuvuori, Seja, Voipio, & Puskarjov, 2014). 

1.1.2 Parkinson 

The prevalence of Parkinson disease is around 4.5–19 per 100,000 humans (de Lau & 

Breteler, 2006). Parkinson is distinguished and recognized by shaking and trembling. The 

injury and occurrence for this disease are not related to a specific sex or race or even for 

a region on the globe. Until now it is still hard to determinate Parkinson's disease before 

the injury. There are several techniques for confirming the injury of Parkinson’s disease 

such as Positron discharge tomography Single-photon emanation automated tomography 

and a specific post-mortem change in the expression of GABAᴬ Receptor subunit genes 

in the substantia nigra and caudate nucleus for the patients (Luchetti, Huitinga, & Swaab, 

2011) 

 

1.2 GABA-AT 

GABA-AT is known as a pyridoxal 5-phosphate (PLP) dependent enzyme responsible 

for the depletion of the inhibitory neurotransmitter GABA and catalyzes the degradation 

of the inhibitory neurotransmitter GABA to succinic semialdehyde (Silverman, 2018). 

GABA-AT is an important target for central nervous system (CNS) disorders drugs, 

because the highly selective inhibition of GABA increases concentrations of it in the brain 

(Storici et al., 2004). GABA-AT is a catabolic enzyme regulates the concentration of 

GABA (Cellini, Montioli, Oppici, & Voltattorni, 2012). Reduction in GABA 

concentration in the CNS has been related to some common neurological diseases such 

as Epilepsy, Alzheimer disease, Parkinson disease  and Huntington disease as well as 

Tardive Dyskinesia Diseases (McConkey, Sobolev, & Edelman, 2002; Pearl, 2018; 

Seyfried & Yu, 1980). Increasing the concentration of GABA in the CNS has an 

anticonvulsant effect in the brain (Clift & Silverman, 2008). GABA especially plays a  

critical role in the CNS, brain activity and as expected is the most broadly conveyed 

inhibitory transmitter in the CNS (Tunnicliff, 1989). Normal function in the CNS is to 
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stabilize the inhibitory neuronal system. GABA is the main inhibitory neurotransmitter 

in the CNS of mammalian and L-glutamate is the considerable excitatory 

neurotransmitter (Krnjevic, 1974). GABA-AT was observed in different organs such as; 

brain, liver, kidney, and pancreas and it shows a higher specific activity in glial cells and 

presynaptic neurons(Jeremiah and Povey, 1981). 

 

1.2.1 GABA-AT inactivating mechanism  

Through intermediates 2-4 the bounded LYS 329 to PLP cofactor will be transformed to 

pyridoxamine 5′-phosphate (PMP), as a result PLP is transformed to PMP (Figure 1.1, 

1.2), the GABA-AT will not be catalyst because the GABA-AT has been changed. 

For retransformation the PMP to PLP another catalyst should be happening. When the 

GABA-AT use α-ketoglutarate as a substrate, the retransform will be achieved and this 

procedure will lead to consequence the α-ketoglutarate is transformed into the excitant 

neurotransmitter L-glutamate. As a result, one molecule of GABA is transformed into an 

excitatory neurotransmitter (L-Glu) in this procedure. For that, the GABA-AT enzyme is 

crucial for the brain system levels with the neurotransmitters (Madsen, Larsson, & 

Schousboe, 2008). 
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Figure 1. 1 (a). Conversion from PLP to PMP by the GABA-AT catalyzes (b). 

Conversion from PMP to PLP also by GABA-AT catalyzes (Silverman, 2018). 

 

Figure 1. 2. GABA enters GABA shunt (Silverman, 2018). 

 

From L-glutamate in presynaptic (GABAergic) nerve cells, GABA is created; 

depolarization of presynaptic nerve cells catalyzes GABA release and transport into the 

synaptic cleft by GABA transporters (GAT-1, GAT-2, GAT-3, and betaine-GABA 
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transporter) for neurotransmission (Krnjevic, 1974). GABA will bind to either GABAᴬ 

or GABAᴮ receptors when emitted into the synapse. If GABA bound to GABAᴬ receptor, 

this will lead to open the central chloride ion channel and this will lead to decrease the 

cell excitability and neuronal inhibition. If GABA bound to GABAᴮ receptor, this will 

lead to open linked potassium channels, hyperpolarization and like GABAᴬ receptor with 

neuronal inhibition (Silverman, 2018). GABA can be terminated by two ways; re-enter 

into presynaptic nerve cells or in glial cells by GABA transporters, GABA-AT in the glial 

cells will start to catabolize GABA either to PLP or PMP (Figure 1.3) (Bowery et al., 

2002). 

 

Figure1. 3. Relationship and the importance of GABA-AT and how can be an effect on 

GABA concentration (Silverman, 2018). 
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During these chemical reactions GABA in glial cells will be converted to L-glutamate 

and this will take more control in levels of central nervous neurotransmitters. GABA in 

glial and presynaptic neurons showing a very high specific activity, and can be a shift by 

Bi-Bi Ping Pong mechanism (Silverman, 2018). 

 

1.2.2 GABA-AT inhibition 

For the neurological disorders, the inhibition of GABA-AT is so important for the 

treatment or reduce symptoms of the neurological disorders because it will stop L-

glutamate transformation from neurotransmitter GABA. The inhibition generally can be 

divided for two types: reversible inhibition which is a substrate bind reversibly to GABA-

AT for decrease the function of GABA-AT and irreversible inhibition which a substrate 

will block GABA-AT with covalent bonds and will decrease the activity of GABA-AT 

(Rokita, 2000). In spite of the development in drug discovery, the GABA-AT inhibitory 

need to be investigated more intensely to find more and better inhibitors with less side 

effects in silico, vitro and vivo because of 20 to 40 % of patient with neurological 

disorders disease suffering from less activity of drugs in the market and not adequately 

treated (Pan, Qiu, & Silverman, 2003). 

 

1.2.3 PLP 

PLP refers to pyridoxal phosphate which is a vitamin’s B6 derivative. PLP feasibly act 

for the most multifunction organic cofactor and used by multiple enzymes in all 

organisms (Percudani & Peracchi, 2003). Approximately all PLP-dependent enzymes 

(except glycogen phosphorylases) are related to biochemical pathways that include amino 

compounds, for the most part (Figure 1.4). The reactions completed by the PLP-

dependent enzymes that take action on amino acids include the transfer of the amino 

group, decarboxylation (John, 1995). 
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Figure1. 4. Chemical Interactions between PLP and Active Site of GABA-AT 

(Silverman, 2018). 

1.3 GABA-AT approved drugs 

There is a huge number of experimental and in silico inhibitors were tested for inhibiting 

GABA-AT and a fewer number were moved on to become drugs and be available in the 

market. The most important in this field one drug was approved by the Food and Drug 

Administration (FDA) Vigabatrin (Boonstra et al., 2015). 

 

1.3.1 Vigabatrin 

Vigabatrin can be considered as an irreversible and analog substrate for GABA-AT. 

Vigabatrin an oral drug available in the market under the trade name “Sabril” since 1994-

12-31. Vigabatrin is available with powder for solutions and tablets and the dosage 500 

mg and 1 g. The half-life of Vigabatrin for newborns for each 50 mg/kg = 7.5 ± 2.1 hours, 

children each 50 mg/kg = 5.7 hours, adults each 50 mg/kg = 7.5 hours and for elderly 

each 50 mg/kg = 12 - 13 hours (Browne, 1998; Clayton et al., 2013; Gram, Larsson, 

Johnsen, & Schousboe, 1989; Hawker & Silverman, 2012; Lindberger, Luhr, 

Johannessen, Larsson, & Tomson, 2003; Tulloch, Carr, & Ensom, 2012; Zwanzger et al., 

2001). Figure 1.5 shows 2D and 3D structure of Vigabatrin. 
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Figure 1. 5. Vigabatrin 2D and 3D structures. 

 

1.4 Computer-Aided Drug Design  

Computer-Aided Drug Design (CADD) is a computational approach used for designing 

drugs. Day after day CADD become so important because of the high cost of 

experimental techniques for discovering a new drug and it is time consuming. Developing 

a new drug and start to sell it in the market is very complicated and cost a massive amount 

of money and time can be reached between 10 and 14 years. So, for those reasons CADD 

is widely used now and rapidly growing. CADD contains two major pathways to discover 

a new drug: ligand-based drug design and structure-based drug design (Figure 1.7). 

CADD can reduce the time in discovering new drug up to 50 %, and can reject the 

unpromising drugs by studying their efficacy and absorption, distribution, metabolism, 

elimination and toxicity (ADMET), and can synthesis the protein-substrate interactions, 

and can test millions of substrates for one target before performed the best of them to the 

clinical trials. All of the previous features can minimize the failure rate at the 

experimental phases (Surabhi & Singh, 2018). 
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Figure1. 6. Various types of CADD (Arodola & Soliman, 2017). 

 

1.4.1 Virtual Screening 

Virtual screening is computational tactics to permeate all features of drug discovery 

(Jorgensen, 2004). Virtual screening is quick and logical drug discovery approach and 

has the feature of low cost and effective screening than the classic experimental high-

throughput screening(Moitessier, Englebienne, Lee, Lawandi, & Corbeil, 2008). Virtual 

screening is split into two types: ligand-based and structure-based. The concept of ligand-

based is to have an active known group of ligand molecules and no structural data is 

known for the target. The ligand-based techniques will be the best way to go through like 

pharmacophore modeling and quantitative structure-activity relationship (QSAR) (Kuntz, 

Blaney, Oatley, Langridge, & Ferrin, 1982). On the other hand, the concept of the 

structure-based drug design concept is having a 3D structure of target so, the molecular 

docking is the best way to have very good results for the targets and this technique is 

widely used and common since the early 1980s (Coupez & Lewis, 2006). 
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1.4.1.1 Structure-Based 

The huge development in technology for the past years especially computational methods 

for drug design, drug discovery and genomics treatments and the increasing number for 

protein structures led to rapidly growing of structure-based technique and become widely 

used for virtual screening and giving more chances for lead discovery with shortening of 

time and decreasing the cost. (Jhoti, Rees, & Solari, 2013). In the 80s the first try was 

performed for structure-based design and the time wasted for obtaining a good result at 

that time. Until 90s was the first success realized for this approach with some 

publications. With the progress of computer technology and the advancement of 

algorithms, from that time till now, structure-based drug design techniques are growing 

very fast and used for virtual screening (Agrawal, 2013). For discovering a new drug with 

experimental trials, it will cost a huge amount of money such as approximately $2.6 

billion dollars from beginning until marketing and the cost are increasing even more 

because of the competition and will spend a lot of time for designing the drug even before 

test the drug with experimental here it comes the needing for the computational field for 

discover and design drugs, and structure base is one important technique for this approach 

(Wang, Song, Li, & Chen, 2018). Structure-based depends on four steps: protein prepare, 

recognizing the binding pocket, ligands preparation and docking with analyze the poses. 

These steps will change between the different programs but the concept is one (Gulerez 

& Gehring, 2014). 

 

1.4.1.2 ADMET 

ADMET feature can be considered as one of the virtual screening methods to predict 

pharmacokinetic quality of the substrates. ADMET tool can be considered a sub tool with 

a variety programs such as Biovia discovery studio (DS), OECD QSAR Toolbox 4.1, 

Toxtree, and the pkCSM approach or can be used by online servers such as SWISSADME 

(http://www.swissadme.ch/)  (Biasini et al., 2014). ADMET considered as a leading 

feature in the virtual screening field because with this feature can determine whether the 

substrate will pass the clinical experiment or not and because of the high cost for 

discovering the drugs with clinical trials, this tool is so important in this field. This feature 

http://www.swissadme.ch/
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can be used also for minimizing the virtual screening number of substrates at any stage 

of predicting the best substrate for the targets  (Han et al., 2019). 

 

1.4.1.3 Molecular Docking 

Molecular docking is one type of bioinformatics modeling and it shows the interaction of 

the molecules and the target (Guedes, de Magalhães, & Dardenne, 2014). By counting on 

the binding features of molecules and target, it foretells the three-dimensional structure 

of the complexes (Seeliger & De Groot, 2010). Molecular docking leads to numerous 

conceivable adduct structures that are positioned and merged together utilizing scoring 

function almost in all software’s (Shoichet, McGovern, Wei, & Irwin, 2002). Molecular 

docking calculates the conformation of docked molecules based on the total energy of the 

complex (Dar & Mir, 2017). The molecular docking technique used to show and 

demonstrate the interaction between ligand molecules and macromolecule (target protein) 

at an atomic level. Atomic level represents the behavior of ligand molecules in the active 

site of the proteins as well as to make clear the basics of biochemical processes 

(McConkey et al., 2002). The docking method contains two steps: prediction of the ligand 

confirmation, and it's coordinate with orientation within these sites with the evaluation of 

the binding affinity (Meng, Zhang, Mezei, & Cui, 2011). There are several programs 

using different algorithms such as Autodock, Dock, Gold, Vina, Zdock, and Glide which 

they are widely used for molecular docking and some of them used for rigid docking for 

both of ligand and protein and some for flexible ligand and rigid protein and some for 

protein-peptide docking. Despite different programs used for molecular docking 

approach but still sharing the same headline features such as lead optimization, hit 

identification and protein-ligand interaction. Also, there are several challenges in the 

molecular docking field such as ligand chemistry, protein flexibility and scoring function 

(Dar & Mir, 2017). 

 

1.4.1.4 Active Site  

Enzymes in fact are proteins catalyst which increase the speed of chemical reactions by 

decreasing their activation energy or increasing the ground state energy.  This can be done 
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by enzymes making proper interactions with substrates. Enzymes usually can catalyze 

these substrates (which some of them naturally produced or chemically produced) to 

increase their reaction speed or to drive the whole chemical reaction to another way which 

could be happened without these substrates. Enzymes build-up by amino acids just like 

the proteins and that means they can make a  variety active sites and their properties will 

be different depending on the amino acids kind which they are responsible for this active 

site (Ringe & Petsko, 2008). Active sites can be divided to several types: size and shape 

type which can be specifically for surrounding the substrate and polarity un-polarity type 

which the active site determined by its polarity and can reject the other type to make a 

better fit and charge type which depend on the active site charge if it’s negative that mean 

it will be favorable for positive charge substrate and conversely to make a suitable fit, 

hydrophobicity or hydrophilicity type which is all of active site amino acids if were 

hydrophobic they will attract the hydrophobic molecule and conversely to make the best 

fit and special feature of cofactors. Vitamins and minerals are substantial because they 

help enzymes bind to substrates to make a better fit (Wiley, 2001). There are two theories 

about active sites: lock and key theory which mean that the enzyme and substrate can be 

shaped perfectly to be formed as one complex having different features with different 

levels of energy and the induced fit model theory which states that the pocket site and the 

ligand are not important to fit one another in their resting states and the ligand draws close 

to the enzyme and both of them change the shape as a result of interacting with each other 

and after the reaction has finished and new results are formed, the product and enzyme 

are no longer compatible and they separate (Kool, 2002). 

 

1.5 Molecular Dynamics Simulation 

X-ray crystallography has been developed and improving the techniques over decades to 

explain and describe the molecular structures of macromolecules. Molecular Dynamics 

(MD) simulation has turned into another significant procedure in the development of 

novel bioactive molecules by looking at the steadiness of molecular targets and ligand 

binding pose in time scale (Aqvist, Luzhkov, & Brandsdal, 2002). MD is a computational 

technique that uses structural data taken from experimentally to calculate the possible 

configuration of molecular systems. In traditional MD simulations, the potential energy 
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function frequently contributes as the “force field” characterize the interactions between 

atoms formed of bonded terms between covalently bound atoms (bonds, angles, torsions) 

and non-bond terms (Van der Waals interactions and electrostatic interactions). Classic 

molecular force fields like AMBER (Bayly et al., 1995), OPLS (Jorgensen & Tirado-

Rives, 1988), Chemistry at Harvard Macromolecular Mechanics (CHARMM) (MacKerell et 

al., 1998) and GROMOS (Oostenbrink, Villa, Mark, & van Gunsteren, 2004) these force 

fields they show the interactions and the predicted motion for the systems(Aqvist et al., 

2002). With the rapid evolution of technology in the field of MD, the computational 

power has been increased and MD simulations affected with this development and can be 

extended to microsecond with considering the decreasing in the timescale to enable 

significant competition to be observed (Maragakis et al., 2008). 

 

1.6 Homology Modeling  

When the crystal structure for a target protein is not available, homology modeling is the 

alternative way to build a model at atomic level depending on the sequence of the target 

protein and the similarity between the sequence and the most identity and similarity with 

any crystal structure taken from experimental by considering the highest identity and 

similarity between them. After aligning the sequences between homologous and the 

protein and the alignment result was below 20% of sequence identity, it will be definitely 

a very different structure and its unreliable to do the computational work on this predicted 

model (Chothia & Lesk, 1986). The sequence and the template which has been alignment 

between them will proceed to reproduce a new model based on the similarity between 

their sequences alignment and the crystal structure because the protein structure is 

devilishly conserved than sequence (Centeno, Planas-Iglesias, & Oliva, 2005). Generally, 

the homology modeling quality is located on the accuracy between the alignment of 

template structures and the sequences, in other words, the higher similarity and identity 

will produce a higher quality of the target with conceding the gaps between the template 

sequence and the target sequence and also the loops regions show more errors than the 

gaps because the template sequences and target sequences completely different than each 

other and sometimes even from different species ether (Park, Teichmann, Hubbard, & 

Chothia, 1997). With the exception of having a mutation because the mutation it can 



14 
 

cause another fold than the predicted and that will lead to another story of predictions, 

however, in the reality the protein, it should be folded in a proper way because it's under 

the constraint and the protein must carry out its function in the cell (Dalal, 

Balasubramanian, & Regan, 1997). Almost all the tools and software that are used for 

homology modeling are using four steps for the procedure: selecting the template, 

alignment between the template and target sequence, model building and evaluation of 

the predicted model (Martí-Renom et al., 2000). 

 

1.7 Enzymes  

Enzymes are macromolecules can speed up the chemical reactions in the organs. In all 

metabolic procedure’s enzymes are needed to catalyze and speed up the reactions, 

thousands of chemical reactions can be catalyzed by enzymes by decreasing the activating 

energy of the enzymes. Enzymes are specific to their catalyzing. Enzymes activity can be 

affected by small molecules such as inhibitors which can lower the activity of enzyme 

and activators which can lift up the activity of enzymes (Silverman & Holladay, 2015). 

 

1.7.1 Coenzymes 

Coenzymes also called cofactor and for some enzymes cannot be catalyzed without 

coenzymes inside the active site for the enzyme. Some cofactors can be not organic such 

as: Zn and Fe and some can be produced organically in the body and this type specifically 

called coenzymes. Those coenzymes can be derived from vitamins such as PLP. 

Coenzymes can be considered transition carriers. Coenzymes are mainly related with the 

enzyme functions and also involved with the substrate metabolism by interacting with the 

required residues to provide to the enzyme with energy to activate the substrate during 

the enzyme-catalyze reaction (Silverman & Holladay, 2015). 

 

1.8 Blood-Brain Barrier  

The Blood-Brain Barrier (BBB) is an extremely selective membrane controlling the 

bypassing from blood to the CNS (Graff & Pollack, 2004). In 1908 Paul Ehrlich has been 
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awarded a Nobel prize for illuminated the existence of the BBB (Joó, 1993)  with a 20 m² 

of the surface of BBB cells as a moderator between the blood and CNS. For drugs which 

related to the nervous system, the permeability should be high to navigate through the 

BBB to gain a better effect of the treatment. The substrate lipophilicity, hydrogen-bond 

desolvation potential, molecular weight, pKa/charge, and molecular size, all these factors 

can impact the permeability features with the BBB. The better factors for crossing the 

substrate the BBB, in general, is uncharged, lipophilic and low molecular weights (de 

Boer, van der Sandt, & Gaillard, 2003). 
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2. MATERIALS AND METHODS 
 

2.1 Tools and Software Programs 

In this study we used study several programs and tools for drug design and molecular 

docking such as biovia DS (BIOVIA, 2017), AutoDock tools and Autodock 4.2 (Morris 

et al., 2009), Autodock Vina (Trott & Olson, 2010) and GOLD (Jones, Willett, Glen, 

Leach, & Taylor, 1997). 

 

2.2 Homology Modeling 

There is no crystal structure resolved yet for human GABA-AT, we used homology 

modeling approach for predicting a model for human GABA-AT depending on the 

similarity between the GABA-AT sequence for human and the best template from another 

organism. The fasta sequence was retrieved from uniport (Bateman, 2019). By using Basic 

Local Alignment Search Tool (BLAST) (Altschul, Gish, Miller, Myers, & Lipman, 1990) 

from biovia DS. The results showed that the higher similarity was from pig liver (Sus 

Scrofa) and Protein Data Bank (PDB) name 1OHV (Storici et al., 2004) chain A. 95% 

identity, 461 sequence, 938.717 Bit score, 0 E-value and 2.3 Å resolution (Figure 2.1). 
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Figure 2. 1. The BLAST search result and the best was 1OHV. 

 

The template protein (1OHV) was retrieved from protein data bank (Berman et al., 2000) 

and aligned with the Fasta sequence for human GABA-AT from uniProt by using “align 

sequences” plugin tool in Biovia DS, the model was built by using modeler (Webb & 

Sali, 2016) from biovia DS. 

 

2.3 Homology Modeling Validation  

 

2.3.1 Align Structures 

The homology modeled protein was performed for aligning with 1OHV protein by using 

“align structures” from biovia DS and the C-alpha distance cutoff was set to 2.5 and 

length cutoff set to 50 and bin size set to 20. 

 

2.3.2 Model Score  

The homology modeling results produced 20 models and the best was chosen depending 

on the dope score and normalized dope score from Biova DS. 
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2.3.3 Ramachandran Plot 

The modeled protein was validated by using the Ramachandran plot from a web-based 

PROCHECK online server (https://servicesn.mbi.ucla.edu/PROCHECK/) (Laskowski, 

MacArthur, Moss, & Thornton, 1993). 

 

2.3.4 ProSA-web 

The modeled protein was also validated by using ProSA-web (web-based online server) 

(https://prosa.services.came.sbg.ac.at/prosa.php) (Wiederstein & Sippl, 2007). 

 

2.3.5 Verify 3D 

The modeled protein was further verified with Verify 3D from (Molecular Biology 

Institute and the DOE-MBI Institute at the University of California, Los Angeles) online 

server (https://servicesn.mbi.ucla.edu/)  (Bowie, Lüthy, & Eisenberg, 1991). 

 

2.3.6 MD Simulation 

The modeled protein was performed for MD simulation to examine the stability of the 

free protein and we used charm GUI server a web-based graphical user interface for 

CHARMM (Jo, Kim, Iyer, & Im, 2008) for preparing the modeled protein for MD 

simulation. By using Nanoscale Molecular Dynamics (NAMD) software (Phillips et al., 

2005) the modeled protein’s energy was minimized to 10000 and equilibrated for 5 

nanoseconds and simulated for 50 nanoseconds and the last frame were selected for 

continuing the study. 

 

2.3.7 Known Inhibitor  

The known inhibitors were taken from Chembl database (Gaulton et al., 2012). All known 

inhibitors were experimentally tested for either human or rat (Rattus norvegicus). We 

retest these inhibitors computationally and compare the experimentally inhibitor constant 

https://servicesn.mbi.ucla.edu/PROCHECK/
https://prosa.services.came.sbg.ac.at/prosa.php
https://servicesn.mbi.ucla.edu/
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(Ki) and the half-maximal inhibitory concentration (IC50) with the docked results (Table 

2.1). 

Table 2.1 Known Inhibitors for Human and Rat with 2D structures. 

Inhibitor name Organism 2D Structure Literature 

VIGABATRIN human 

 

(Choi & 

Silverman, 

2002a) 

Aryl aminopyridine 

derivative of GABA 
human 

 

(Wermuth et al., 

1987) 

“208” derivative 

difluorophenol 
human 

 

(Meanwell, 

2011) 

“209” derivative of 

difluorophenol 
human 

 

(Meanwell, 

2011) 
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Cyclohexene analogue human 

 

(Choi & 

Silverman, 

2002b) 

GASTRODIN human 

 

(Tao, Yuan, 

Tang, Xu, & 

Yang, 2006) 

HELICIDE human 

 

(Tao et al., 

2006) 

4-

Hydroxybenzaldehyde 
human 

 

(Tao et al., 

2006) 
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Tetrahydronaphthalen-

1-one 
Rat 

 

(Bansal, Sinha, 

& Khosa, 2013) 

CHEMBL2283209 Rat 

 

(Bansal et al., 

2013) 

CHEMBL2283210 Rat 

 

(Bansal et al., 

2013) 

CHEMBL2283211 Rat 

 

(Bansal et al., 

2013) 
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CHEMBL2283213 Rat 

 

(Bansal et al., 

2013) 

CHEMBL2283214 Rat 

 

(Bansal et al., 

2013) 

CHEMBL2283217 Rat 

 

(Bansal et al., 

2013) 

CHEMBL2283220 Rat 

 

(Bansal et al., 

2013) 
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CHEMBL2283221 Rat 

 

(Bansal et al., 

2013) 

CHEMBL2283223 Rat 

 

(Bansal et al., 

2013) 

CHEMBL2283224 Rat 

 

(Bansal et al., 

2013) 

CHEMBL2283226 Rat 

 

(Bansal et al., 

2013) 
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CHEMBL2283227 Rat 

 

(Bansal et al., 

2013) 

 

All the 21 known inhibitors were prepared by using Biovia DS and docked by AutoDock. 

The docked result for Vigabatrin was chosen for MD simulation. The modeled protein 

and vigabatrin (complex) were prepared for MD simulation by using charm GUI server 

and the energy minimization set for 10000 and equilibrated for 5 nanoseconds and 

simulated for 50 nanoseconds. 

 

2.4 Virtual Screening  

 

2.4.1 Databases 

The database was retrieved from Zinc15 database (Sterling & Irwin, 2015), Otava CNS 

compound library (http://www.otavachemicals.com/) and Chembl database. We 

downloaded 5,000,000 ligands from zinc database depending on their LogP and 

molecular weight and we downloaded 2,372 ligands from Otava database, and we 

downloaded 1,870,461 ligands from Chembl. 

 

2.4.2 ADMET and Lipinski’s Rule of Five 

All databases were performed for ADMET descriptor and Lipinski’s rule of five to filter 

the molecules depending on the BBB values and Lipinski’s rule of five. BBB penetration 

a quantitative linear regression model for the prediction of BBB penetration, as well as 

95% and 99% confidence ellipses in the ADMET_PSA_2D verses ADMET_AlogP98. 

The range of BBB has been taken from more than eight hundred molecules that are well-

http://www.otavachemicals.com/
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known CNS-permeable charismatics (Egan & Lauri, 2002). The pioneering research by 

Lipinski led to the well-known "Rule of five" for selecting drug-like molecules (Lipinski, 

Lombardo, Dominy, & Feeney, 1997). Human Intestinal Absorption (HIA) is widely 

predicted after oral administration. Ninety percent absorption indicates highly intestinal 

absorption drugs. The intestinal absorption model includes 95% and 99% confidence 

ellipses in the ADMET_PSA_2D verses ADMET_AlogP98. The Aqueous Solubility was 

generated relying on 775 different compounds from various classes and different 

generated plots extracted from experimental values (Cheng & Merz, 2003). The ADMET 

and Lipinski’s features and pKa were performed by using biovia DS. 

 

2.4.3 GOLD 

495,539 ligands from zinc database and 2000 ligands from Otava database and 10333 

ligands from Chembl database were docked with GOLD (Chemplp scoring function) with 

10 Genetic Algorithm (GA) run and select all atoms within 10 Å and with default protocols. 

 

2.4.4 VINA 

29,840 ligands from zinc and 803 ligands from Otava and 160 ligands from Chemblwere 

docked with Autodock Vina and the exhaustiveness was set for 8. 

 

2.4.5 AUTODOCK  

Twenty-nine ligands from zinc and 33 ligands from Otava and 27 ligands from Chembl 

were docked with AutoDock and the number of GA runs set for 20 and the maximum 

number of evals set for long (25,000,000) and the maximum number of generations set 

for 27,000. 

 

2.4.6 MD Simulation Analysis 

The best 2 ligands from zinc database and best 1 ligand from Otava and best 2 ligands 

from Chembl were prepared for MD simulation to evaluate their stability in the active 
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site of GABA-AT over time. We used charm GUI server for preparing the complexes for 

MD simulation. By using NAMD the complexes’ energy was minimized to 10000 and 

equilibrated for 5 nanoseconds and simulated for 50 nanoseconds and the last frames were 

selected for study the stability of the complexes. All systems’ last frame was picked for 

calculate the Potential, Van der Waals, Electrostatic and Solvation energies via Poisson 

Boltzmann with non-polar Surface Area (PBSA) plugin tool from Biovia DS. Ligand ΔG 

for all systems were calculated after MD simulation via the web-based KDEEP 

(https://www.playmolecule.org/Kdeep/) (Jiménez, Škalič, Martínez-Rosell, & De 

Fabritiis, 2018). Binding free energy calculated via CaFE tool (Liu & Hou, 2016). CaFE 

tool calculate the gas-phase free energy, solvation free energy and the change in the 

system entropy. CaFE tool use molecular mechanics Poisson-Boltzmann surface area 

(MM/PBSA) method for calculate the free energy (Elmezayen, Al-Obaidi, Şahin, & 

Yelekçi, 2020). The last 10 ns for the six complex systems submitted to CaFE tool. Figure 

2.2 can summarize all above mentioned methods in this chapter. 

https://www.playmolecule.org/Kdeep/
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Figure 2. 2 A workflow explaining all the steps has been followed in this chapter. 
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3. Results and Discussion 
 

 

3.1 Homology Modeling  

We build a homology model for the human GABA-AT by using modeler from biovia DS. 

At first, we retrieved a Fasta sequence for the human GABA-AT from UniProt database 

with the entry P80404 (GABT_HUMAN). The sequence was used with BLAST search 

tool from biovia DS for searching the highest similarity protein from other organisms, the 

result shows that the GABA-AT from pig’s liver (Sus Scrofa) was the highest identity 

with chain A and 95% identity and 461 sequences with 938.717-bit score with 0 E-value 

and 2.3 Å resolution (Figure 2.1). We retrieved the PDB for the pig liver GABA-AT from 

PDB website under the name of the protein 1OHV which has been deposited at 2003-06-

02 and released at 2003-10-16. 1OHV was resolved with X-ray diffraction and the 

resolution was 2.3 Å and the R-value free 0.221 and the R-value work 0.188 (Storici et 

al., 2004). The protein has 4 chains A, B, C and D, chains B, C and D were excluded from 

the protein (1OHV) because the protein contains two homodimers and the four chains are 

100% similar to each other. The protein was prepared by using “prepare protein” from 

biovia DS then the sequence for human GABA-AT aligned with the 1OHV sequence by 

using “align sequences” with biovia DS and the aligning shows that the main-chain 

RMSD was 0.21400 Å. The sequence identity was 95.9% and the sequence similarity was 

98.3%. The aligned sequences show high similarity and 100% with the active site (Figure 

3.1). If 30% at least sequence identity between a target and a template, proteins are 

expected to have similar structures if the aligned region is long enough. If two proteins 

have more than 50% sequence identity the quality of the model is generally considered 

excellent (Pevsner, 2009). 
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Figure 3. 1. 95.9% Similarity and 98.3% Identity and 100% Active Site similarity 

between Human FASTA and 1OHV FASTA   α helix  β sheet  loops. 

 

We created a homology model for the human GABA-AT by using “build homology 

models” with biovia DS. The homology modeling created 20 models. To validate and 

choose the best model results were performed for “verify protein (Modeler)” from biovia 

DS. The best model was GABT_HUMAN.M0012 with dope score -54978.171875 and 

normalized dope score -1.206257 (Table 3.1). 
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Table 3. 1. The Homology Modeling results and scores, GABT_HUMAN.M0012 the 

highlighted one was the best result. 

Protein Scores 

Name DOPE Score Normalized DOPE Score 

GABT_HUMAN.M0007 -54759.050781 -1.172594 

GABT_HUMAN.M0008 -54890.910156 -1.192851 

GABT_HUMAN.M0012 -54978.171875 -1.206257 

GABT_HUMAN.M0015 -54773.820313 -1.174863 

GABT_HUMAN.M0001 -54787.460938 -1.176958 

GABT_HUMAN.M0003 -54844.500000 -1.185721 

GABT_HUMAN.M0018 -54816.351563 -1.181397 

GABT_HUMAN.M0019 -54592.898438 -1.147069 

GABT_HUMAN.M0006 -54718.898438 -1.166425 

GABT_HUMAN.M0010 -54665.898438 -1.158283 

GABT_HUMAN.M0005 -54757.914063 -1.172419 

GABT_HUMAN.M0013 -54753.316406 -1.171713 

GABT_HUMAN.M0016 -54858.902344 -1.187934 

GABT_HUMAN.M0017 -54354.074219 -1.110379 

GABT_HUMAN.M0002 -54919.933594 -1.197310 

GABT_HUMAN.M0020 -54933.121094 -1.199336 

GABT_HUMAN.M0004 -54828.503906 -1.183264 

GABT_HUMAN.M0014 -54489.828125 -1.131234 

GABT_HUMAN.M0011 -54466.957031 -1.127721 

GABT_HUMAN.M0009 -53949.980469 -1.048300 

 

The best model extracted and re-prepared by using “prepare protein” from biovia DS and 

the plp were put back into the same coordinate without losing the interacted residues 

(Figures 3.2, 3.3, 3.4). 
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Figure 3. 2. The modeled Protein with PLP. 

 

 

Figure 3. 3. PLP interaction residue before Homology Modeling. 
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Figure 3. 4. PLP after Homology Modeling. 

 

3.1.1 Align Structures 

1OHV and the modeled protein were aligned together to compare the differences between 

the modeled and the crystal structure loops and α helixes and β sheets and plp position 

after modeling and Root-Mean-Squared Deviation (RMSD) was 0.214 (Figure 3.5). The 

highlighted with yellow can indicate the 1OHV protein. 
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Figure 3. 5. Aligned 1OHV with PLP (yellow highlighted) and modeled protein with 

PLP. 

 

3.1.2 Ramachandran Plot 

Ramachandran plot used to evaluate the energetically acceptable regions of the modeled 

protein. The regions of alpha-helical and beta-sheet conformations with no steric clashes 

upon rotation around torsion angles phi and psi, 92.2% of the residues located at the most 

favored regions and 2.2% of residues located at the allowed regions and 0.8% located at 

generally allowed regions and 0.2% of residues located at disallowed regions, these 

results can give us a comprehensive picture of the modeled protein is acceptable (Figure 

3.6). 
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Figure 3. 6. Ramachandran plot showing the energetically allowed regions of the 

modeled protein. 

 

3.1.3 ProSA-web 

The 3D structure was also validated by using ProSA-web to recognize if there are any 

errors with the GABA-AT 3D structure. We can clearly see the GABA -AT modeled 3D 

structure located at the accepted X-ray regions (Figure 3.7). 
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Figure 3. 7. Modeled GABA-AT result from ProSA-web,   indicates the GABA-AT 

location between the X-ray regions. 

 

3.1.4 Verify 3D  

The modeled GABA-AT with plp was further verified with Verify 3D. verify3D produced 

averaged data points with 89.59% of the residues have averaged 3D score > = 0.2, 

assuring a considerable high model quality (Figure 3.8). 

 

Figure 3. 8. Verify 3D shows 89.59% of the residues have averaged 3D score >= 0.2. 



36 
 

3.1.5 MD Simulation 

MD simulation carried out to check the stability of the free modeled protein and to 

analyze the RMSD, Root-Mean-Squared Fluctuations (RMSF) and radius of gyration (Rg). 

By using CHARMMGUI server. The free modeled protein was prepared for MD 

simulation and set the minimization for 10000 and equilibrated for 5 nanoseconds and 

simulated for 50 nanoseconds by using NAMD. The result of the MD simulation shows 

very high stability and the RMSD has been stabilized approximately between 3 and 3.5 

Å (Figure 3.9). The RMSF fluctuated low except the loop’s residues (LEU30, MET96, 

LYS125, PHE161, and MET194) (Figure 3.10A). The Rg through md simulation shows 

a stable and steady fluctuation between 1.32 and 1.44 Å (Figure 3.10B). 

 

 

Figure 3. 9. Modeled GABA-AT free RMSD for 50 Nanoseconds. 
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Figure 3. 10 A. Modeled GABA-AT RMSF, B. Modeled GABA-AT Rg. 

 

The last frame from MD simulation was taken and analyzed to check the stability of the 

modeled GABA-AT. The plp during the MD simulation was stabilized and didn’t leave 

the cavity (Figures 3.11, 3.12). 

 

 

Figure 3. 11. Modeled GABA-AT after MD simulation showing charge surface with 

PLP interaction. 
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Figure 3. 12. PLP interaction after MD Simulation. 

 

3.1.6 Known Inhibitors  

For checking the modeled GABA-AT, we docked known inhibitors to modeled GABA-

AT and compared their experimental results with docked results and check the interaction 

between the active site which retrieved from (Toney, Pascarella, & De Biase, 1995). 8 of 

known inhibitors have experimented on human and 13 were experimented on the rat. The 

21 known inhibitors prepared by using “prepare ligands” plugin tool in biovia DS and 

docked by using AutoDock with a setting of GA runs set for 20 and the maximum number 

of evals set for long (25,000,000) and the maximum number of generations set for 27,000 

(Tables 3.2, 3.3). 
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Table 3. 2. Known Inhibitors and the Active site residues interactions. 

Inhibitor Name Active Site residues 

 
CY

S 

138 

GLY 

136 

ASN 

140 

PHE 

189 

HIS 

190 

GLY 

191 

ASP 

298 

VAL 

300 

LYS 

329 
PLP 

VIGABATRIN ✓ ✓ ✓       ✓ 
Aryl aminopyridine 

derivative of GABA   ✓ ✓  ✓    ✓ 
“208” derivative of 

difluorophenol  ✓ ✓ ✓  ✓  ✓  ✓ 
“209” derivative of 

difluorophenol   ✓ ✓  ✓ ✓ ✓  ✓ 
Cyclohexene 

analogue  ✓  ✓  ✓  ✓  ✓ 
GASTRODIN ✓ ✓ ✓ ✓ ✓ ✓  ✓  ✓ 

HELICIDE  ✓ ✓  ✓ ✓  ✓  ✓ 
4-

Hydroxybenzaldehy

de 

 

 ✓ ✓ ✓  ✓  ✓  ✓ 

Tetrahydronaphthal

en-1-one   ✓   ✓  ✓  ✓ 
CHEMBL2283209 ✓  ✓     ✓ ✓ ✓ 
CHEMBL2283210  ✓ ✓   ✓  ✓ ✓ ✓ 
CHEMBL2283211    ✓  ✓    ✓ 
CHEMBL2283213 ✓  ✓   ✓    ✓ 
CHEMBL2283214 ✓  ✓ ✓  ✓    ✓ 
CHEMBL2283217 ✓  ✓ ✓    ✓  ✓ 
CHEMBL2283220 ✓   ✓  ✓    ✓ 
CHEMBL2283221 ✓ ✓      ✓  ✓ 
CHEMBL2283223      ✓  ✓ ✓ ✓ 
CHEMBL2283224  ✓ ✓     ✓  ✓ 
CHEMBL2283226 ✓  ✓ ✓  ✓  ✓  ✓ 
CHEMBL2283227   ✓ ✓  ✓  ✓ ✓ ✓ 
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Table 3. 3. Known inhibitors and their experimental Ki and IC50 with docked Ki results 

with binding affinity and with 2D structures of their interactions. 

Inhibitor Name 
Experimen

tal Ki M 

Docked

Ki M 

Bindin

g 

affinity 

Kcal/m

ol 

 

2D Interaction 

VIGABATRIN 850 109.66 -5.40 

 

 

 

Aryl 

aminopyridine 

derivative of 

GABA 

91 27.87 -6.20 

 

 

“208” derivative 

difluorophenol 
6300 1070 -4.05 
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“209” derivative of 

difluorophenol 
11000 1800 -3.75 

 

Cyclohexene 

analogue 
2300 291.69 -4.82 

 

Inhibitor Name 

Experimen

tal IC50 

µM 

Docked 

Ki 

Bindin

g 

affinity 

Kcal/m

ol 

 

 

Interaction 

GASTRODIN 1000 2.67 -7.60 
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HELICIDE 1000 0.718 -8.38 

 

4-

hydroxybenzaldeh

yd 

1000 477.71 -4.53 

 

Tetrahydronaphtha

len-1-one 
0.28 3.71 -7.40 

 

 

CHEMBL2283209 0.3 2.73 -7.59 
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CHEMBL2283210 0.56 0.547 -8.54 

 

CHEMBL2283211 9.95 12.05 -6.71 

 

CHEMBL2283213 15.53 2.38 -7.67 

 

 

CHEMBL2283214 16.78 5.43 -7.18 
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CHEMBL2283217 23.48 29.94 -6.17 

 

CHEMBL2283220 44.06 12.85 -6.67 

 

CHEMBL2283221 0.24 1.40 -7.99 

 

CHEMBL2283223 0.37 1.22 -8.07 
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CHEMBL2283224 0.46 1.30 -8.03 

 

CHEMBL2283226 2.78 3.96 -7.37 

 

CHEMBL2283227 4.96 16.51 -6.52 

 

 
 

 

3.1.3.1 Vigabatrin MD Simulation 

After docking known inhibitors, Vigabatrin was chosen for MD simulation. The 

estimated free energy of Vigabatrin binding was -5.40 Kcal/mol and the estimated 

inhibition constant Ki was 109.66 M and the complex(Vigabatrin and modeled GABA-

AT) was prepared for MD simulation by using CHARMM GUI server and set the 

minimization for 10000 and equilibrated for 5 nanoseconds and simulated for 50 
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nanoseconds by using NAMD. The result shows the complex was stable and the RMSD 

has stabled approximately at 2.8 Å (Figure 3.13). RMSF shows the low fluctuation for all 

protein residues except for LEU30 and MET 194 which they are located at loops region 

(Figure 3.14A). Rg shows a stable and steady fluctuation between 1.32 and 1.44 Å (Figure 

3.14B). 

 

Figure 3. 13. The modeled complex (GABA-AT with Vigabatrin) RMSD. 

 

 

Figure 3. 14 A. GABA-AT with VIGABATRIN RMSF, B. GABA-AT with 

VIGABATRIN Rg. 
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By analyzing the simulated complex and compare the result with the docked complex 

before MD simulation, we can see that the Vigabatrin stable and maintain the interaction 

with the active site and with plp (Figures 3.15, 3.16, 3.17). 

 

 

Figure 3. 15. Docked Vigabatrin interaction with the Active Site and PLP. 

 

 

Figure 3. 16. Simulated Vigabatrin interaction with the Active Site and PLP. 
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Figure 3. 17. Docked and Simulated Vigabatrin 2D interactions with the Active Site 

and PLP. 

 

2.5 Virtual screening 

 

3.2.1 Database  

A total of 6,872,833 ligands were retrieved from different libraries 5,000,000 of them 

were from Zinc15 database and 2,372 of them were from Otava database and 1,870,461 

of them were from Chembl. All ligands are drug-like and their LogP were ranging 

between -1 and 4.5 and prepared with biovia DS protocols. 

 

2.5.2 ADMET and Lipinski’s Rule of Five 

All ligands from Zinc, Otava and Chembl databases were performed for ADMET via 

biovia DS “ADMET Descriptors”. BBB is divided to five levels of penetration: 0 refers 

to very high penetration, 1 refers to high penetration, 2 for medium penetration, 3 low 

penetration and 4 describes no penetration state. Lipinski’s rule of five stated that for any 

small molecule to be considered as a drug-like, the molecule should follow these criteria: 

molecular mass less than 500 Dalton, no more than 5 hydrogen bond donors, no more 

than 10 hydrogen bond acceptors, and logP less than 5. All ligands filtered depending on 
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ADMET and Lipinski’s rule of five results. Zinc15 database filtered to 495,539 ligands 

and Otava database filtered to 2000 ligands and Chembl database filtered to 10333 ligands 

(Figure 3.18). 

 

 

Figure 3. 18. ADMET Descriptors for Zinc, Otava and Chembl databases. 

 

3.2.3 Gold 

Before using GOLD for virtual screening, we docked known inhibitors against modeled 

GABA-AT by using GOLD to create a criteria for virtual screening, we docked the 21 

known inhibitors with the XYZ coordinate of the active site (-20×8×2) and by using 

Chemplp scoring function and 10 GA runs and select all atoms within 10 Å and with 

default protocols. The results show known inhibitors scores were between 27.39 and 
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52.73. By taking an average which will be 41.83 we create criteria of 45 score. Any ligand 

will show less score than 45 scores will be excluded (Table 3.4). 

Table 3. 4. Gold CHEMPLP Scoring Function scores for Known Inhibitors. 

Known Inhibitor Name Gold CHEMPLP Score 

VIGABATRIN 27.92 

Aryl aminopyridine derivative of GABA 41.22 

“208” derivative of difluorophenol 30.45 

“209” derivative of difluorophenol 32.13 

Cyclohexene analogue 27.39 

GASTRODIN 41.26 

HELICIDE 39.49 

4-Hydroxybenzaldehyde 28.23 

Tetrahydronaphthalen-1-one 43.65 

CHEMBL2283209 52.59 

CHEMBL2283210 52.73 

CHEMBL2283211 52.34 

CHEMBL2283213 45.52 

CHEMBL2283214 47.79 

CHEMBL2283217 39.96 

CHEMBL2283220 42.37 

CHEMBL2283221 47.5 

CHEMBL2283223 47.46 

CHEMBL2283224 47.95 

CHEMBL2283226 44.84 

CHEMBL2283227 45.84 

 

 

After docking all databases against our model, 29,840, 803 and 160 from Zinc15, Otava 

and Chembl, respectively passed the criteria of 45 score. 
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3.2.4 Vina 

All passed ligands after gold were picked up and docked by Vina. The highest 90 ligands 

from Zinc, Otava and Chembl were selected based on their binding affinity and 

interactions with the active site of GABA-AT to continue the study. 

3.2.5 AutoDock 

All 90 ligands were docked against our model via AutoDock 4.2. The best 2 from zinc 

database (ZINC000364721779, ZINC000635903250) and the best 1 ligand from Otava 

database (P6240926) and the best 2 ligands from Chembl database (CHEMBL1740350, 

CHEMBL1235738) were chosen depending on their estimated free energy of binding and 

their estimated inhibition constant Ki and on the interaction between the ligands with the 

active site. A total set of 5 ligands among the best 30 ligands from diverse databases were 

selected for MD simulation (Table 3.5). 

Table 3. 5. Best 30 ligand’s binding energy and Ki. 

Molecule name 
Binding energy 

Kcal/mol 
Ki nM 

ZINC000364721779 -9.41 127.55 

ZINC000635903250 -9.00 250.84 

ZINC000361908791 -8.89 304.76 

ZINC000348987184 -8.86 319.66 

ZINC001337417339 -8.82 344.39 

ZINC001109206495 -8.77 374.77 

ZINC001100325757 -8.69 423.25 

ZINC001100325415 -8.67 444.61 

ZINC000653739378 -8.63 470.78 

ZINC000845925012 -8.62 476.28 

P6240926 -8.67 437.67 

P1308591 -8.51 579.05 

P0116730119 -8.51 576.43 
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P1309903 -8.49 601.62 

P6666635 -8.37 733.33 

P6247875 -8.35 758.11 

P7016350065 -8.29 834.25 

P6236830 -8.24 904.59 

P6667393 -8.21 963.78 

P6666710 -8.17 1020  

CHEMBL1740350 -7.64 2510 

CHEMBL1235738 -7.09 6330 

CHEMBL291584 -7.01 7300 

CHEMBL3774671 -6.97 7810 

CHEMBL49903 -6.93 8380 

CHEMBL1201260 -6.87 9220 

CHEMBL2007010 -6.87 9250 

CHEMBL1199204 -6.7 12170 

CHEMBL2206400 -6.68 12680 

CHEMBL2333147 -6.33 22730 

 

3.2.6 MD Simulation Analysis 

The best results from AutoDock were performed for MD simulation. The complexes 

ZINC000364721779, ZINC000635903250, P6240926, CHEMBL1235738 and 

CHEMBL1740350 with modeled GABA-AT were prepared for MD simulation by using 

CHARMM GUI server and set the minimization for 10000 and equilibrated for 5 

nanoseconds and simulated for 50 nanoseconds for each by using NAMD. The MD 

results show complexes ZINC000364721779, ZINC000635903250, P6240926, 

CHEMBL1740350 and CHEMBL1235738 with modeled GABA-AT were stable through 

the 50 nanoseconds of simulation and the RMSD for ZINC000364721779, 
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ZINC000635903250, P6240926, CHEMBL1740350 and CHEMBL1235738 was stabled 

approximately at 2.5 Å (Figures 3.19, 3.23, 3.27, 3.31, 3.35). We can clearly see the 

docked complexes interactions 2D and 3D with active site residues between the modeled 

GABA-AT and ZINC000364721779, ZINC000635903250, P6240926, 

CHEMBL1235738 and CHEMBL1740350 before and after MD simulation. We can see 

the system energy calculated by using PBSA from biovia DS for all systems after MD 

simulations and the ligand binding energy for all systems after MD simulations (Figures 

3.21, 3.22, 3.25, 3.26, 3.29, 3.30, 3.33, 3.34, 3.37, 3.38) and (Tables 3.6, 3.7). Figures 

3.39 and 3.40 show the comparison between all system’s RMSD, RMSF and Rg. Table 

3.8 shows the physiochemical features for the top-ranked ligands. Six systems have been 

assigned to CaFE tool for calculate the free energy for each ligand and it’s active site. 

Mm for each system was set for 1, pb was set for 2, pb_indi was set for 1.0, pb_exdi was 

set for 80.0, pb_prbrad was set for 1.4 and pb_scale was set for 2.0. The free energy for 

the six systems were ranging between ( -223 to -255 kcal/mol ) which give the explanation 

of all systems were at the same range of energy which can indicate that our system is 

energetically stable and all ligands were stabilized at the active site as shown in table 3.9. 
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Figure 3. 19. GABA-AT and ZINC000635903250 complex’s RMSD. 

 

 

Figure 3. 20 A. GABA-AT and ZINC000635903250 complex’s RMSF, B. GABA-AT 

and ZINC000635903250 complex’s Rg. 
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Figure 3. 21. Docked 3D and simulated 3D for ZINC000635903250. 

 

 

Figure 3. 22. Docked 2D and simulated 2D for ZINC000635903250. 
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Figure 3. 23. GABA-AT and ZINC000364721779 complex’s RMSD. 

 

 

Figure 3. 24 A. GABA-AT and ZINC000364721779 complex’s RMSF, B. GABA-AT 

and ZINC000364721779 complex’s Rg. 
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Figure 3. 25. Docked 3D and simulated 3D for ZINC000364721779. 

 

 

Figure 3. 26. Docked 2D and simulated 2D for ZINC000364721779. 
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Figure 3. 27. GABA-AT and P6240926 complex’s RMSD. 

 

 

Figure 3. 28 A. GABA-AT and P6240926 RMSF, B. GABA-AT and P6240926 Rg. 
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Figure 3. 29. Docked 3D and simulated 3D for P6240926. 

 

 

Figure 3. 30. Docked 2D and simulated 2D for P6240926. 
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Figure 3. 31. GABA-AT and CHEMBL1235738 complex’s RMSD. 

 

 

Figure 3. 32 A. GABA-AT and CHEMBL1235738 RMSF, B. GABA-AT and 

CHEMBL1235738 Rg. 
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Figure 3. 33. Docked 3D and simulated 3D for CHEMBL1235738. 

 

 

Figure 3. 34. Docked 2D and simulated 2D for CHEMBL1235738. 
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Figure 3. 35. GABA-AT and CHEMBL1740350 complex’s RMSD. 

 

 

Figure 3. 36 A. GABA-AT and CHEMBL1740350 RMSF, B. GABA-AT and 

CHEMBL1740350 Rg. 
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Figure 3. 37. Docked 3D and simulated 3D for CHEMBL1740350. 

 

 

Figure 3. 38. Docked 2D and simulated 2D for CHEMBL1740350. 
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Figure 3. 39. Comparison of all systems’ RMSD. 

 

 

Figure 3. 40 A. Comparison of all systems’ RMSF B. Comparison of all systems’ Rg. 
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Table 3. 6. The best 5-ligand interaction with Active Site before and after MD 

Simulation. 

Ligand Name 
CYS 

138 

GLY 

136 

ASN 

140 

PHE 

189 

HIS 

190 

GLY 

191 

ARG 

192 

VAL 

300 

LYS 

329 
PLP 

ZINC000635903250 

before MD 
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ 

ZINC000635903250 

after MD 
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ 

ZINC000364721779 

before MD 
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

ZINC000364721779 

after MD 
 ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ 

P6240926 

before MD 
✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ 

P6240926 

after MD 
✓ ✓ ✓     ✓ ✓ ✓ 

CHEMBL1235738 

before MD 
  ✓ ✓ ✓ ✓ ✓ ✓  ✓ 

CHEMBL1235738 

after MD 
 ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ 

CHEMBL1740350 

before MD 
  ✓ ✓ ✓ ✓ ✓ ✓  ✓ 

CHEMBL1740350 

after MD 
✓ ✓ ✓ ✓ ✓ ✓  ✓  ✓ 
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Table 3. 7. System energy for free GABA-AT and VIGABATRIN and the best 5 

compounds after MD simulation and Ligand ΔG. 

Name 

Potential 

Energy 

(kcal/mol

) 

Van der 

Waals 

Energy 

(kcal/ 

mol) 

Electrostatic 

Energy 

(kcal/mol) 

Solvation 

Energy 

(kcal/mol) 

Free 

Energy 

(kcal/mol) 

Ligand 

ΔG 

(kcal/ 

mol) 

FREE -13064 -3540 -18029 -5896 -18840 N/A 

VIGABATRIN -12833 -3481 -17970 -5908 -18620 -5.77 

P6240926 -13171 -3540 -18133 -5681 -18733 -5.42 

CHEMBL1235738 -13057 -3514 -18015 -5866 -18802 -6.70 

CHEMBL1740350 -12845 -3590 -17707 -6177 -18900 -6.96 

ZINC00036472177

9 
-12863 -3585 -17880 -5897 -18642 -6.82 

ZINC00063590325

0 
-12829 -3479 -18036 -5826 -18534 -7.48 

 

Table 3. 8. physiochemical features for the top-ranked ligands. 

Ligand name 
Molecular 

weight 

Hydrogen 

acceptor 

Hydrogen 

donor 
logP 

BB

B 

leve

l 

Aqueous 

solubility 

HIA 

level 

ZINC000364721779 296.287 9 0 -0.191 3 -1.821 0 

ZINC000635903250 277.276 7 1 -0.272 3 -2.065 0 

P6240926 370.444 4 2 4.492 1 -5.025 0 

CHEMBL1740350 176.215 3 2 1.224 3 -1.613 0 

CHEMBL1235738 171.238 1 1 3.119 1 -2.141 1 
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Table 3. 9 MM/PBSA energy calculation for the six systems via CaFE tool. 

Complex Name 
∆E 

Electrostatic 

∆E Van der 

Waal 
∆E polar SASA ∆E binding 

VIGABATRIN -309 +/- 27 -10 +/- 4 -209 +/- 12 -2.9 +/- 0.1 -223 +/- 11 

P6240926 -331 +/- 20 -35 +/- 4 -212 +/- 8 -4.3 +/- 0.1 -251 +/- 7.2 

CHEMBL1235738 -326 +/- 20 -21 +/- 4 -230 +/- 7 -3.3 +/- 0.1 -255 +/- 6.5 

CHEMBL1740350 -275 +/- 19 -23 +/- 4 -222 +/- 8 -3.0 +/- 0.0 -248 +/- 8.2 

ZINC000364721779 -337 +/- 25 -37 +/- 4 -193 +/- 8 -4.0 +/- 0.1 -235 +/- 7.6 

ZINC000635903250 -195 +/- 24 -30 +/- 4 -207 +/- 6 -3.8 +/- 0.1 -241 +/- 6.8 
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4. Conclusion 

GABA plays a crucial role as a neurotransmitter in the brain and GABA-AT is an enzyme 

that regulates the level of GABA. That is why GABA-AT is a prominent target for drug 

design for neurological disorders. In silico drug design significantly contributed to the 

development of GABA-AT inhibitors. Herein, we employed various computational 

methods to identify novel and highly potent human GABA-AT inhibitors such as 

homology modeling, structure-based virtual screening and molecular docking, 

physicochemical properties analysis and molecular dynamic simulation. Our homology 

modeling was successfully generated and validated. According to our virtual screening 

studies, ZINC000364721779, ZINC000635903250, P6240926, CHEMBL1740350 and 

CHEMBL1235738 compounds have shown the highest binding affinities to human 

GABA-AT. These compounds have obeyed Lipinski’s rule of five and have been 

considered as drug-like candidates based on the ADMET profile. All studied systems 

remained in the steady state in the MD simulation over time and in energy calculations 

suggesting high stability of our homology modeled GABA-AT, GABA-AT-

ZINC000364721779, GABA-AT-ZINC000635903250, GABA-AT-P6240926, GABA-

AT-CHEMBL1740350 and GABA-AT-CHEMBL1235738 complexes. The most 

promising molecules such as ZINC000364721779, ZINC000635903250, P6240926, 

CHEMBL1740350 and CHEMBL1235738 might be experimentally tested in future work 

for further evaluation. 
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